AGARD-CP-578

AGARD

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT
7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE

AGARD-CP-578

AGARD CONFERENCE PROCEEDINGS 578

Progress and Challenges in CFD
Methods and Algorithms

(Progres réalisés et défis en méthodes et algorithmes CFD)

Papers presented and discussions recorded at the 77th Fluid Dynamics Panel Symposium
held in Seville, Spain, 2-5 October 1995.

I
— / \ — NORTH ATLANTIC TREATY ORGANIZATION
/%
I

Published April 1996

Distribution and Availability on Back Cover

22-1

HEXAHEDRON BASED GRID ADAPTATION FOR FUTURE LARGE EDDY SIMULATION

J.J.W. van der Vegt and H. van der Ven
National Aerospace Laboratory NLR
P.O. Box 90502, 1006BM Amsterdam, The Netherlands

SUMMARY

This paper discusses a new numerical method which enables the
future application of Large Eddy Simulation to high Reynolds
number aerodynamic flows. The new numerical method uses
local grid refinement of hexahedral cells and the discontinuous
Galerkin finite element method. This method offers maximum
flexibility in grid adaptation and maintains accuracy on highly
irregular grids. The method is demonstrated with calculations of
inviscid transonic flow on a generic delta wing. The calculations
are done on two paralle] shared memory computers and the
performance results are used to give estimates of the computing
time and memory requirements for a Large Eddy Simulation of
a clean wing on a NEC SX-4 supercomputer.

LIST OF SYMBOLS
b external boundary face of element K
B boundary operator
c'o,T] space of one time differentiable
functions on the interval [0, T']
di; Kronecker delta symbol
E specific total energy
ex face of polyhedron K
F/(U) flux vector in Cartesian coordinate
direction 7
FU) inner productof n” and F
F(U) matrix with columns F’
Fr mapping between elements K and K
¥ ratio of specific heats
Uala path in phase space between U}™*()
and UZ“(K)
h(U;™) U5y monotone Lipschitz flux
K polyhedron element in 7},
K' neighboring elements of polyhedron K
K master element of polyhedron K'
meas(K) measure of polyhedron K
oK boundary of polyhedron K
M maximum number of polynomial terms
in expansion of U,
[MKk] mass matrix of element K
Nt set of positive natural numbers
N(K) set of neighboring elements of K
N&(K) indices of neighboring elements of K
in the &-direction
n unit outward normal vector
Q flow domain
oQ boundary of Q
p pressure
Pk (k) space of polynomial functions of
degree < kon K
P*(K) space of functions whose images under

Fx are functions in P*(K)

QI(

Dy

qgj (6, m, C)
¢5(x)
¥i(€,n,¢)
Rx

Rfe, Ry, Ri

R™
p

span

t

T

Tn

U

Uk

U,

U
Ulx
U
Uezt(}\’)

yint(x)

limiter function defined on K’

components of limiter function on K
polynomial basis functions on K

basis functions on K’

trilinear element shape functions

residual in element K

indicator functions for grid adaptation in

£, n and ¢ directions

Euclidian n-dimensional space

density

linear span

time

final time

triangulation of Q

conservative flow variables

average of U in element K

conservative flow variables specified at 9Q)
initial conservative flow variables

U restricted to element K

numerical approximation of U

U at cell face taken as the limit from the
exterior of K

U at cell face taken as the limit from the
interior of K’

maximum U in K and it’s neighboring cells
minimum U in K and it’s neighboring cells
components of U}, at Gauss quadrature points
in cell faces of K

components of polynomial expansion of U in K
limited components of polynomial expansion
coefficients U,, in K

limited flow field U in each element

vector with limited moments of flow field U,
Cartesian velocity components

primitive flow variables

vectors with each component p; € P* (K)
vectors which belong to space V¥

position vector

components of position vector, j = {1, 2,3}
coordinates of corner points of element K’
length of cell in local £-direction

local coordinates in element X

for all

nabla operator

subset

element

composite mapping

tensor product

transposed

Paper presented at the AGARD FDP Symposium on “Progress and Challenges in CFD Methods and Algorithms”
held in Seville, Spain, from 2-5 October 1995, and published in CP-578.

22-2

INTRODUCTION

Computational Fluid Dynamics (CFD) is used for increasingly
complicated problems. Many advanced applications of CFD,
such as Large Eddy Simulation (LES), can only be done with
sophisticated grid adaptation algorithms and require significant
computer resources. The aim of this paper is to demonstrate a
new grid adaptation algorithm for future application to Large
Eddy Simulation. With LES the filtered Navier-Stokes equa-
tions are solved which represent the part of the turbulent flow
field that can be resolved on the grid. The turbulent length scales
which can not be resolved have to be modeled with subgrid scale
turbulence models. This approach is quite successful in most
parts of the flow field, but as already mentioned by Chapman
[3], fails in the near wall region which is critical for LES. Chap-
man proposed to use successively finer grids close to the wall
to capture the viscous sublayer. This reduces the need to model
the near wall region where the basic assumption of LES, namely
the separation of the flow field in large and small scales, is not
valid.

Despite the significant progress made in LES since Chapman’s
paper the proper solution of the near wall flow field is still one
of the key elements preventing LES to be applied to more gen-
eral problems in aerospace, Moin and Jimenez [10]. The use
of successively finer grids can only be done efficiently with so-
phisticated grid adaptation techniques and requires a numerical
scheme which is accurate on highly irregular grids. In this paper
a new algorithm is presented, using a combination of local grid
refinement and the discontinuous Galerkin (DG) finite element
method. This method is capable of efficiently resolving local
phenomenasuch as shear layers and shocks and has the potential
to be applied to LES of wall bounded turbulent flows by properly
resolving the near wall region. Hexahedron cells are used as ba-
sic elements because they suffer less from loss of accuracy due
to successive refinements than the more commonly used tetra-
hedron cells and are more suited to viscous flows. This paper,
however, will be limited to inviscid flow in order to demonstrate
the basic algorithm.

The discontinuous Galerkin method with Runge-Kutta time in-
tegration (RKDG) was originally proposed by Cockburn and
Shu [4, 6, 5] for hyperbolic conservation laws. They proved
that the RKDG method is TVB stable and satisfies a maximum
principle for multi-dimensional scalar hyperbolic conservation
laws. This work was mainly theoretical and limited to one and
two-dimensional flow fields. The extension to three dimensions
was recently presented by van der Vegt [14]. The discontinuous
Galerkin method uses a local polynomial expansionin each cell
which results in a discontinuity at each cell face. This disconti-
nuity can be represented as a Riemann problem which provides a
natural way to introduce upwinding into a finite element method.
The DG method can therefore be considered as a mixture of an
upwind finite volume method and a finite element method.

A key feature of the DG method is that also equations for the
moments of the flow field are solved. In this way a completely
local higher order accurate spatial discretization can be obtained
without the need to use neighboring cells in the discretization.
An alternative to obtain the flow field gradients is to use Gauss’
identity, but this method requires grid regularity to be accurate.
The use of the moment equations is extremely useful in com-

bination with local grid refinement because no problems with
hanging nodes occur and the scheme maintains it’s accuracy on
highly irregular grids, which generally occur after several grid
refinement steps. In this paper the spatial accuracy is limited
to second order and the moments represent the flow field gra-
dients. A disadvantage of using the moment equations is that
more memory is needed to store the additional moments of the
flow field. For future LES applications in wall bounded flows
these disadvantages are, however, more than compensated by
the increased computational efficiency of the adapted grid.

The DG method makes it easy to mix different types of ele-
ments. As basic elements hexahedrons are used, but whenever
necessary due to topological degeneracies, prisms, tetrahedrons
and other degenerated hexahedrons are used. The initial coarse
grid is obtained from a multi-block structured grid, generated
with the NLR ENFLOW system. This grid is transformed into
an unstructured grid using a face-based data structure, van der
Vegt [14]. This data structure is more suited to anisotropic local
grid refinement than the commonly used octree data structure.
Anisotropic grid refinement is important because many flow
phenomena are locally pseudo two-dimensional, eg. shocks and
shear layers, and can not be efficiently captured with isotropic
grid refinement.

The DG method combined with the face based data structure
is extremely local in nature and makes it a good candidate for
parallel computing. Parallel computers offer the possibility to
overcome the physical limits on single processor speed, but
require a significant effort to optimize numerical schemes and
coding. LES requires significant computer resources and the
performance of the DG method on two different types of parallel
shared memory computers, namely a two processor NEC SX-3
and a four processor SGI Power Challenge, will be discussed in
this paper. The choice for parallel shared memory computers is
made initially to limit the effort in modifying codes.

The outline of the paper is as follows. After a brief description
of the governing equations, the DG method will be discussed
followed by a description of the grid adaptation algorithm. The
algorithm will be demonstrated on the flow field around a generic
delta wing. Next, several aspects of using parallel shared mem-
ory computers will be discussed and performance results will
be presented. These data will be used to give an estimate of the
computational complexity of a LES of a clean wing. The papers
finishes with concluding remarks.

GOVERNING EQUATIONS
The Euler equations for inviscid gas dynamics in conservation
form can be expressed in the flow domain € as:

9 9 FiU) =
3tU(X, t) + aF (U)=o,

Here x and t represent the coordinate vector, with com-
ponents z;,t = {1,2,3}, in the Cartesian directions, and
time, respectively. The Euler equations are supplemented with
initial condition U(x,0) = Upy(x) and boundary condition
U(x,t)|ea = B(U, Uy,); where B denotes the boundary op-
erator and U, the prescribed boundary data. The vectors with
conserved flow variables U and fluxes F?, j = {1, 2,3}, are

defined as:
p pu,
U=\ pu. |: F =\ puiu, +pd,
PE u;(pE +p)

where p, p and E denote the density, pressure and specific

total energy and u; the velocity in the Cartesian coordinate
directions z;, 1 = {1, 2,3} and é;, the Kronecker delta symbol.
The summation convention is used on repeated indices. This
set of equations is completed with the equation of state: p =
(v —1)p(E — %u,'u.'), with v the ratio of specific heats.

DISCONTINUOUS GALERKIN APPROXIMATION

The flow domain Q, which is assumed to be a polyhedron, is
covered with a triangulation 7, = { K } of hexahedrons, which
are related to the master element K through the mapping F'x:

8
Fi i x(§m,¢) = > _ xkti(€,n,¢)
=1
with v; (&, n, ¢) the standard linear finite element shape func-
tions and x'}(the coordinates of the vertices of the hexahedron
K.

Define on the master element X = [—1, 1]* the space of poly-
nomials: P*(K) = span{$;(¢,1n,¢),j = 0,---, M} and the
related space P*(K) as the space of functions whose images
under F are functions in P*(K): P*(K) = span{¢;(x) =
é; 0 Fg' 5 =0,---,M}. In this paper k = 1, which yields
a second order accurate spatial discretization with polynomials
€ {1,&n, ¢} with M = 3.

Define V},(K) = {P(K) — R°|p; € P'(K)}, then
U(x,t) |k can be approximated by Un(x,t) € V,(K) ®
C'[0,T) as:

Un(x,t) = > Un(t)gm(x). (1)

m=0

The expansion of U is local in each element and there is no con-
tinuity across element boundaries, which is a major difference
with node based Galerkin finite element methods. The element
based expansion has as important benefit that hanging nodes,
which frequently appear after local grid refinement, do not give
any complications. Degenerated hexahedrons, such as prisms
and tetrahedrons, which are necessary to deal with topological
degeneracies in the grid, are allowed without further complica-
tions because the degenerated surfaces do not contribute to the
flux balance.

The discontinuous Galerkin finite element formulation of the
Euler equations is given by:

Find U, € V,(K) ® C'[0,T], such that Un(x,0) =
Uo(x)|x € V}I(K), and for VYW, € V}I(K):
9 T
—/ W, (x)Up(x,t)dQ =
ot /.
_ / Wi (x) (07 (x)F(Un)) ds
eK

_ /b W (x) (07 (x)F(B(Un, Uy))) dS

22-3
. / YW (x)F(Un)dQ, @
K

with 7 = F’, 5 = {1,2,3}, and ex C OK\0Q and
bx C 0K N 0Q the faces of element K in the interior and
at the boundary of the domain Q, respectively. The vector n”
represents the transposed unit outward normal vector at 0K .

The flux at the faces e, namely n” F(U) = F(U), is not
clearly defined, because the flow field U}, is discontinuous at
the cell faces. The flux is therefore replaced with a mono-
tone flux function h(U}™) U***)) which is consistent,
h(U,U) = F(U). Here U"¥) and U=4X) denote the
value of U at 9K taken as the limit from the interior and ex-
terior of K. More details can be found in Cockburn et al. [5].
The use of the monotone Lipschitz flux h introduces upwinding
into the Galerkin method by solving the (approximate) Rie-
mann problem given by (U;:"(K), U;“(K)). Suitable fluxes
are those from Godunov, Roe, Lax-Friedrichs and Osher. In
this paper the Osher approximate Riemann solver [11] is used,
because of it’s good shock capturing capabilities, and the pos-
sibility to easily modify the Riemann problem to account for
boundary conditions. An important additional reason for the
use of the Osher scheme is that it gives an exact solution for
a steady contact discontinuity, and therefore it has a very low
numerical dissipation in boundary layers, [13], which is impor-
tant for future extension of the algorithm to the Navier-Stokes
equations. The Osher approximate Riemann solver is defined
as:

h(U;'tnt(K)’ U:n(x)) %(F(UZ'”(K)) " F(U;“(K)) _

S [b

where UoI' is a path in phase space between UL’”(K) and
U;I'() Details of the calculation of this path integral in multi-
dimensions can be found in [11]. At the boundary surface the
path I', must be modified to account for boundary conditions.
In this way a Riemann initial-boundary value problem is solved
instead of an initial value problem, [11], and a completely unified
and consistenttreatment of the flux calculations is obtained, both
at interior and exterior faces.

The first order accurate discontinuous Galerkin method with an
(approximate) Riemann solver yields monotone results, but sec-
ond and higher order discretizations need a slope limiter to pre-
vent numerical oscillations around discontinuities and in regions
with steep gradients. Cockburn et al. [5] derived a local pro-
jection limiter on B-triangulations for multi-dimensional scalar
conservation laws, which gives a second order accurate scheme
and satisfies a maximum principle when combined with a TVD
Runge-Kutta time integration method [12]. The extension to
quadrilaterals is presented by Bey and Oden [2], but turned out
to be very dissipative.

In this paper a different approach is followed. The second order
discontinuous Galerkin method strongly resembles a MUSCL
upwind scheme, with as main difference the procedure to de-
termine the flow gradient. In the DG-method the gradient
is determined by solving equations for the moments Um,
m = {1,2,3}, whereas the MUSCL scheme determines the

22-4

gradient using data from surrounding cells. The same limit-
ing procedure can, however, be followed. In this paper the
multi-dimensional limiter from Barth and Jesperson [1], with
the modifications proposed by Venkatakrishnan [15], is used.
The limiter from Barth and Jespersen has as benefit that it is a
truly multi-dimensional limiter and yields a positive scheme.

The limiter from Barth and Jespersen can, however, seriously
degrade convergence to steady state. This was analysed by
Venkatakrishnan [15] and the two main causes for this phe-
nomenon are the non-smoothness of the limiter, which uses
min- and max-functions, and the fact that the limiter is active in
smooth parts of the flow, eg. in the far field.

The limiter according to Venkatakrishnan[15] is directly applied
to the conservative variables, which saves the considerable ex-
pense of computing the local characteristic decomposition.

Define for each component U}(of the cell average Uk =
1 .
meas() fK Uh(x)dQ.

I/'-, . U ’
K min v ’E ()(KyYWK)
U‘ — U U ,
K max - v 'GN()(K> K)

with N(K) the set of neighboring cells which connect to cell
K. In order to maintain monotonicity the approximate flow field
U, must satisfy Ux(x) € [UR™, UR], vx € K, which is
accomplished with the limiter function ® g defined as:

b1 (_.K_mijﬂ.) if Ulw —Ui >0

Ul

P =1 ¢, (J_m%ul&) if Uiw —Uj <0
K

1 if Upe—Uj=0

Here U}{. are the components of U}, at the Gauss quadrature
points in K, used to evaluate the integrals in equation (2). The
function ¢ (y) replaces min(1,y) in the original Barth and
Jesperson limiter and is defined as:

v +2y
S

Defining A = Ujee — Uk, Ay = Ul — Uke and A_ =
Uk min — Ul andreplacing A% with A% +€* asmoother limiter
is obtained:

Al 4 t2any

A2 +e5 28480, if A>0

q)}{ — A2 + y200_ .
INET +2A2+AA if A<O
1 if A=0

The coefficient e is set equal to ex = (CAsg)?, with Asg
the minimum distance between the cell face centers of two op-
posite faces of element K. The constant C' determines the
balance between limiting and no limiting and thereby influences
the convergence to steady state. If C' = 0 the original Barth and
Jespersen limiter is obtained. In this paper C' = 1 is used.

The limiter @ is applied independently to each component of
the flow field: U}, = ®% U5, m = {1,2,3}. This is slightly
less robust then using ®x = min; &%, but gives significantly
less numerical dissipation. The coefficients U,,, m = {1,2,3}
in equation (1) represent the gradient of the flow field with
respect to the local coordinates in K. This modification of the

local gradient would violate conservation of U in K, which can
be corrected by modifying the coefficient Uo:

05+ 1—%20

meas(K) % $m (x)dQ

obtamed from the condition
)dQ = Ugk. The limited flow field in cell

This relation is

meas(Ix) fk Uh
K is then equal to:

3
Un(x,t) =Y Unn(t)gm(x).

m=0

The final discontinuous Galerkin finite element discretization
is now obtained by evaluating the integrals over the element
K and it’s boundary K in equation (2). This is done using
the transformation Fx, between K and the master element K.
The integrals f WIULAQ, are calculated analytically, which
requires quite some algebra, whereas the other integrals are
calculated with Gauss quadrature rules. Cockburn et al. [5]
proved that if the quadrature rules for the surface integrals in
equation (2) are exact for polynomials of degree (2k + 1) and
exact for polynomials of degree 2k for the volume integrals
then the spatial accuracy of the DG method is k + 1. In order
to preserve uniform flow it is necessary to use quadrature rules
which are exact for polynomials of order 3. For k = 1 the
surface integrals are calculated with four point Gauss quadrature
rules. The volume integrals require six point Gauss quadrature
rules.

The use of four and six point Gauss quadrature rules is, however,
unnecessarily expensive. The number of flux calculations in the
approximation of the surface integrals can be reduced from four
to one using the following approximation, which is second order
accurate in the mean:

/ én(x)n” F(U)dQ / én(x)n” F(U)J.dQ
a0 a0

IR

F(U)]. /8 N én(x)n7 J.dQ

with F(U)|. calculated at the cell face center and J, the Ja-
cobian of the transformation of the cell face 3Q to € on the
master element K. The integrals /. 50 én(x)nT J.dQ are pre-
calculated with four point Gauss quadrature rules, which are
exact using elements defined with linear shape functions, and
therefore free stream consistency is preserved with this approx-
imation. A similar approximation can be made for the volume
integral fK VW (x)F(U)dQ, with F(U) calculated in the
center of K and the geometrical part of the volume integral pre-
calculated with a six point Gauss quadrature rule. This formula-
tion requires about four times less computing time than using the
more accurate evaluation of the flux integrals and yields similar
results. The discretization using four and six Gauss quadrature
points for the surface and volume integrals yields, however, a
slightly more robust scheme on coarse grids. This is mainly due
to the fact that the cross-coupling terms in the moment equations
are retained in this case.

For each element K a system of ordinary differential equations
is now obtained:

5 -
[MK] aUK =Rxk

with U a vector with the moments of the flow field in each

element, U,,,m = {0,---,3}, and R the right-hand side of
equation (2). The equations for a%ﬂ x are integrated in time
using the third order TVD Runge-Kutta scheme from Shu [12].
For steady state calculations convergence is accelerated using
local time stepping.

A significant difference with node based FEM is that the mass
matrix [M k] is uncoupled for each element K and can be easily
inverted.

DIRECTIONAL GRID ADAPTATION
The use of increasingly finer grids in LES in the near wall re-
gion, as proposed by Chapman [3], and in other regions with
strong shear layers or shocks can be most efficiently done using
local grid refinement. The grid is locally enriched by subdi-
viding cells, independently in each of the three local grid di-
rections, £, n or ¢, of K. This anisotropic grid refinement is
more efficient in capturing local flow phenomena than isotropic
refinement, because many flow features are frequently pseudo
two-dimensional. A coarse initial grid is used, which is gener-
ated with a multi-block structured grid generator, and transferred
into an unstructured hexahedron grid. If necessary degenerated
hexahedrons, such as prisms and tetrahedrons, are allowed to
deal with topological degeneracies. After calculating the flow
field, the grid cells are split in the local £-direction if:

Ri\'

maxvieT, Ry

> tolerance

with the sensor function Rf,{ for the cell K defined as:
R = s e (VR VRV BE)
Here A¢x is the length of cell K in the local ¢-direction,
V = (p,u,v,w,p)7 the vector with primitive variables and
N¥(K) the indices of the neighboring cells of cell & in the
§-direction. Equivalent expressions are used for the n and ¢
directions. This sensor is based on an equidistribution principle,
see for instance Marchant et al. [9]. An important advantage
of this sensor is that it prevents regions with discontinuities
from constantly dominating the local grid refinement. After
several refinements the relative contribution of regions with
discontinuities reduces, because A€k in equation 3 becomes
progressively smaller.

DATA STRUCTURE

The discontinuous Galerkin method with local grid refinement
of hexahedrons requires a significantly different data structure
than the frequently used edge based data structure. The edge
based data structure is very efficient for unstructured vertex
based schemes using tetrahedrons. The discontinuous Galerkin
method is a cell based algorithm and the primary calculations
are the evaluation of fluxes through cell faces. This can be done
efficiently using a face based data structure. A face based data
structure also has as important benefit that there are no limita-
tions on the number of cells which can connect to one cell face
and s crucial for local grid refinement. The alternative would be
an octree data structure, but this data structure does not combine
well with anisotropic grid refinement. In van der Vegt [14] an
algorithm is presented to determine all face to cell connections
efficiently. The main element in this algorithm is that cell faces
are split into smaller subfaces until each face connects only to

22-5

Adaptation Step| Cells | Grid Points Faces
0 19152 20790 59594
1 33094 38277 132038
2 49088 63357| 203400
3 73091 104435| 307783
4 124030 197424| 538109
5 211578 357752| 933616
6 322708 592441 1447763

Table 1: Number of cells, grid points and faces after each
adaptation step

one cell on each side. There are no limits on the number of
neighboring cells and using advanced searching algorithms a
very efficient scheme is obtained, which can establish all face to
cell connections in O(Nlog,(N)) operations with N the num-
ber of faces. The fluxes are calculated in one loop over all the
faces, which can be fully vectorized using a coloring scheme.
The face based data structure does not put any limitations on
the number of neighboring cells, but if the number of cells con-
necting to one face becomes too large then the number of colors
significantly increases. This reduces the efficiency on vector
and parallel computers and will be a topic of future research. In
the grid adaptation process cells are added and deleted which is
done efficiently using AVL-trees, for more details see van der
Vegt [14]

DISCUSSION AND RESULTS

The grid adaptation algorithm has been tested on the flow around
a generic delta wing. The geometry is a cropped-delta wing with
a 65-degree sweep angle and a sharp leading edge. A constant
airfoil section in the streamwise direction is used (modified
NACA 64A005 profile; straight line aft of 75% chord) with 5%
relative thickness, no twist and camber. More information about
the geometry and experimental results can be found in Elsenaar
etal. [7]. A transonic flow test case is used with angle of attack
a = 20° and free stream Mach number M, = 0.85. The initial
grid consisted of 19152 cells and 20790 grid points. The grid is
adapted six times, independently in all three directions and the
final grid consists of 322708 cells and 592441 grid points, see
Table 1. During each adaptation step approximately 15 % of
the cells is deleted, after which the number of cells is increased
between 70 % and 90%. The removal of grid cells is important,
because initially on the coarse grid the refinement sensor is less
accurate and some unnecessary refinement takes place. Local
time stepping is used and significantly improves convergence to
steady state, see Figure 1. The sharp peaks in the convergence
plot are caused by the grid adaptation, except for the first peak,
which results from freezing the slope limiter after 750 time
steps to improve converge. Freezing of the slope limiter is not
necessary after grid adaptation.

Figure 3 shows the pressure field and grid lines on the leeward
side of the delta wing. The flow field is dominated by a strong
primary vortex which starts at the apex and moves downstream
under an angle of 20 degrees with the streamwise direction.
Vorticity is generated at the sharp leading edge in a thin vortex
sheet and rolls-up into the primary vortex. The velocity under
this vortex, just above the upper surface, becomes very large
and a strong shock develops between the primary vortex and

22-6

mox residucl
S
T
L

10 s L I N A .
0 2000 4000
iterations

Figure 1: Maximum residual in flow field.

the upper surface, see also Figures 4 and 6. The benefits of
anisotropic grid refinement are very clear in Figure 3, where the
grid is strongly adapted along the primary vortex in the first 85%
of the delta wing, where the flow field is approximately conical.
Atachord length of 85%, where the sharp leading edge connects
to the tip, the primary vortex and related shock have a sharp kink,
see Figures 3 and 6. Two shocks develop in the primary vortex.
One normal to the leading edge and connected to the kink in
the shock structure under the primary vortex and another one
from the same location on the leading edge and connected more
upstream to the shock under the primary vortex. A similar shock
structure, although slightly more downstream, was observed by
Hoeijmakers et al. [8] using a much finer structured grid. This
shock structure has a strong influence on the primary vortex,
which completely blows up behind it, see Figure 5, and is very
well captured by the grid adaptation. Also visible in Figure 5 is
that the grid is adapted to the trailing edge vortex. The primary
vortex significantly grows after 85% chord and merges with the
tip vortex, see Figure 4. Also visible is the start of roll-up of the
wake, which develops into a mushroom type vortex structure. In
addition to the shock structures in and around the primary vortex
there is also a shock starting at about 75% downstream at the
center line and connected to the trailing edge at approximately
mid span. A better view of this shock can be obtained in Figure 6
which gives a perspective view of the delta wing and the grid and
flow field at approximately 70% chord. Figure 5 clearly shows
the strong primary vortex and the shock between the vortex and
body. Also visible is the significant refinement in this region
and the vortex layer starting at the sharp leading edge.

PARALLELIZATION

The above described algorithm has been implemented in the

program Hexadap, which is parallelized on shared memory ma-

chines, namely:

e A two processor NEC SX-3/22 with a peak performance of
2 x 2.75 GFlop/s, a main memory unit (MMU) of 1 GByte
and 4 GByte Extended Memory Unit (XMU) of which 1.2
GByte can be efficiently used to store run-time data,

Small | Medium | Large Long
vector length | 8000 2000| 1000 | 120,000
iterations 100 100 300 100
adaptations 0 1 1 0

Table 2: Problem sizes

e A four processor SGI Power Challenge with a peak perfor-
mance of 4 x 350 MFlop/s, main memory of 256 MByte and
16 KByte primary and 4 MByte secondary cache.

The parallelization uses microtasking, adding parallelization

compiler directives, for both machines, and macrotasking, ex-

plicitly assigning tasks to different processors. (Implementation
on the SGI Power Challenge is done with the CONCURRENT

CALL assertion). The advantage of microtasking is that the

code remains portable. The advantage of macrotaking is that

large tasks can be assigned, even if the tasks have no do-loop
structure, and memory can be used more efficiently.

The above described algorithm consists of two parts, namely
grid adaptation and flow computation. The grid adaptation part,
which consists predominantly of scalar operations, requires a
domain decomposition for parallelization and is not considered
in this paper. The flow computation has as most important com-
ponent the calculation of cell face fluxes and consists of loops
over the cell faces. The result is added to the residual in the
two cells connected to each cell face. The loops use indirect ad-
dressing and in order to vectorize these loops a coloring scheme
has been applied.

The initial flow field and the flow field after three and six adapta-
tions is used to test the parallel performance of the flow solution
algorithm, see Table 1. These cases are denoted Small, Medium
and Large. The average vector length and number of iterations
are presented in Table 2, which shows that the average vector
length decreases with problem size. This is caused by the in-
creasing number of colors after grid adaptation. A reduction
in the number of colors is possible by limiting the number of
neighboring cells connected to each cell face. In order to inves-
tigate the dependence of the performance results on the vector
length a special case, labeled Long, is also tested, see Table 2.

NEC SX-3

The two computationally most intensive parts of the flow solu-
tion algorithm are the routines Limit and Flux. Limit applies
a slope limiter to ensure monotonicity and Flux computes the
fluxes through cell faces. The suffixes 1G and 4G in Tables 3
and 4 refer to the number of Gauss quadrature points used in
the evaluation of the flux integrals. The two routines constitute
90% of the total computing time. They have roughly the same
structure: a nested loop, first over all colors and then over all
faces of one color.

MFlop rates on a single processor NEC SX-3 are reported in
Table 3. The rates are based on flop counts and elapsed times.
The decrease in overall performance for the Medium and Large
problems is caused by the larger number of colors after grid
adaptation which results in a reduced vector length. The case
Long does not suffer from this reduction in performance. Also
indicated in Table 2 is if the grid is adapted.

Flux | Limit | Total
Small(4G) 4741 392| 426
Medium(1G) | 406| 258| 232
Large(1G) 371 241 265
Long(4G) 484| 445 452
Long(1G) 463| 318| 314

Table 3: Mega flop rates on single processor NEC SX-3 (based
on elapsed times)

Two parallelization strategies have been tested. The first strat-
egy executes the loops over the colors in parallel and vectorizes
the inner loop over the faces. Part of the inner loop over the
faces consists of an update of the residuals at the cell centers.
Within one color all faces connect to cells with different cell ad-
dresses, but this is not assured between different colors, causing
a data dependency. Hence, in the above parallelization strategy,
the residual updates have to be performed in a critical section,
where only one processor is active at a time. The second strat-
egy divides the loop over the faces within one color over the
available processors. The main problem with this approach is
that sufficient vector length should remain after loop division.

The MFlop rates and speedup results are presented in Table 4.
The timings and speedups are influenced by the use of the ex-
ternal memory unit XMU of the SX-3. The XMU allows for
fast access to data which cannot be placed in core memory. Se-
quentially, the use of the XMU instead of core memory hardly
decreases performance. During parallel execution, however,
locks applied during I/O seriously deterioriate the performance.
If we compensate for the time spent during I/O to the XMU
speedups increase, the corrected speedups are labeled Corr in
Table 4. The MFlop rates in Table 4 are based on the corrected
speedups.

The results for the first parallelization strategy, namely parallel
execution of loops over the colors, are obtained using micro
tasking and are labeled *C’ in Table 4. The speedups are with
respect to elapsed times. It is clear from the results that the effi-
ciency of the parallelization is rather low. This has two reasons.
First, the critical section consumes 20% of the computing time,
and second, the parallel system overhead is about 10%. This
large sequential part limits the maximum attainable speedup on
more processors to 5.

The second parallelization strategy, namely parallel execution
of loops over the faces within one color, does not suffer from a
critical section. At first the code was parallelized using micro-
tasking. The program structure is such that the flux computation
is split into many different loops in different functional subrou-
tines. Therefore the computational load per loop is low, less than
L.5 msec. It turned out that this load is too low to be efficient on
the NEC SX-3: the parallel overhead was as large as, or even
larger than the parallel gain and no speedup was obtained.

Using macrotasking the parallel overhead could be reduced sig-
nificantly. Instead of parallelizing each loop separately, the work
is divided into two tasks in the subroutines Flux and Limit, each
task doing the same job as the subroutines, but on only half the
loop. This not only reduced the parallel system overhead, but
also reduced memory use. In microtasking local data is copied

22-7

Flux Corr | Limit | Total Corr | MFlop/s
SX-3 C |15 16|16 |14 15 624
Small4G) |F |16 16| 1.7 | 13 13 566
SX-3 C |15 18] 12 1.5 16 364
Medium(1G) | F 13 16| 14 | 15 1.6 376
SX-3 C |14 18|12 |12 13 356
Large(1G) |F |11 14| 12 [11 12 322
SX-3 C |15 15| 14 13 14 614
Long(4G) F |17 17|16 |15 16 701
SX-3 C |15 18|13 |13 14 440
Long(1G) F [1l6 19| 16 | 15 16 495
SGI LL| 29 - 33 | 21 - 85
Small(4G) |F |37 - 29 | 23 - 94
SGI LL| 15 - 20 | 15 - 37
Medium(1G) |[F | 29 - 23 {20 - 51

Table 4: Speedups relative to single processor performance
(based on elapsed times); SX-3 two processors; SGI four pro-
cessors; C: parallelloop over colors (microtasking); F: parallel
loop over faces within one color (macrotasking); LL: Low level
microtasking

for each processor, in macrotasking the local data can be defined
per task, and thus approximately halved with respect to the se-
quential program. Memory use for the medium sized problem
is 498 MByte for the sequential program, 540 MByte for the
microtasked program and 515 MByte for the macrotasked pro-
gram. Speedups for the macrotasked program are presented in
Table 4 and labeled "F’.

The decrease in parallel performance with increased problem
size can be attributed to the reduced vector length. This is
clearly demonstrated by the results of test case Long, which
has an average vector length of 120000 in the loops over the
cell faces. This problem reaches the highest parallel perfor-
mance, with a speed-up of 1.9 in routine Flux. Another factor
which significantly reduces the performance of the flow solu-
tion algorithm on a NEC SX-3 computer is the limited memory
bandwidth. This is especially important for the large number
of indirectly addressed loops and a main reason for the big gap
between sustained and peak performance. The memory band-
width limitations are the most evident in Limit, where the ratio
between computations and load/stores is rather low.

SGI Power Challenge

The SGI Power Challenge has scalar processors and therefore
no problems with data dependencies within a processor. The
code was therefore parallelized using the second parallelization
strategy, namely parallel execution of the loops over the cell
faces. Only the Small and Medium problems were tested, since
the other problems did not fit in memory.

Two implementations are made, one by parallelizing each loop
separately (low-level), and one using the same macrotasking
structure as described in the previous section. Parallelization is
straightforward using the parallel code of the SX-3. Directives
are changed to SGI directives. The macrotasking is accom-
plished using the CONCURRENT CALL assertion.

Results of speedups and MFlop rates are presented in Table 4.
The low-level parallelization is labeled *LL’ and the macrotask-

22-8

speedup Flux4G

20

i Ll s PR S |

100 1000 10000
loop length

Figure 2: Cache dependency of speedups on the SGI Power
Challenge in routine Flux(4G) (— Small - - - - Medium)

ing results are labeled "F’. Since the SGI has no XMU there
is no correction for the speedups: the entire program is run in
core memory. The speedups for macrotasking are better than
for the low level parallelization. The performance in MFlops of
the SGI four processor Power Challenge, as listed in Table 4, is
between 10% and 17% of the two processor SX-3 performance
and not sufficient for large scale computing. The percentage
of peak performance is between 3% and 7% on the SGI Power
Challenge and between 6% and 13% on the two processor NEC
SX-3.

Results of the SGI Power Challenge are rather sensitive to cache
misses. A parameter in the flow solution algorithm determines
the number of cell faces in the flux calculation processed at one
time. Varying this parameter changes the amount of the data
being processed, and can be used to optimize the cache use of
the program. Significant differences can occur, and the optimal
value of the parameter depends on the problem at hand. (see
Figure 2). The speedups of Table 4 are computed using the
optimal timing results.

Estimate of the computing time for a LES of a clean wing on
a NEC SX-4/16 computer

The parallel performance on the NLR NEC SX-3/22 has been
used to estimate the problem size of a Large Eddy Simulation
of a clean wing on a 16 processor NEC SX-4, which will be
delivered to NLR in 1996. The NLR NEC SX-4/16 is expected
to have a peak performance of 32 Gflop/s, a main memory of
4 GByte and 8 GByte XMU. With respect to the SX-3/22 its
architecture is more suited for indirect addressing and a single
processor speedup of 2 is expected for programs using indirect
addressing.

The size of the LES is primarily determined by the available
memory. Let NV be the number of grid points, and n the number
of flow variables. For a Large Eddy Simulation with a one-
equation turbulence model we have n = 6. The memory use

of Hexadap is 8(12n + 40)N + 2 - 10° Byte. With an avail-
able memory of 8 Gbyte and 8 bytes per variable the maximum
number of grid points N = 9 - 10°. Using the estimates given
by Chapman [3], this number allows for a LES with sublayer
resolution around a clean wing at a Reynolds number of approx-
imately 10°.

The computing time for one time step is estimated from the
relation:
RN (fry L (13 LLe S fr))

tepu = —— - (L2 4+ —
P Sa-Sc rp rL TR

rs Sie

with: S, a factor to account for grid adaptation, S4 = 0.9,
Sc the single processor speedup of the NEC SX-4 compared to
the SX-3, Sc¢ = 2. The suffixes S, F, L and R refer to the
following parts of the algorithm: S, serial part, F', subroutine
Flux(1G), L, subroutine Limit, and R the remaining part of the
flow solution algorithm which is parallelizable. The variables
f« denote flop counts in the respective parts of the algorithm
to advance one flow variable one time step in one grid point.
The measured values are: fs = 90, fr = 1570, fr = 880
and fr = 180. The variables r. denote the measured flop
rates in the respective parts of the algorithm and are equal to:
rs =rg=350-10%rp = 463.10%and r, = 350-10° flop/s.
The flop count in routine Flux is increased with 10% for the
viscous contribution and 30% for a one-equation subgrid model
using the Germano approach. The parallel speedup, denoted by
Sis on a 16 processor NEC SX-4 is estimated as twelve. The
computing time required to advance one time step on a grid with
9 - 10° grid points is then approximately 28 seconds.

The time scale of the smallest eddies in the flow field will be
approximately 100 times larger than the CFL limit for an explicit
scheme. The CFL time step limitation can be removed with an
implicit, time accurate temporal discretization using multigrid
acceleration. With these assumptions a Large Eddy Simulation
of a clean wing at a Reynolds number 10 on a mesh with
9. 10° grid points which evolves 6500 time steps, which should
be sufficient to obtain a reasonable statistical sample, would
require 50 hours on a 16 processor NEC SX-4.

Conclusions of the parallelization

Provided that the vector length is sufficient, the most efficient
parallelization strategy for the present flow solution algorithm is
a high level parallelization of loops over faces of one color using
macrotasking. Macrotasking reduces parallel system overhead
and memory use. Correcting for the XMU a maximum speedup
of 1.9 is reached on a two processor SX-3.

There are three causes for the not perfect overall performance

on the NEC SX-3:

e T/O between Main Memory and XMU in parallel processing
takes significantly more time,

o Vector length decreases, and hence single processor speed,

o Parallel system overhead.

Concerning the latter cause, the balance between the two pro-

cessors is, when corrected for the I/O between MMU and XMU,

as predicted by the size of the parallel part of the algorithm.

Hence, the computational load is well balanced, and the remain-

ing performance loss can only be explained by parallel system

overhead. Since the NEC SX-3 is not primarily suited for par-

allel use, the relatively high parallel system overhead is not too
surprising. It is expected that the NEC SX-4 has significantly
less overhead.

Low-level do-loop parallelization on the NEC SX-3 turns out
to be only sufficient for loops with a computational load greater
than 1.5 msec.

The parallel efficiency on the SGI Power Challenge is simi-
lar, the percentage of peak performance is relatively low, even
compared with the NEC SX-3. Moreover, the cache sensitivity
makes the optimization problem dependent.

The present parallelization on the NEC SX-3 will not be suf-
ficiently efficient on the 16 processor SX-4. The parallel ex-
ecution of the loops over the cell faces is inefficient since the
loop length will be too short to be divided over 16 processors.
This problem can be solved by limiting the number of neigh-
boring cells connected to one cell face to at most four, which
significantly reduces the number of colors and thereby increases
vector length. The parallel execution of the loop over the colors
contains a sequential part of 20%, and hence has a maximum
speedup of 5. This sequential part can be eliminated using a do-
main decomposition of the grid, which also has as main benefit
that the grid adaptation part can be executed in parallel.

CONCLUDING REMARKS

The discontinuous Galerkin finite element method with lo-
cal grid enrichment has been demonstrated on the three-
dimensional, inviscid flow field around a delta wing at tran-
sonic speed. The use of anisotropic grid refinement of hexa-
hedron type cells is effective in capturing the shock structure
and primary vortex on the leeward side of the delta wing. The
discontinuous Galerkin method works well on highly irregular
grids and is therefore a good candidate for Large Eddy Sim-
ulations, because it offers the opportunity to capture viscous
sublayers with successively finer grids through local grid refine-
ment. An estimate of the required computational resources for
such a simulation is presented. The use of a face based data
structure works well in combination with local grid refinement
and allows efficient vectorization and parallelization of the code.
On the NEC SX-3 the possible speedup through parallelization
strongly depends on the vector length. A maximum speed-up of
1.9 on the two processor NEC SX-3 is obtained when sufficient
vector length was available. A good parallel performance, with
a speed-up of 3.7, is obtained on the four processor SGI Power
Challenge, but the results are sensitive to cache misses.

From the present results it is estimated that for future LES ap-
plications in wall bounded flows, the gain from the increased
computational efficiency obtained from highly adapted grids
more than compensates the increased number of operations and
memory use. A LES of a clean wing at a Reynolds number
of 10° will become feasible on a 16 processor NEC SX-4 in
a turnaround time of one weekend. Significant further devel-
opments, such as the addition of the viscous contribution and
implicit time-accurate temporal discretization using multigrid
acceleration (in progress), will, however, be needed to reach
this goal.

22-9

REFERENCES
[1] Barth, T.J. and Jespersen, D.C. The design and application
of upwind schemes on unstructured meshes. AIAA Paper
89-0366, 1989.

[2] Bey, K.S. and Oden, J.T. A Runge-Kutta discontinuous
finite element method for high speed flows. AIAA Paper
91-1575-CP, 1991.

[3] Chapman, D.R. Computational aerodynamics develop-
ment and outlook. AIAA Paper 79-0129, 1979.

[4

—

Cockburn, B and Shu, C.W. TVB Runge-Kutta local pro-
Jection discontinuous Galerkin finite element method for

conservation laws II: General framework. Math. Comp.,
52:411-435, 1989.

[5

[y

Cockburn, B., Hou, S. and Shu, C.W. The Runge-
Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws IV: The multidimen-
sional case. Math. Comp., 54:545-581, 1990.

[6] Cockburn, B., Lin, S.Y. and Shu, C.W. TVB Runge-
Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws III: One-dimensional
systems. JCP, 84:90-113, 1989.

[7

—

Elsenaar, A., Hjelmberg, L., Biitefisch, K.A. and Bannink,
W.J. The international vortex flow experiment. AGARD
Symposium on Validation of Computational Fluid Dynam-
ics, Lisbon, AGARD CP 437, 1987, also AGARD Advi-
sory Report 303, 1994.

[8] Hoeijmakers, HW.M., Jacobs, JM.J.W. and Van Den
Berg, J.I. Numerical simulation of vortical flow over a
delta wing at subsonic and transonic speed. Presented at
17th ICAS Congress, 1990, Stockholm,Sweden, 1990.

[9

—

Marchant, M.J. and Weatherhill, N.P. Adaptivity tech-
niches for compressible inviscid flows. Comp. Meth. in
Appl. Mech. and Eng., 106:83-106, 1993.

[10] Moin, P.and Jimenez, J. Large eddy simulation of complex
turbulent flows. AIAA Paper 93-3099, 1993.

[11] Osher, S. and Chakravarthy, S. Upwind schemes and
boundary conditions with applications to Euler equations
in general geometries. JCP, 50:447-481, 1983.

[12] Shu, C.W. and Osher, S. Efficient implementation of es-
sentially non-oscillatory shock-capturing schemes. JCP,
77:439-471, 1988.

[13] VanDer Vegt, J.J.W. Higher-order accurate Osher schemes
with application to compressible boundary layer stability.
AIAA Paper 93-3051, 1993.

[14] Van Der Vegt, J.J.W. Anisotropic grid refinement using an
unstructured discontinuous Galerkin method for the three-
dimensional Euler equations of gas dynamics. AIAA Paper
95-1657, 1995.

[15] Venkatakrishnan, V. Convergence to steady state solutions
of the Euler equations on unstructured grids with limiters.
JCP, 118:120-130, 1995.

22-10

P PEEEeRES08808808 2 s~

oo

Figure 3. Pressure field and adapted grid on upper surface of delta wing. (Mo, = 0.85,a = 20°)

Figure 4. Vortex structure on leeward side of delta wing, visualized as total pressure loss. (Mo = 0.85,a = 20°)

Figure 5. Total pressure loss and adapted grid in cross-section through primary vortex core. (Moo = 0.85,a0 = 20°)

. 783
795
. 726
6986
.b69
. B41
612
584
556
527
199
1
L A42
LA13
. 384
. 356
327
.299
271
. 242
214
. 186
157
. 129
1

Total pressure loss and adapted grid in cross-section at 70% chord. (Ms, = 0.85, a0 = 20°)

