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Abstract. A method to numerically solve the Euler equations for fluids with general equa-
tions of state is presented. It is based on a formulation solving the conservation equations for
either pressure primitive variables or entropy variables,instead of the commonly used con-
servation variables. We use a space-time discontinuous Galerkin finite-element discretization,
which yields a highly local, potentially higher-order scheme. The algorithm is applied to test
cases for compressible fluids to demonstrate its capabilities and the performance of the different
variable sets.

1 INTRODUCTION

Many numerical methods for fluid dynamics are suitable only for idealized types of fluids,
like those for compressible flow being tailored to ideal gasses, and on the other hand methods
that are based on formulations for (nearly) incompressiblemedia. The inclusion of complicated
equations of state, necessary to describe the physics of complex fluids, raises difficulties, as does
the computation on domains where compressible and incompressible flow conditions coexist.

One way to derive numerical methods that are suitable both for compressible and incom-
pressible flows is to solve for other variables than the set ofconserved variables, for which the
equations are originally derived. Two sets of variables that yield well-posed formulations in
the incompressible limit are pressure primitive variablesand entropy variables1. The entropy
variables have the additional advantage that they symmetrize the equations and link to nonlin-
ear stability2. Another key feature of the entropy variable formulation isits close relation to
the underlying thermodynamics, which can be incorporated by expressing the equations of state
in terms of two material coefficients, the volume expansivity and isothermal compressibility,
which are available in analytical or tabulated form for relevant substances.
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The Euler equations are discretized with respect to the abovementioned sets of variables
(entropy and pressure primitive) using a discontinuous Galerkin (DG) finite element method.
It extends the space-time DG discretization discussed by van der Vegt and van der Ven3 to
general equations of state and a formulation suitable for both compressible and incompressible
flows. The algorithm results in a highly local and potentially higher-order discretization. Since
space-time finite-element basis functions are used, the method is well-suited for problems with
moving and deforming boundaries, and localhp-adaptation can be accommodated naturally.

In this article, the algorithm will be demonstrated with test cases for media with ideal gas
equations of state.

2 GOVERNING EQUATIONS

2.1 Euler equations

We consider a fluid in the two-dimensional domainΩ during the time intervalT = [ts, te],
described by the Euler equations of fluid dynamics written inconservation form, i.e.

∂Ui

∂t
+
∂Fir

∂xr
= 0 , i ∈ 1, . . . , 4 , ∀ (x, t) ∈ Ω × T , (1)

combined with suitable boundary and initial conditions of the form

U(x, t) = B(U,Uw) , ∀ (x, t) ∈ ∂Ω × T ,

U(x, ts) = U0(x) , ∀ x ∈ Ω ,

where the summation convention applies to the repeated index r for the space dimensions,
r = 1, 2. The vector ofconservation variables Uand the flux matrixF are given by
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. (2)

Hereρ denotes density,v1, v2 are the velocity components with respect to a Cartesian coordinate
system, andp is pressure. The total energyetot in this case is the sum of internal and kinetic
energy,

etot = e+ k = e+ 1
2v2

r . (3)

2.2 Equations of state

The system (1) for the variables and flux (2) contains two moreunknowns than equations,
hence it is not closed. One additional relationship has beengiven by Equation (3), but to com-
plete the description, we have to specify how the pressurep depends on the other variables.
Remark: In the more general context of the Navier-Stokes equations,an additional quantity,
the temperatureT, is needed to describe the diffusive effect of internal energy: heat conduction.
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To remain within the framework of thermodynamics, which relates state variables of divariant
fluids (i.e. those whose state is determined by two independent variables, e.g.p andT), we
include temperature in our formulation. �

Equations that diagnostically relate state variables of a fluid, for instanceρ, p, e,T, are called
equations of state. The system (1,2) can be closed by specifying, for example, the functions
e= e(p,T) andp = p(ρ,T).

For an ideal gas with constant specific heat (at constant volume),cv, and the gas constantR,
these relations take the form

e= e(T) = cv T , (4)

p = ρR T . (5)

A different idealization, the incompressible fluid, represents the limit in which there is only one
independent thermodynamic variable as the densityρ is constant.

To characterize the compressibility of a material we use twocoefficients, the volume expan-
sivity αp and the isothermal compressibilityβT , which are defined as the relative changes of the
specific volumev = 1

ρ
as

αp ≔
1
v

(

∂v
∂T

)

p

, βT ≔ −
1
v

(

∂v
∂p

)

T

. (6)

General equations of state can be formulated based on these two quantities as functions of the
thermodynamic state4. For an ideal gas described by Equation (5) the coefficients evaluate to
αp = 1/T andβT = 1/p; for incompressible fluids both coefficientsαp andβT are zero.

2.3 Entropy variable formulation

We now interpret the conservation variablesU as dependent on some other set of variables. In
particular we are interested in theprimitive variables including pressureandentropy variables,

Y =
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, V =
1
T































µ − 1
2v2

m

v1

v2

−1































, (7)

respectively, with the chemical potentialµ.
By rewriting (1) as quasi-linear system with respect to any suitable set of variables,W, we

obtain

AW
0

∂W
∂t
+ AW

r

∂W
∂xr
= 0 , (8)

with AW
0 =

∂U
∂W , AW

j =
∂F j

∂W . Analysis shows that1:
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• For conserved variablesU, the flux JacobiansAU
j , ( j = 1, 2), are not well defined in the

incompressible limitαp, βT → 0 (i.e. they contain entries that diverge or take the form
0
0). This is connected to the fact that the equation for densityin (1) loses its prognostic
character forρ = const, and causes the breakdown of many numerical methods using
conservation variables when simulating (almost) incompressible fluids.

• The JacobiansAY
j , AV

j , ( j = 0, 1, 2), are well defined in the incompressible limit. This
corresponds to the suitability of numerical methods based on these sets of variables to
compute both compressibleand incompressible flows (in particular many methods for
incompressible flow are based on the pressure variables).

• The matrixAV
0 (for entropy variables) is symmetric and positive definite,in the incom-

pressible case this weakens to semi-definiteness. The matricesAV
j , ( j = 1, 2), are sym-

metric. Discrete methods based on the entropy variables satisfy the entropy production
inequality without (additional) dissipative mechanisms.

These properties led us to adapt a discontinuous Galerkin discretization3 to use the pressure
primitive and in particular the entropy variables, in placeof conservation variables. Note that
this method is not built on the quasi-linearized form (8), but discretizes the original conservation
equations (1). Hence the method is conservative, even in theincompressible limit.

3 DISCONTINUOUS GALERKIN DISCRETIZATION

To apply a finite element discretization, the domainΩ ⊂ �2 is approximated by a suitable
meshT h with NE elements whose minimal element in-circle diameter ish. We extend this
space tessellation into the time dimension and consider theproblem immediately inE ⊂ �3.
The space-time elementsKe, e = 1, . . . ,NE, are related to the reference elementK̂ = [−1; 1]3

by mappingsGe : K̂ → Ke.
The basis functions are defined on the reference elementK̂ as tensor products of the one-

dimensional monomial basisPn = {p : [−1; 1]→ �, pk(ξ) = ξk, k = 0, . . . , n}, and we allow dif-
ferent maximum ordersnt andns for the time and space dimensions. Hence the basis on the
reference element isQnt ,ns(K̂) = {ϕ : K̂ → � | ϕ ∈ Pnt × (Pns)2}. Using these basis functions on
the reference element, the space of the test and trial functions for the finite element formulation
is defined as

V
nt ,ns

T h =
{

W : T h × T→ �4 |WKe
◦Ge ∈ span{(Qnt ,ns(K̂))4} ∀e= 1, . . . ,NE

}

. (9)

Functions in this space are representedper elementas

WKe
(x, t) =

(nt+1)(ns+1)2
∑

i=1

Wi ϕi(G
−1
e (x, t)) , (10)

with Wi ∈ �
4 andϕi ∈ Qnt ,ns(K̂). Note that these functions may be discontinuous at the element

boundaries.
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As we will shortly integrate Equation (1) over the space-time domainE, we rewrite it in
space-time divergence form as

2
∑

r=0

∂Fir

∂xr
= 0 , i ∈ 1, . . . , 4 , (11)

with x0 = t and the flux in the time dimensionF· 0(U) = U.
The DG discretization is obtained by the following steps: Wemultiply Equation (11) with

an arbitrary test functionφ ∈ Vnt ,ns

T h and chose the expansion of the variables,Wh, from the same
space, too. Integrating over each space-time elementKe and summing over all elements we
receive the weak formulation:

Find aWh ∈ V
nt ,ns

T h , such that for allφ ∈ Vnt ,ns

T h the following relation is satisfied:

NE
∑

e=1























−

∫

Ke

∂φp

∂xr
Fpr(U(Wh))dτ +

∫

∂Ke

φp F̂pr(U(W−
h ),U(W+

h )) nrds























= 0 . (12)

The boundary of each elementKe is denoted as∂Ke with ni the components of the exterior

pointing normal vector at this surface. Since the discrete functionWh is not necessarily contin-
uous at the element faces we replace theF (U) in the integral over the element boundaries by a
consistent, symmetric numerical flux̂F (U−h ,U

+
h ). Herein, the limit of the discrete functionWh

from the interior ofKe is calledW−
h , whereas the exterior limit is denotedW+

h ; the latter is either
based on theuh in a neighboring element or on the boundary data.

The numerical fluxF̂ ensures that the discretization is conservative. We can expose the
conservativity of the discretization and indicate the computational structure of the DG finite el-
ement method by introducing the facesFi , i ∈ {1, . . . ,NF}, which are the objects of codimension
one that bound the elements. In Equation 12, the integrals over the boundaries of elements are
evaluated twice for each internal faceFi. The two integrals differ only in the sign of the normal
vectorn, so that we can combine the integrands asφL

pnrF̂pr + φ
R
p(−nr) · F̂pr = (φL

p − φ
R
p)nrF̂pr,

where superscripts (·)L and (·)R denote values taken from the elements on the (arbitrarily de-
fined) left and right side of the face, respectively. (Because the support of each basis function is
limited to one element only one of the contributionsφL, φR will be nonzero.) Then we have

−

NE
∑

e=1

∫

Ke

∂φp

∂xr
Fpr(U(Wh))dτ +

NF
∑

i=1

∫

Fi

(φL
p − φ

R
p) nrF̂pr(U(WL

h ),U(WR
h ))ds= 0 . (13)

This constitutes a nonlinear system of equations for the expansion coefficients ofWh in each
element, which is solved using a pseudo-time method5.

As the spatial numerical flux, we use the HLLC approximate Riemann solver for the ideal
gas test cases in Section 4; for other cases this may be replaced by the analytical flux of the
mean state on the two sides of the face (with an added stabilization term). On the faces which
separate the time slabs, an upwind flux is used conforming to causality.
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The treatment of boundary conditions through external states in the Riemann solver, which
is a bye-product of the DG discretization, considerably simplifies the specification of various
conditions, like sub- and supersonic in-/outflow or slip flow. In the spatially continuous dis-
cretization of Hauke and Hughes1, the discrete equation system is solved by a Newton method,
which requires not only a costly global system assembly but also the linearization of the bound-
ary conditions.

4 RESULTS

To demonstrate the possibilities arising from the formulation presented above, we give some
computational results.

4.1 Flow around a circular cylinder

We consider the subsonic flow of an ideal gas around a fixed circular cylinder with unit
radius. The far-field flow is aligned with thex-axis, constant, and homogeneous:v∞ = u∞ex. In
the limit of vanishing Mach number,M∞ → 0, the flow field is given by the classical potential
flow solution. To conform to the study by van der Vegt and van der Ven6, we chose the free-
stream Mach number asM∞ = 0.38. At the inflow, we use far-field boundary conditions for the
mass flux, stagnation enthalpyhtot = h+ 1

2v2
r , and pressure:ρRvR = ρ∞v∞, htot

R = htot
∞ , pR = pL,

respectively, with (·)L denoting the flow state on the inside of the flow domain, while (·)R is the
boundary data. Corresponding outflow conditions areρRvR = ρLvL, sR = sL, pR = p∞, with the
specific enthalpys. Due to the absence of viscosity in the Euler equations, a slip flow condition
is applied on the cylinder surface:v · n = 0. This is enforced by setting the momentum in the
boundary data for the HLLC flux toρRvR = ρLvL − 2ρL(vL · n)n.

We indicate the error of the numerical method using the totalpressure lossπ, defined as

π = 1−
p

p∞













1+ 1
2(γ − 1)M2

1+ 1
2(γ − 1)M2

∞













γ

γ−1

. (14)

The pressure loss should be zero everywhere, deviations occur only due to the discrete ap-
proximation, which leads to entropy production at the surface of the cylinder. The resulting
error according to a computation with conservation variables on a mesh with 48× 32 elements
is plotted in Figure 1. Note that in all results we plot thediscontinuoussolution without an
averaging per element or per node. Figure 2 shows the total pressure loss along the cylinder
surface for entropy variables using two different orders of the spatial representation (since this
is a steady state case, we usent = 0 throughout). Results for different variable sets are hardly
distinguishable in this test, so we do not present a comparison.

4.2 Oblique shock

We consider an inviscid supersonic flow atM = 2 on the unit square. The inflow is at an angle
of 10◦ with the lower boundary of the domain, which is a wall (with slip condition). Conse-
quently a shock forms at an angle of 29.3◦, cf. Hauke and Hughes1. The density field including
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Figure 1: Total pressure loss close to the cylinder.
Computed on a 48× 32 mesh using conservation vari-
ablesU.

Figure 2: Comparison of the total pressure loss com-
puted usingV-variables on a 48× 32. Dashed line:
ns = 0 (constant representation ofVh per element),
solid line:ns = 1 (bilinear representation ofVh).

the shock is plotted in Figure 3. Note that we are not using anyform of discontinuity capturing
or stabilization, hence the over- and undershoot close to the shock. In this way it is also rea-
sonable to compare the results for different sets of variables, cf. Figure 4. Minor differences
can be observed. Presumably these arise due to amplificationby the different transformations
between the pressure primitive or entropy variables and theplotted variableρ. On the other
hand, the overall location of the shock is correctly represented, in contrast to formulations that
use non-conservative formulations.

5 CONCLUSIONS & OUTLOOK

We have described the extension of a discontinuous Galerkinfinite element discretization
of the Euler equations to allow using different sets of variables. In particular we have consid-
ered entropy variables, because of their theoretically andpractically appealing properties. This
choice allows to treat compressible and incompressible flows with the same numerical method.
We have presented numerical examples for the compressible case.

The extension of the numerical method to include the diffusive terms of the Navier-Stokes
equations is under way using the discretization described by Klaij et al.7. The goal is to combine
the presented scheme with an interface tracking method8 to compute multiphase flows with
compressible and incompressible media.
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