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Abstract. A method to numerically solve the Euler equations for fluidts weneral equa-
tions of state is presented. It is based on a formulationisglthe conservation equations for
either pressure primitive variables or entropy variablésstead of the commonly used con-
servation variables. We use a space-time discontinuousrédalfinite-element discretization,
which yields a highly local, potentially higher-order sche. The algorithm is applied to test
cases for compressible fluids to demonstrate its capadsléand the performance of thgfdrent
variable sets.

1 INTRODUCTION

Many numerical methods for fluid dynamics are suitable onlyidealized types of fluids,
like those for compressible flow being tailored to ideal gasand on the other hand methods
that are based on formulations for (nearly) incompressit@dia. The inclusion of complicated
equations of state, necessary to describe the physics gflegftuids, raises diiculties, as does
the computation on domains where compressible and incasipte flow conditions coexist.

One way to derive numerical methods that are suitable batledmpressible and incom-
pressible flows is to solve for other variables than the sebakerved variables, for which the
equations are originally derived. Two sets of variables yteld well-posed formulations in
the incompressible limit are pressure primitive varialead entropy variablés The entropy
variables have the additional advantage that they symzestne equations and link to nonlin-
ear stability. Another key feature of the entropy variable formulationitssclose relation to
the underlying thermodynamics, which can be incorporayeeXpressing the equations of state
in terms of two material cdBcients, the volume expansivity and isothermal compre#sibi
which are available in analytical or tabulated form for velet substances.
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The Euler equations are discretized with respect to the exhentioned sets of variables
(entropy and pressure primitive) using a discontinuousefkal (DG) finite element method.
It extends the space-time DG discretization discussed hydes Vegt and van der Vénto
general equations of state and a formulation suitable fir bompressible and incompressible
flows. The algorithm results in a highly local and potenyidligher-order discretization. Since
space-time finite-element basis functions are used, thieades well-suited for problems with
moving and deforming boundaries, and lobgtadaptation can be accommodated naturally.

In this article, the algorithm will be demonstrated withtteases for media with ideal gas
equations of state.

2 GOVERNING EQUATIONS

2.1 Euler equations

We consider a fluid in the two-dimensional dom&irduring the time interval = [t, te],
described by the Euler equations of fluid dynamics writtecanservation form, i.e.
oJ;  oF;
— +
ot 0%

=0, iel,....4, Y(X1)eQxT, (1)

combined with suitable boundary and initial conditionsteg form

U(x.t) = BU,U,) . V(1) €IQXT,
U(X,ts) = Uo(X), VXxeQ,

where the summation convention applies to the repeateckinder the space dimensions,
r = 1, 2. The vector otonservation variables dnd the flux matrix¥ are given by

p PV1 PV2

U= PV1 F= PVE +p PV1V2 ()
Vo |’ PVoVy PVg +p |
e Vi(p€° + p)  Vo(p€ + p)

Herep denotes densityy, v, are the velocity components with respect to a Cartesiardauate
system, and is pressure. The total energ' in this case is the sum of internal and kinetic
energy,

d'=e+k=e+ V. (3)

2.2 Equations of state

The system (1) for the variables and flux (2) contains two numidenowns than equations,
hence it is not closed. One additional relationship has lgeem by Equation (3), but to com-
plete the description, we have to specify how the presputepends on the other variables.
Remark: In the more general context of the Navier-Stokes equatiamsgdditional quantity,
the temperaturg&, is needed to describe thefldisive dfect of internal energy: heat conduction.
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To remain within the framework of thermodynamics, whicratet state variables of divariant
fluids (i.e. those whose state is determined by two indepeng®iables, e.gp andT), we
include temperature in our formulation. |

Equations that diagnostically relate state variables afid,ffor instance, p, e, T, are called
equations of stateThe system (1,2) can be closed by specifying, for exampke functions
e=¢(p,T)andp = p(p, T).

For an ideal gas with constant specific heat (at constantne)ic,, and the gas constaRf
these relations take the form

e=¢T)=¢T, (4)
p=pRT. (5)

A different idealization, the incompressible fluid, represdrgdimit in which there is only one
independent thermodynamic variable as the depsi$yconstant.

To characterize the compressibility of a material we usedoafficients, the volume expan-
sivity ap and the isothermal compressibilfy, which are defined as the relative changes of the

specific volumer = [—1) as
1(ov 1(ov
® '_\_/(c’)_T)p’ pr = ‘v(a—p)T' ©)

General equations of state can be formulated based on thespiantities as functions of the
thermodynamic stafe For an ideal gas described by Equation (5) theficients evaluate to
ap = 1/T andgr = 1/p; for incompressible fluids both ciwientsa, andpr are zero.

2.3 Entropy variable formulation

We now interpret the conservation variabléas dependent on some other set of variables. In
particular we are interested in tpemitive variables including pressugndentropy variables

p = 3Va
V1 1 Vi

Y = , V== , 7
V2 T \Z (7)
T -1

respectively, with the chemical potentjal
By rewriting (1) as quasi-linear system with respect to amyable set of variabled)yV, we

obtain AW oW
w VYV wovv
Ay e . 0, (8)

with AY = 89 AW = 20 Analysis shows that
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e For conserved variabldg, the flux JacobianA}J, (j = 1, 2), are not well defined in the
incompressible limitvp, B+ — 0 (i.e. they contain entries that diverge or take the form
8). This is connected to the fact that the equation for densi(iL) loses its prognostic
character fop = const and causes the breakdown of many numerical methods using
conservation variables when simulating (almost) incorsgit®e fluids.

e The Jacobiansé\jY, A\j’, (j =0,1,2), are well defined in the incompressible limit. This
corresponds to the suitability of numerical methods basethese sets of variables to
compute both compressibdnd incompressible flows (in particular many methods for
incompressible flow are based on the pressure variables).

e The matrixA/ (for entropy variables) is symmetric and positive definitethe incom-
pressible case this weakens to semi-definiteness. Thec&sm’j{ , (j =1,2), are sym-
metric. Discrete methods based on the entropy variablesfysttie entropy production
inequality without (additional) dissipative mechanisms.

These properties led us to adapt a discontinuous Galerkiretizatiod to use the pressure
primitive and in particular the entropy variables, in plateconservation variables. Note that
this method is not built on the quasi-linearized form (8}, digcretizes the original conservation
equations (1). Hence the method is conservative, even imtioenpressible limit.

3 DISCONTINUOUSGALERKIN DISCRETIZATION

To apply a finite element discretization, the dom@irc R? is approximated by a suitable
mesh7™" with Ng elements whose minimal element in-circle diameteh.isWe extend this
space tessellation into the time dimension and considepitbielem immediately i€ c R3.
The space-time elemenis, e = 1,..., Ng, are related to the reference elemgnt [-1; 1]
by mappingGe : K — Ke.

The basis functions are defined on the reference elefiertt tensor products of the one-
dimensional monomial basi®' = {p : [-1;1] = R, p(¢) = £, k=0,...,n}, and we allow dif-
ferent maximum orders; andng for the time and space dimensions. Hence the basis on the
reference element ®""s(K) = {¢ : K > R | ¢ € P™ x (P™)2}. Using these basis functions on
the reference element, the space of the test and trial turector the finite element formulation
is defined as

Ve ={W:T"xT > R* | W,_oGe € spa(Q"™(K))*) Ve=1....Neg}. (9)
Functions in this space are represergedelemenas

(ne+1)(ns+1

W (= > WeGxt), (10)

i=1

with W, € R* andg; € Q™"(K). Note that these functions may be discontinuous at theeiem
boundaries.
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As we will shortly integrate Equation (1) over the spaceetidomain&, we rewrite it in
space-time divergence form as

5 OF
r=0 (9Xr

=0, iel...4, (11)

with X = t and the flux in the time dimensidh(U) = U.

The DG discretization is obtained by the following steps: Mitiply Equation (11) with
an arbitrary test function (V,’]“_;PS and chose the expansion of the variabWg, from the same
space, too. Integrating over each space-time elendg@nd summing over all elements we
receive the weak formulation:

Find aW, € V7', such that for allp € V4™ the following relation is satisfied:

Ne o ~
>l- f %Tpr(U(Wh))dT+ f $p For(U(WL), UWD) neds| = 0. (12)
e=1 Ke %

0Ke

The boundary of each elemelt is denoted ag9K, with n; the components of the exterior

pointing normal vector at this surface. Since the discretetion\W, is not necessarily contin-
uous at the element faces we replacef{®) in the integral over the element boundaries by a
consistent, symmetric numerical fléx(U,, U;). Herein, the limit of the discrete functiom,
from the interior ofK, is calledW,, whereas the exterior limit is denot®d; the latter is either
based on they, in a neighboring element or on the boundary data.

The numerical fluxf ensures that the discretization is conservative. We cansexfhe
conservativity of the discretization and indicate the catafional structure of the DG finite el-
ement method by introducing the fadesi € {1, ..., Ng}, which are the objects of codimension
one that bound the elements. In Equation 12, the integrastbe boundaries of elements are
evaluated twice for each internal faég The two integrals dier only in the sign of the normal
vectorn, so that we can combine the integrandssgis o + ¢5(—n;) - For = (¢ — SRINFpr,
where superscripts)t and ()R denote values taken from the elements on the (arbitrarily de
fined) left and right side of the face, respectively. (Beesdine support of each basis function is
limited to one element only one of the contributiats ¢R will be nonzero.) Then we have

- i f %Tpr(u (Wh))dr + i f(¢|' — ¢p) nr7}pr(U (W), UWR))ds= 0. (13)
e=1 Ke 8Xr i=1 E P P

This constitutes a nonlinear system of equations for theuesipn cofficients of\W, in each
element, which is solved using a pseudo-time method

As the spatial numerical flux, we use the HLLC approximateniien solver for the ideal
gas test cases in Section 4; for other cases this may be eepbgcthe analytical flux of the
mean state on the two sides of the face (with an added statilizterm). On the faces which
separate the time slabs, an upwind flux is used conformingusatity.
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The treatment of boundary conditions through externaéstat the Riemann solver, which
is a bye-product of the DG discretization, considerablypdifies the specification of various
conditions, like sub- and supersonic/mutflow or slip flow. In the spatially continuous dis-
cretization of Hauke and Hughtghe discrete equation system is solved by a Newton method,
which requires not only a costly global system assembly Isattae linearization of the bound-
ary conditions.

4 RESULTS

To demonstrate the possibilities arising from the formatapresented above, we give some
computational results.

4.1 Flow around acircular cylinder

We consider the subsonic flow of an ideal gas around a fixedlaircylinder with unit
radius. The far-field flow is aligned with theaxis, constant, and homogeneous:= U..&. In
the limit of vanishing Mach numbeM,, — 0, the flow field is given by the classical potential
flow solution. To conform to the study by van der Vegt and van\dmn®, we chose the free-
stream Mach number ad., = 0.38. At the inflow, we use far-field boundary conditions for the
mass flux, stagnation enthalp§* = h + 32, and pressureprVr = peVeo, ' = W%, pr = pi,
respectively, with{)_ denoting the flow state on the inside of the flow domain, whjigi§ the
boundary data. Corresponding outflow conditions@ig = o VL, SR = SL, Pr = P, With the
specific enthalpy. Due to the absence of viscosity in the Euler equationspdlsliv condition
is applied on the cylinder surface: n = 0. This is enforced by setting the momentum in the
boundary data for the HLLC flux torvg = pLVi — 20, (v - n)N.

We indicate the error of the numerical method using the fme¢sure loss, defined as

D (1+§(y—1)|v|2)ﬁ
Po \1+3(y-1)MZ)

The pressure loss should be zero everywhere, deviationg ooty due to the discrete ap-
proximation, which leads to entropy production at the stefaf the cylinder. The resulting
error according to a computation with conservation vagaldn a mesh with 48 32 elements

is plotted in Figure 1. Note that in all results we plot ttiscontinuoussolution without an
averaging per element or per node. Figure 2 shows the tatakpre loss along the cylinder
surface for entropy variables using twdtdrent orders of the spatial representation (since this
is a steady state case, we uge- 0 throughout). Results for filerent variable sets are hardly
distinguishable in this test, so we do not present a comparis

(14)

=1

4.2 Oblique shock

We consider an inviscid supersonic flowNat= 2 on the unit square. The inflow is at an angle
of 10° with the lower boundary of the domain, which is a wall (witipstondition). Conse-
quently a shock forms at an angle of 29 cf. Hauke and Hughés The density field including
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Figure 2: Comparison of the total pressure loss com-
puted usingV-variables on a 4& 32. Dashed line:

ns = O (constant representation df, per element),
solid line:ng = 1 (bilinear representation &f,).

Figure 1. Total pressure loss close to the cylinder.
Computed on a 48 32 mesh using conservation vari-
ablesU.

the shock is plotted in Figure 3. Note that we are not usingfamy of discontinuity capturing
or stabilization, hence the over- and undershoot closedaiiock. In this way it is also rea-
sonable to compare the results foffeient sets of variables, cf. Figure 4. Minoffdrences
can be observed. Presumably these arise due to amplifidatitre diferent transformations
between the pressure primitive or entropy variables anglbigeed variableo. On the other
hand, the overall location of the shock is correctly repnése, in contrast to formulations that
use non-conservative formulations.

5 CONCLUSIONS & OUTLOOK

We have described the extension of a discontinuous Galérkie element discretization
of the Euler equations to allow usingfiirent sets of variables. In particular we have consid-
ered entropy variables, because of their theoreticallypaadtically appealing properties. This
choice allows to treat compressible and incompressiblesfloith the same numerical method.
We have presented numerical examples for the compressibée ¢

The extension of the numerical method to include tHeudive terms of the Navier-Stokes
equations is under way using the discretization descrilgéddij et al.”. The goal is to combine
the presented scheme with an interface tracking méthmd¢ompute multiphase flows with
compressible and incompressible media.
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