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1 A simple example

V (a)

I(a)

V (b)

I(b)

a b

Consider the transmission line on the spatial interval [a, b]

∂Q

∂t
(z, t) = −

∂

∂z

φ(z, t)

L(z)
(1)

∂φ

∂t
(z, t) = −

∂

∂z

Q(z, t)

C(z)
.
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1 A simple example

V (a)

I(a)

V (b)

I(b)

a b

Consider the transmission line on the spatial interval [a, b]

∂Q

∂t
(z, t) = −

∂

∂z

φ(z, t)

L(z)
(1)

∂φ

∂t
(z, t) = −

∂

∂z

Q(z, t)

C(z)
.

We write x1 = Q (charge) and x2 = φ (flux), and we find that
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∂

∂t





x1

x2



 (z, t) =





0 −1

−1 0





∂

∂z





1
C(z)x1(z, t)

1
L(z)x2(z, t)



 (2)

=





0 −1

−1 0





∂

∂z









1
C(z) 0

0 1
L(z)









x1(z, t)

x2(z, t)









= P1
∂

∂z
(Lx) (z, t)
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∂

∂t





x1

x2



 (z, t) =





0 −1

−1 0





∂

∂z





1
C(z)x1(z, t)

1
L(z)x2(z, t)



 (2)

=





0 −1

−1 0





∂

∂z









1
C(z) 0

0 1
L(z)









x1(z, t)

x2(z, t)









= P1
∂

∂z
(Lx) (z, t)

So we have the format as seen before, J = P1
∂
∂z

and ∂H
∂x

= Lx. Thus

the Hamiltonian equals H = 1
2

∫ b

a
xTLxdz =

∫ b

a
Hdz.
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∂

∂t





x1

x2



 (z, t) =





0 −1

−1 0





∂

∂z





1
C(z)x1(z, t)

1
L(z)x2(z, t)



 (2)

=





0 −1

−1 0





∂

∂z









1
C(z) 0

0 1
L(z)









x1(z, t)

x2(z, t)









= P1
∂

∂z
(Lx) (z, t)

So we have the format as seen before, J = P1
∂
∂z

and ∂H
∂x

= Lx. Thus

the Hamiltonian equals H = 1
2

∫ b

a
xTLxdz =

∫ b

a
Hdz.

To recapitulate some work done before, we differentiate the

Hamiltonian (energy) along trajectories.
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dH

dt
(t) =

1

2

∫ b

a

∂x

∂t
(z, t)TL(z)x(z, t)dz +

1

2

∫ b

a

x(z, t)TL(z)
∂x

∂t
(z, t)dz

=
1

2

∫ b

a

(

P1
∂

∂z
(Lx) (z, t)

)T

L(z)x(z, t)dz+

1

2

∫ b

a

x(z, t)TL(z, t)(P1
∂

∂z
(Lx) (z, t)dz

=
1

2

∫ b

a

∂

∂z

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]

dz

=
1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
,

where we have used the symmetry of P1.
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So we have that the time-change of Hamiltonian satisfies

dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
. (3)
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So we have that the time-change of Hamiltonian satisfies

dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
. (3)

That is the change of internal energy goes via the boundary.
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So we have that the time-change of Hamiltonian satisfies

dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
. (3)

That is the change of internal energy goes via the boundary.

Note the we only used that P1 was symmetric. We did not need the

specific form of P1 or L.
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So we have that the time-change of Hamiltonian satisfies

dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
. (3)

That is the change of internal energy goes via the boundary.

Note the we only used that P1 was symmetric. We did not need the

specific form of P1 or L.

The balance equation (3) also holds for the system

∂x

∂t
(z, t) = P1

∂Lx

∂z
(z, t) + P0 [Lx] (z, t) (4)

with P0 anti-symmetric, i.e., P T
0 = −P0.

Many systems can be written in this format.
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2 More examples

Example

Wave equation for the vibrating string:

∂2w

∂t2
(z, t) =

T

ρ

∂2w

∂z2
(z, t),

where ρ is the mass density, and T is Young’s modulus.

This is in our format with

P1 =





0 1

1 0



 , L =





1
ρ

0

0 T





The state variable are x1 = ρ∂w
∂t

(the momentum) and x2 = ∂w
∂z

(the

strain).
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Example

The model of Timoshenko beam is given

ρ(z)
∂2w

∂t2
(z, t) =

∂

∂z

[

K(z)

[

∂w

∂z
(z, t) − φ(z, t)

]]

Iρ(z)
∂2φ

∂t2
=

∂

∂z

[

EI(z)
∂φ

∂z

]

+ K(z)

[

∂w

∂z
(z, t) − φ

]

,

where w(z, t) is the transverse displacement of the beam and φ(z, t) is

the rotation angle of a filament of the beam. The positive

coefficients ρ(z), Iρ(z), E(z), I(z), and K(z) are the mass per unit

length, the rotary moment of inertia of a cross section, Young’s

modulus of elasticity, the moment of inertia of a cross section, and

the shear modulus respectively.
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By introducing the state variables

x1 = ∂w
∂z

− φ : shear displacement,

x2 = ρ∂w
∂t

: transverse momentum distribution,

x3 = ∂φ
∂z

: angular displacement,

x4 = Iρ
∂φ
∂t

: angular momentum distribution,

we can write this in our standard format, with

P1 =















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0















P0 =















0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0















and

L = diag{K,
1

ρ
, EI,

1

Iρ

}.
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Example

Consider transmission lines in a network

VV

II

Trans. line I

Trans. line II

Trans. line III

Trans. line IV
KK

In the coupling parts K, we have that Kirchhoff laws holds. Hence

charge flowing out of the transmission line I, enters II and III, etc.
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Example

Consider transmission lines in a network

VV

II

Trans. line I

Trans. line II

Trans. line III

Trans. line IV
KK

In the coupling parts K, we have that Kirchhoff laws holds. Hence

charge flowing out of the transmission line I, enters II and III, etc.

The P1 of the big system is the diagonal matrix, build from the

uncoupled P1’s (which are all the same). The L of the coupled

system is the diagonal matrix of the uncoupled L.

The coupling is written down as boundary conditions of the p.d.e.
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3 Choice of inputs and outputs

For our p.d.e.

∂x

∂t
(z, t) = P1

∂Lx

∂z
(z, t) + P0 [Lx] (z, t)

we have
dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
.
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3 Choice of inputs and outputs

For our p.d.e.

∂x

∂t
(z, t) = P1

∂Lx

∂z
(z, t) + P0 [Lx] (z, t)

we have
dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
.

Hence one may influence the Hamiltonian via these boundary

variables, and one may observe the system via the boundary. How to

choose inputs and outputs?
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3 Choice of inputs and outputs

For our p.d.e.

∂x

∂t
(z, t) = P1

∂Lx

∂z
(z, t) + P0 [Lx] (z, t)

we have
dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
.

Hence one may influence the Hamiltonian via these boundary

variables, and one may observe the system via the boundary. How to

choose inputs and outputs?

Consider again the transmission line example, and assume that the C

and L are constant.

∂

∂t





x1

x2



 (z, t) =





0 −1

−1 0





∂

∂z









1
C

0

0 1
L









x1(z, t)

x2(z, t)







 .
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We diagonalize the matrix P1L =
(

0 −1

C
−1

L
0

)

.
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We diagonalize the matrix P1L =
(

0 −1

C
−1

L
0

)

.

Hence





0 −1
L

−1
C

0



 =





1 1

−
√

L
C

√

L
C









√

1
LC

0

0 −
√

1
LC









1 −
√

C
L

1
√

C
L





1

2
.
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We diagonalize the matrix P1L =
(

0 −1

C
−1

L
0

)

.

Hence





0 −1
L

−1
C

0



 =





1 1

−
√

L
C

√

L
C









√

1
LC

0

0 −
√

1
LC









1 −
√

C
L

1
√

C
L





1

2
.

In the new variables (characteristics)





ξ1

ξ2



 :=





1 −
√

C
L

1
√

C
L









x1

x2





the transmission line becomes

∂ξ1

∂t
=

√

1

LC

∂ξ1

∂z
,

∂ξ2

∂t
= −

√

1

LC

∂ξ2

∂z
.
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Summarizing, we see that if we diagonalize P1L, then the p.d.e.

becomes a set of p.d.e.’s in one variable.

Note that the coupling is now only via the boundary variables.
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Summarizing, we see that if we diagonalize P1L, then the p.d.e.

becomes a set of p.d.e.’s in one variable.

Note that the coupling is now only via the boundary variables.

Assume that there is no coupling via the boundary, then we can study

the choice of inputs and outputs for a scalar p.d.e.
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Consider the shift on the interval [0, 1], described by the p.d.e.

∂w

∂t
(z, t) =

∂w

∂z
(z, t), z ∈ (0, 1). (5)
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Consider the shift on the interval [0, 1], described by the p.d.e.

∂w

∂t
(z, t) =

∂w

∂z
(z, t), z ∈ (0, 1). (5)

with boundary condition

w(0, t) = 0.

The solution would be w(z, t) = w0(z + t). This is conflicting with the

freedom of initial conditions, since

w0(1/2) = w0(0 + 1/2) = w(0, 1/2) = 0.
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Consider the shift on the interval [0, 1], described by the p.d.e.

∂w

∂t
(z, t) =

∂w

∂z
(z, t), z ∈ (0, 1). (5)

with boundary condition

w(0, t) = 0.

The solution would be w(z, t) = w0(z + t). This is conflicting with the

freedom of initial conditions, since

w0(1/2) = w0(0 + 1/2) = w(0, 1/2) = 0.

The boundary condition

w(1, t) = 0.

is good.
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Consider the shift on the interval [0, 1], described by the p.d.e.

∂w

∂t
(z, t) =

∂w

∂z
(z, t), z ∈ (0, 1). (5)

with boundary condition

w(0, t) = 0.

The solution would be w(z, t) = w0(z + t). This is conflicting with the

freedom of initial conditions, since

w0(1/2) = w0(0 + 1/2) = w(0, 1/2) = 0.

The boundary condition

w(1, t) = 0.

is good.

A perfect choice for the input/output pair is

w(1, t) = us(t) w(0, t) = ys(t). (6)
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We summarize the previous.

• The format

∂x

∂t
(z, t) = P1

∂

∂z
(Lx) (z, t), z ∈ [a, b], (7)

with P1 symmetric, det(P1) 6= 0, and L > 0, is a very nice one, and

general, see our examples.

They are port-Hamiltonian systems with a positive (quadratic)

Hamiltonian. Note that J = P1
∂
∂z

, ∂H
∂x

= Lx.

• If we diagonalize P1L, then we get a set of p.d.e.’s which are

only coupled via the boundary. That is we write the system in its

characteristics or Riemann coordinates.

• For a scalar p.d.e., we can easily find good inputs and outputs.

• How to find them general?
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4 Well-posedness

For t ≥ 0 and z ∈ [a, b] we consider the system:

∂x

∂t
(z, t) = P1

∂

∂z
(Lx) (z, t), x(0, z) = x0(z) (8)

0 = M11 (Lx) (b, t) + M12 (Lx) (a, t) (9)

u(t) = M21 (Lx) (b, t) + M22 (Lx) (a, t) (10)

y(t) = C1 (Lx) (b, t) + C2 (Lx) (a, t). (11)

We assume that x takes values in R
n, P T

1 = P1, det(P1) 6= 0, L > 0, and

that rank

[

M11 M12

M21 M22

C1 C2

]

= n + rank [ C1 C2 ].
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Definition

Consider the system (8)–(11). This system is well-posed if there

exists a tf > 0 and mf such that the following holds:

1. The homogeneous p.d.e., i.e., u ≡ 0 has for any initial condition, x(0)

a unique (weak) solution.

2. The following inequality holds for all smooth initial conditions, and all

smooth inputs

H(tf ) +

∫ tf

0

‖y(t)‖2dt ≤ mf

[

H(0) +

∫ tf

0

‖u(t)‖2dt

]

, (12)

where H is the Hamiltonian: 1
2

∫ b

a
xTLxdz.
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Remark

• So well-posedness gives you that you have a unique solution for every

square integrable input function and every initial condition.

Furthermore, the output signal is always square integrable.

• Every well-posed system has a transfer function, bounded in some

right-half plane.
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Theorem

Under the conditions we have imposed, the following holds:

• If condition 1 holds, then automatically condition 2 holds.
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Theorem

Under the conditions we have imposed, the following holds:

• If condition 1 holds, then automatically condition 2 holds.

• That is: If the homogeneous p.d.e., i.e., u ≡ 0, has a weak solution,

then the system (8)–(11) is well-posed.
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Theorem

Under the conditions we have imposed, the following holds:

• If condition 1 holds, then automatically condition 2 holds.

• That is: If the homogeneous p.d.e., i.e., u ≡ 0, has a weak solution,

then the system (8)–(11) is well-posed.

• The transfer function G(s) can also be obtained, and also

lims→∞ G(s).
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Theorem

Under the conditions we have imposed, the following holds:

• If condition 1 holds, then automatically condition 2 holds.

• That is: If the homogeneous p.d.e., i.e., u ≡ 0, has a weak solution,

then the system (8)–(11) is well-posed.

• The transfer function G(s) can also be obtained, and also

lims→∞ G(s).

• There is a matrix condition for checking condition 1.
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Theorem

Under the conditions we have imposed, the following holds:

• If condition 1 holds, then automatically condition 2 holds.

• That is: If the homogeneous p.d.e., i.e., u ≡ 0, has a weak solution,

then the system (8)–(11) is well-posed.

• The transfer function G(s) can also be obtained, and also

lims→∞ G(s).

• There is a matrix condition for checking condition 1.

• Same theorem holds for ∂x
∂t

(z, t) = P1
∂
∂z

(Lx) (z, t) + P0 (Lx) (z, t).
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We want to give an idea of the proof. Therefor we do it for our

system with the following choice of boundary input and output

u(t) =





V (a, t)

V (b, t)



 , y(t) =





I(a, t)

I(b, t)



 . (13)

– 20 –



Benelux Meeting on Systems and Control 2008 Well-posedness

We want to give an idea of the proof. Therefor we do it for our

system with the following choice of boundary input and output

u(t) =





V (a, t)

V (b, t)



 , y(t) =





I(a, t)

I(b, t)



 . (13)

Now we preform the following steps:
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We want to give an idea of the proof. Therefor we do it for our

system with the following choice of boundary input and output

u(t) =





V (a, t)

V (b, t)



 , y(t) =





I(a, t)

I(b, t)



 . (13)

Now we preform the following steps:

1. Since V = Q/C = x1/C and I = φ/L = x2/L, we have that

[M21, M22] =





0 0 1
C

0

1
C

0 0 0



 , [C1, C2] =





0 0 0 1
L

0 1
L

0 0



 .
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We want to give an idea of the proof. Therefor we do it for our

system with the following choice of boundary input and output

u(t) =





V (a, t)

V (b, t)



 , y(t) =





I(a, t)

I(b, t)



 . (13)

Now we preform the following steps:

1. Since V = Q/C = x1/C and I = φ/L = x2/L, we have that

[M21, M22] =





0 0 1
C

0

1
C

0 0 0



 , [C1, C2] =





0 0 0 1
L

0 1
L

0 0



 .

2. Write the system in the ”characteristic”, ξ1 = x1 −
√

C
L

x2,

ξ2 = x2 +
√

C
L

x2. The p.d.e. becomes

∂ξ1

∂t
=

√

1

LC

∂ξ1

∂z
,

∂ξ2

∂t
= −

√

1

LC

∂ξ2

∂z
.
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The “perfect” input and output for this system is

us(t) =





ξ1(b, t)

ξ2(a, t)



 , ys(t) =





ξ1(a, t)

ξ2(b, t)



 . (14)
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The “perfect” input and output for this system is

us(t) =





ξ1(b, t)

ξ2(a, t)



 , ys(t) =





ξ1(a, t)

ξ2(b, t)



 . (14)

3. Write our input-output pair in this input-output pair.

u(t) =





0 1
2C

1
2C

0



 us(t) +





1
2C

0

0 1
2C



 ys(t)

= Kus(t) + Qys(t) (15)

y(t) =





0 1
2
√

LC

−1
2
√

LC
0



 us(t) +





−1
2
√

LC
0

0 1
2
√

LC



 ys(t)

= O1us(t) + O2ys(t). (16)
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We regard the system with input/output u, y as a feedback of the

system with input/output us, ys, i.e.,

−
u(t)

us(t)

y(t)

ys(t)Gs(s)

Q

K−1 O2

O1

– 22 –
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We regard the system with input/output u, y as a feedback of the

system with input/output us, ys, i.e.,

−
u(t)

us(t)

y(t)

ys(t)Gs(s)

Q

K−1 O2

O1

Now Gs has feed-through zero, and so any feedback is allowed.

Only condition: K−1 exists.
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Remark
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Remark

• Since

Gs(s) =





e−s
√

LC(b−a) 0

0 e−s
√

LC(b−a)





one can calculate the transfer function from u to y.
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Remark

• Since

Gs(s) =





e−s
√

LC(b−a) 0

0 e−s
√

LC(b−a)





one can calculate the transfer function from u to y.

• If we choose u(t) =
(

V (a,t)
I(a,t)

)

, then not well-posed. The corresponding

K is

K =





0 1
2C

0 1
2
√

LC



 .

– 23-b –
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5 Stability

For our class of system, i.e., ∂x
∂t

= P1
∂Lx
∂z

, we have

dH

dt
(t) =

1

2

[

(Lx)
T

(z, t)P1 (Lx) (z, t)
]b

a
.

Furthermore, we have written our boundary conditions, inputs, and

outputs as linear combinations of these boundary variables. One

would expect exponential stability of the uncontrolled system when
dH
dt

< 0 for zero inputs. This is the subject of the following theorem.
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Theorem

Consider the p.d.e. ∂x
∂t

= P1
∂Lx
∂z

with Hamiltonian H = 1
2

∫ b

a
xTLxdz. If

the homogeneous p.d.e., i.e., u ≡ 0 satisfies

• dH
dt

≤ −κ‖Lx(b)‖2, or

• dH
dt

≤ −κ‖Lx(a)‖2

for some κ > 0, then the (uncontrolled) system is exponentially stable.
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Proof: We have that for τf large enough that (long proof)

H(τf ) ≤ cf

∫ τf

0

‖Lx(b, t)‖2dt.

Now from our assumption

H(τf ) − H(0) =

∫ τf

0

dH

dt
(t)dt

≤ −κ

∫ τf

0

‖Lx(b, t)‖2dt
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Proof: We have that for τf large enough that (long proof)

H(τf ) ≤ cf

∫ τf

0

‖Lx(b, t)‖2dt.

Now from our assumption

H(τf ) − H(0) =

∫ τf

0

dH

dt
(t)dt

≤ −κ

∫ τf

0

‖Lx(b, t)‖2dt

≤
−κ

cf

H(τf ).
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Proof: We have that for τf large enough that (long proof)

H(τf ) ≤ cf

∫ τf

0

‖Lx(b, t)‖2dt.

Now from our assumption

H(τf ) − H(0) =

∫ τf

0

dH

dt
(t)dt

≤ −κ

∫ τf

0

‖Lx(b, t)‖2dt

≤
−κ

cf

H(τf ).

Thus

H(τf ) ≤
cf

cf + κ
H(0) < H(0).

This proves exponential stability. �

We apply this theorem to our transmission line.
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∂Q

∂t
(z, t) = −

∂

∂z

φ(z, t)

L(z)
(17)

∂φ

∂t
(z, t) = −

∂

∂z

Q(z, t)

C(z)
.

For this system we have

P1 =





0 −1

−1 0



 and L(z) =





1
C(z) 0

0 1
L(z)



 .

Furthermore, V = Q/C, I = φ/L. We choose the boundary input

V (a, t) = u(t), and we place a resistor at the other end, i.e.,

V (b, t) = RI(b, t), R > 0.

Note that this is of the form (8)–(10), see slide 16.
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Since Lx = ( V
I ), we find that

dH

dt
=

1

2

[

(Lx)
T

(z)P1 (Lx) (z)
]b

a

=
1

2





(

V (z) I(z)
)





0 −1

−1 0









V (z)

I(z)









b

a

= −V (b)I(b) + V (a)I(a).
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Since Lx = ( V
I ), we find that

dH

dt
=

1

2

[

(Lx)
T

(z)P1 (Lx) (z)
]b

a

=
1

2





(

V (z) I(z)
)





0 −1

−1 0









V (z)

I(z)









b

a

= −V (b)I(b) + V (a)I(a).

Applying our conditions: V (a) = 0, and V (b) = RI(b), we have

dH

dt
= −RI(b)2 = −

R

R2 + 1

[

V (b)2 + I(b)2
]

.

Thus exponentially stable.
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6 Diffusive systems

We have that the system ∂x
∂t

= P1
∂Lx
∂z

, satisfies

dH
dt

= 1
2

[

(Lx)
T

(z)P1 (Lx) (z)
]b

a
.
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6 Diffusive systems

We have that the system ∂x
∂t

= P1
∂Lx
∂z

, satisfies

dH
dt

= 1
2

[

(Lx)
T

(z)P1 (Lx) (z)
]b

a
.

As explained in Part I, there is an underlying structure.

If (f, e) are related like

f(z) = P1
∂e

∂z
(z) = Je(z), (18)

then
∫ b

a

f(z)T e(z)dz =
1

2

[

eT (z)P1e(z)
]b

a
. (19)
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6 Diffusive systems

We have that the system ∂x
∂t

= P1
∂Lx
∂z

, satisfies

dH
dt

= 1
2

[

(Lx)
T

(z)P1 (Lx) (z)
]b

a
.

As explained in Part I, there is an underlying structure.

If (f, e) are related like

f(z) = P1
∂e

∂z
(z) = Je(z), (18)

then
∫ b

a

f(z)T e(z)dz =
1

2

[

eT (z)P1e(z)
]b

a
. (19)

Choosing now f = ∂x
∂t

, and e = ∂H
∂x

= Lx, we recover our system and

balance equation.

However, we can make other choices.
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Example

Choose the P1 from the transmission line, i.e.,

P1 =





0 −1

−1 0





Now we choose

f =





f1

f2



 =





∂x
∂t

f2



 , e =





e1

e2



 =





x

Rf2



 , (20)

then we find the system (f = P1
∂e
∂z

)

∂x

∂t
= −

∂

∂z
[Rf2] = −

∂

∂z

[

−R
∂x

∂z

]

=
∂

∂z

[

R
∂x

∂z

]

. (21)

This is the p.d.e. which describes diffusion.
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f1

e1

f2

e2

f∂e∂

H J R

∂x
∂t

∂H
∂x

Figure 1: Port-Hamiltonian system with dissipation R
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Theorem

Assume that the p.d.e.

∂

∂t





x1

x2



 = P1
∂

∂z





Lx1

x2



 (22)

with homogeneous boundary conditions has a (mild) solution for

every initial condition, and that along these solutions

d

dt

[

∫ b

a

xT
1 (z, t)Lx1(z, t) + ‖x2(z, t)‖2dz

]

≤ 0. (23)

Then the p.d.e.




∂x
∂t

f2



 = P1
∂

∂z





Lx

Rf2



 (24)

has a solution, provided R > εI. Furthermore,
d
dt

∫ b

a
xT (z, t)Lx(z, t)dz ≤ 0.
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