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Abstract We introduce set packing games as an abstraction of situations in which
n selfish players select disjoint subsets of a finite set of indivisible items, and ana-
lyze the quality of several equilibria for this basic class of games. Special attention
is given to a subclass of set packing games, namely throughput scheduling games,
where the items represent jobs, and the subsets that a player can select are those
jobs that this player can schedule feasibly. We show that the quality of three types
of equilibrium solutions is only moderately suboptimal. Specifically, the paper
gives tight bounds on the price of anarchy for Nash equilibria, subgame perfect
equilibria of games with sequential play, and k-collusion Nash equilibria. Under
the assumption that players are allowed to play suboptimally and achieve an α-
approximate equilibrium, our tight price of anarchy bounds are α + 1 for Nash
and subgame perfect equilibria, but less than α + 1/(e − 1) for subgame perfect
equilibria when games are symmetric. For k-collusion Nash equilibria, the price of
anarchy equals α+ (n− k)/(n− 1), where 1 ≤ k ≤ n.

Keywords Set Packing · Throughput Scheduling · Price of Anarchy

1 Introduction & Main Contribution

This paper addresses a problem where n players compete for a set of indivisible
items j ∈ J . Each item j ∈ J has a weight wj which represents the item’s utility.
The utility of an item is the same for all n players. In competing for these items, a
player i is bound in her choice by a downward-closed set system Si ⊆ 2J , meaning
that only the subsets Si ∈ Si are feasible for her. Players aim to maximize their
utility, which means maximizing the total weight of the chosen items w(Si) =∑
j∈Si wj . Items are indivisible, hence a feasible solution consists of a profile of
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subsets S = (S1, . . . , Sn) such that Si ∈ Si for all i and Si ∩ Sk = ∅ for all i 6= k.
Our interest goes into the efficiency loss that occurs when the distribution of items
is not controlled centrally, and hence we study the price of anarchy for three types
of equilibria for this class of games. The motivation to address this problem is
discussed in detail in Section 2.

Nash equilibria and Sequential Play. A distinguishing feature of the game that
we propose is that each item j ∈ J can only be selected by at most one of the
players. In that situation, a pure strategy Nash equilibrium is a selection of subsets
Si, one for every player i = 1, . . . , n, so that Si ∩ Sk = ∅ for any two players
i 6= k, and for each player i we have that w(Si) ≥ w(Ti) for all Ti ∈ Si with
Ti ⊆ J \ (∪k 6=iSk). In words, given the items Sk selected by players other than
i, among the remaining items J \ ∪k 6=iSk, player i selects a feasible subset of
maximum weight. When interpreted as a single-shot strategic form game, to realize
this disjointness restriction we can define the payoff of a strategy Si equal −∞
whenever another player’s strategy is Sk with Si ∩ Sk 6= ∅. While this seems a
bit unnatural, our primary interest is to analyze the more natural variant of the
game where players select their subsets sequentially. Then, the items selected by
previous players are no longer available for subsequent players. We address both
problem variants in this paper.

Equilibrium Concepts and Price of Anarchy. For the entire paper, we measure
the quality of an (equilibrium) solution S = (S1, . . . , Sn) by the total value of all
selected items, or equivalently, the sum of values of all selected items w(S) :=∑n
i=1 w(Si). The question is by how much an equilibrium solution falls behind an

optimal solution that could be computed by some central authority, in the worst
case. For a maximization problem as the one considered here, the price of anarchy
[41,31] denotes the ratio of the value of an optimal solution over the value of an
equilibrium solution. We analyze the price of anarchy for three different equilibrium
concepts, namely pure strategy Nash equilibria, subgame perfect equilibria [44] of
a sequential version of the game, and a third equilibrium concept that we refer to
as k-collusion Nash equilibrium. The idea of the latter is that up to k players may
collude and are allowed to use any profit sharing protocol among themselves, hence
can be thought of as acting like a single player. This concept also appears in a
paper by Hayrapetyan et al. [25]. In fact, k-collusion equilibria are a generalization
of k-strong Nash equilibria as defined by Aumann [4]; see also [1].

An illustrating example.

Example 1 Consider n = 2 players and two items J = {1, 2}, with weights w1 =
w2 = 1, and the feasible subsets are S1 = {∅, {1}, {2}} and S2 = {∅, {2}}. /

In an optimal solution, player 1 chooses the first and player 2 chooses the second
item, that is, the strategy profile is S = (S1, S2) = ({1}, {2}) with payoffs (1, 1)
and w(S) = 2. This allocation is a Nash equilibrium. There is another Nash
equilibrium, namely S = ({2}, ∅), because {1} 6∈ S2. As the payoffs are (1, 0) and
w(S) = 1, this instance has a price of anarchy of 2. The strategic form of this
game is depicted in Figure 1.

Considering the sequential game where player 1 precedes player 2, this yields
a game tree that is depicted in Figure 2. A strategy for player 2 now specifies
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player 2
∅ {2}

player 1
∅ 0,0 0, 1
{1} 1,0 1,1
{2} 1,0 −∞,−∞

Fig. 1 Strategic form for Example 1 with Nash equilibria in bold.

{1} {2} ∅

{2} ∅ {2} ∅ {2} ∅

(1, 1) (1, 0) (−∞,−∞) (1,0) (0, 1) (0, 0)

player 1

player 2

Fig. 2 Game tree for sequential version (player 1 → player 2) of Example 1. The worst-case
subgame perfect equilibrium is marked bold.

three actions, one for every possible choice of player 1. When the order is 1 → 2,
all Nash equilibria of the strategic form game are also obtained as subgame per-
fect equilibria, namely ({1}, ({2}, ∅, {2})) and ({2}, ({2}, ∅, {2})), with outcomes
(S1, S2) = ({1}, {2}) and ({2}, ∅), and payoffs (1, 1) and (1, 0), respectively. The
worst case subgame perfect equilibrium is indicated in bold in Figure 2.

For the reverse order of the sequential game (player 2→ player 1), the only sub-
game perfect equilibria are ({2}, ({1}, {1})) and ({2}, ({2}, {1})), with as unique
outcome (S1, S2) = ({1}, {2}) and corresponding payoff (1, 1). As the sequential
price of anarchy takes the worst case over all possible sequential games, Example 1
has sequential price of anarchy of 2.

Finally, assume that both players collude, then obviously, the only allocation
that maximizes their joint payoff is (S1, S2) = ({1}, {2}) and corresponding payoff
(1, 1). Therefore, the 2-collusion price of anarchy equals 1.

Relation to Set Packing and Maximum Coverage Problems. The set packing prob-
lem is one of Karp’s 21 problems first proved to be NP-complete [30]; it is listed as
problem [SP3] in Garey and Johnson’s classic on computers and intractability [19].
In set packing, the task is to select from a given collection S of subsets of a set of
items J , a collection of k disjoint subsets, for a given number k. In the weighted
optimization version of the problem each subset S ∈ S has a weight w(S), and the
goal is to find disjoint subsets of maximum total weight. The general set packing
problem with or without weights is NP-complete [19], and in general it is not even
approximable to within any constant. We refer to [14] and [26] for more details.
The problem that is considered in this paper corresponds to the much simpler
variant of set packing where items j ∈ J have weights wj , and w(S) :=

∑
j∈S wj .

Due to our assumption that the set system is downward-closed, as an instance of
maximum weight set packing this problem is trivial when there is no limit on the
number of chosen subsets (e.g., take all singletons in ∪ni=1Si). However if only a
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given number of n subsets may be chosen -which is the problem that we consider-
the downward closedness yields that the problem is equivalent with the the NP-
hard maximum coverage problem. That problem can be approximated to within
a factor 1 + 1/(e− 1) [27], and the same approximation guarantee is recovered in
this paper as the sequential price of anarchy for symmetric set packing games.

Throughput Scheduling. A subclass of set packing games are throughput scheduling
games. These games were the subject of an extended abstract underlying this paper
[28]. Throughput scheduling has been studied from the algorithmic perspective
e.g. by Bar-Noy et al. [7] and Berman and Dasgupta [8]. Here, the set of items J
corresponds to a set of non-preemptive jobs, each with a release time rj , a due
date dj , and a weight wj . There are m ≥ 1 machines to process these jobs. In the
most general setting, the machines can be unrelated, meaning that the processing
time of any job j may depend on the machine ` it is processed on, and the `×m
matrix (p`j) of processing times on machines can have rank > 1. A subset Si of
jobs is feasible for player i if there exists a schedule of the jobs in Si on the set of
machines of player i, so that each job can be processed in the time window [rj , dj ].
The job sets Si that are feasible for player i is then a downward closed set system.
Except one, all lower bounds on the price of anarchy for set packing games are
presented as instances of throughput scheduling games.

Approximate Equilibria. We generally consider α-approximate versions for all three
equilibrium concepts, for any fixed α ≥ 1. That means that a strategy profile is
considered in α-approximate equilibrium if the corresponding payoffs per player
are maximal up to a multiplicative constant α, given the strategies of the other
players. Indeed, the idea of considering approximate instead of exact equilibria
is by now a widely accepted concept in algorithmic game theory, with different
variations. Already Roughgarden and Tardos [43] consider it for network routing
games, and for example Skopalik and Vöcking [45] discuss corresponding hardness
results in the context of congestion games. Approximate equilibria can be gener-
ally motivated in at least two ways: The first is that players may be reluctant to
changing strategies for small improvements, and the second is that players may be
computationally bounded, and restricted to approximate equilibria by the com-
putational hardness of computing a best response. We come back to this point
later. It is important to note that our price of anarchy bounds are tight for all
α-approximate versions of the three equilibria that we consider.

Main Contribution. Our contribution is as follows. If all players play α-approximate
Nash equilibria, the price of anarchy for set packing games equals α + 1. We
also show that sequential play, that is the game where players select their sets
subsequently, does not allow to improve on that bound in general. However, for
the special case of symmetric set packing games (to be defined later), sequential
play does yield improved results for the price of anarchy: We show that subgame
perfect equilibria yield a price of anarchy of α

√
e/( α
√
e− 1), which is tight, too.

Note that for α = 1, this equals 1 + 1/(e − 1). Finally, we analyze k-collusion
Nash equilibria, and show that when players are assumed to play α-approximate
k-collusion Nash equilibria, the price of anarchy interpolates between α and α+1,
as it is equal to α+ (n− k)/(n− 1).
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2 Related Work and Motivation

Throughput scheduling games have been the subject of the extended abstract
[28] underlying this full-length paper. We are not aware that set packing games
as defined in this paper have been addressed in the literature. Generally spoken,
much of the work in algorithmic game theory addresses auctions, network routing
or congestion games, as well as scheduling and load balancing games. Refer e.g. to
Section III of the textbook by Nisan et al. [36] for several of such models.

Covering Games. There is a set of publications on so-called covering games that
are very closely related to our work. When allowing that one item is chosen by
more than only one player, the resulting game is a covering game as studied by
Gairing [18]. In this case, one needs to define a utility sharing function for the items
that are chosen by several players. Gairing shows that there exist utility sharing
functions such that worst case Nash equilibria are at most a factor 1+1/(e−1) away
from the optimum. Covering games can also be interpreted as a generalization of
market sharing games as studied e.g. by Goemans et al. [20]. For covering games
with uniform utility sharing, the price of anarchy equals 2−1/n for n-player games
[18,11]. That result can also be obtained by a smoothness argument, so it extends
to more than Nash equilibria [11]. In that context, note that the price of anarchy
bound for set packing games as proved in this paper is 2, which is tight for any
number of players n ≥ 2. In contrast to covering games, a distinguishing feature of
set packing games is the property that items can only be chosen by one player, and
as a consequence, rational players affect each other only through the availability
of strategies from the strategy set Si, but not each other’s payoffs. As a result,
there are Nash equilibria of the non-sequential game that cannot be realized as
subgame perfect equilibria of a sequential game, and this feature allows us to
obtain improved price of anarchy results for subgame perfect equilibria. This is
indeed no longer the case when items are uniformly shared: Generalized market
sharing games have a price of anarchy lower bound of 2 − 1/n even for subgame
perfect equilibria of a sequential game [11]. Finally, we note that generalizations
of covering games have also been addressed recently by Paccagnan et al. [38,39].

Sequential price of anarchy. The analysis of subgame perfect equilibria as opposed
to Nash equilibria is one of the main contributions of this paper, and it is maybe
also the most interesting result from an applications point of view. At the time of
writing the conference publication underlying this full-length paper [28], the idea
of considering sequential versions of games, and Selten’s subgame perfect equilibria
as an alternative to avoid the “curse of simultaneity” of Nash equilibria had just
been brought up by Paes Leme et al. [40]. In contrast to the price of anarchy
which relates the outcome of the worst possible Nash equilibrium to that of an
optimal solution [41,31], the sequential price of anarchy [40] relates the outcome
of the worst possible subgame perfect equilibrium of all sequential versions of
the game where players act subsequently (and farsighted), to the outcome of an
optimal solution. For set packing games, it is not hard to see that any outcome of
a subgame perfect equilibrium of a sequential version of the game is also a Nash
equilibrium in the non-sequential, strategic form of the game, but not necessarily
vice versa; see also Theorem 6. It should be noted that subgame perfect equilibria
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of a sequential game are not generally Nash equilibria of the corresponding non-
sequential game: Correa at al. [16] give an instance of a network routing problem
where the sequential price of anarchy is unbounded, while the price of anarchy is
known to be 5/2 [5,15]. Indeed, subsequent to the work by Paes Leme et al. [40],
for a handful of problems it was shown that the sequential price of anarchy is lower
than the price of anarchy [40,28,29,24], while for others this is exactly opposite
[2,9,16]. To conclude, it should be noted that also earlier than [40], sequential
versions of (routing) games have been considered, however with different utility
sharing functions. This includes Olver [37], Harks, Heinz and Pfetsch [22], Harks
and Vegh [23], as well as Farzad, Olver and Vetta [17].

Approximate equilibria and hardness of optimal play. The necessity to also consider
α-approximate equilibrium concepts is best motivated by considering some con-
crete examples of throughput scheduling. For example, consider the special case
where the feasibility system of a player i consists of all sets of jobs j ∈ J that can
be feasibly scheduled on a single machine. In the 3-field notation of [21], this prob-
lem reads 1|rj |

∑
wjUj , where “1” stands for one single machine, rj specifies that

there are release dates, and the objective
∑
wjUj is to maximize the total weight

of jobs scheduled before their due date dj . In that case, the input of the problem
would not be a list of all feasible sets Si, but only the set of jobs j ∈ J with their
time windows [rj , dj ], processing times pj and values wj . It follows from [32] that
the problem to compute a subset of jobs maximizing the total weight is NP-hard,
hence players cannot generally be assumed to be able to compute a strategy to
optimize their payoff. More generally, if players control a set of several (unrelated)
machines each, the problem to compute a best response reads R|rj |

∑
wjUj in

scheduling notation, where “R” stands for unrelated machines. This problem is
equivalent to the throughput scheduling problem as it has been addressed e.g. by
Bar-Noy et al. [7], and subsequently by Berman and Dasgupta [8]. For this prob-
lem, only constant factor approximation algorithms are available, and this constant
is essentially 2; see [8]. Hence, assuming that players are equipped with such ap-
proximation algorithms, the outcome of such a game would be an α-approximate
equilibrium with α = 2. On the other hand, there are relevant special cases of
throughput scheduling where players can be assumed to be able to play optimally.
One such case is when feasibility sets Si are the sets of jobs that can be feasibly
scheduled on a single machine, and jobs have unit weights and zero release dates.
This single-machine problem is solved in polynomial time by the Moore-Hodgson
algorithm [35]. Another case is when the feasibility system Si is the set of jobs
with unit processing times that can be scheduled on a set of identical, parallel
machines. This problem can be solved as an assignment problem [12]. In light of
this discussion, recall that all our results are parametric in the parameter α.

Motivation. On the one hand, we believe that the game theoretic version of a
classical combinatorial problem such as set packing is interesting in its own right.
On the other hand, the original driver of this research was to understand the
potential loss of efficiency when the procurement of indivisible services is not
controlled centrally. Here, think of the following service procurement setting: Each
item corresponds to a service request –such as a computational task or a physical
service– with a monetary value that pays off once the service is executed. Given
a collection of such service requests, e.g. on an internet portal or within a larger
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corporation consisting of several profit centers, players are service providers who
can choose a subset of services in order to generate revenue. Service providers,
however, are bound by limited resources and can therefore only choose certain
subsets of services. Specifically, when these services are specified by a release time,
processing time, and a due date, this gives rise to a throughput scheduling problem.

Sketch of Applications. We give three instances of application domains that lead to
instances of set packing games. (1) When operating microgrids for decentralized
energy production, the goal is to consume locally produced energy as much as
possible. Here, the items are the operation of appliances in households (e.g. load-
ing a car battery) which come with a time window and a certain monetary value.
Players, on the other side, are intermediaries or local energy producers that want
to maximize the total value of items than can be accommodated within a given a
profile of available energy; see, e.g. [6] or [34] for more context. (2) In cloud comput-
ing, service providers such as Google or Amazon provide an infrastructure service.
Here, the items are computational tasks that need to be distributed over data-
and computing centers. Indeed, the aim of a federated cloud computing environ-
ment, as discussed e.g. in [13], is to “coordinate load distribution among different
cloud-based data centers in order to determine optimal location for hosting ap-
plication services”. Understanding the cost of uncoordinated load distribution is
the question that we ask. (3) A final application domain is distribution logistics
in a B-to-B context, like reverse auctions. Specifically, consider private car sharing
portals like e.g. [47], where items correspond to car rental requests for a certain
time period and a predefined price. Owners of cars or car farms are players that
select subsets of such requests from the portal to rent out their car(s) in order to
maximize the total revenue.

While it is true that each of these applications has additional features or practi-
cal constraints that are not taken care of in the set packing games that we address
here, the paper aims to identify the combinatorial flavour that lies at the heart of
such problems. The overall conclusion is that the loss of efficiency caused by the
lack of central coordination is moderate.

3 Preliminaries

We here fix some notation and the basic definitions. There are n players, and
a finite ground set J of items. Each item j ∈ J has a value wj . For S ⊆ J ,
we let w(S) :=

∑
j∈S wj . Each player i has a strategy set Si ⊆ 2J which is

downward closed, i.e., if Si ∈ Si, then Ti ∈ Si for all Ti ⊆ Si. Given a strategy
profile S = (S1, . . . , Sn), as usual define S−i := (S1, . . . , Si−1, Si+1, . . . , Sn) as the
strategies of all players except i, and for any set of players K ⊆ {1, . . . , n}, define
S−K accordingly.

When (S1, . . . , Sn) is a strategy profile with Si ∈ Si for all i = 1, . . . , n, the
payoffs for player i are defined as

wi(Si, S−i) =

{
w(Si) if Si ∩ Sk = ∅ for all k 6= i ,

−∞ otherwise .
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A strategy profile (S1, . . . , Sn) is an α-approximate Nash equilibrium (for α ≥ 1)
if it is true that for all players i = 1, . . . , n

wi(Si, S−i) ≥
1

α
wi(Ti, S−i) for all Ti ∈ Si . (1)

Note that the existence of Nash equilibria with wi(Si, S−i) ≥ 0 for all players i is
guaranteed by the fact that the feasibility systems Si are downward closed.

For a solution S = (S1, . . . , Sn), in a slight but convenient abuse of notation1

let us write w(S) :=
∑n
i=1 w(Si) for the total value that it achieves. The price of

anarchy PoA [41,31] for a class of games I is then the ratio

(α-approximate) PoA = sup
I∈I

sup
S∈NE(I)

w(OPT (I))

w(S)
, (2)

where NE(I) denotes the set of all α-approximate Nash equilibria of instance
I ∈ I, and OPT (I) is an optimal allocation for I. Note that for set packing games,
OPT (I) is a Nash equilibrium too, hence the price of stability as proposed by
Anshelevich et al. [3] equals 1.

Next, consider the extensive form game that is obtained when imposing some
order, say 1, . . . , n on the players. A strategy for player i is then more complex, as
it must specify one action Si for all possible combinations of actions of preceding
players 1, . . . , i−1, that is, one action Si for each node of the game tree on level i.
An α-approximate subgame perfect equilibrium is then a strategy that guarantees
at least a 1/α-fraction of the optimal action for each of the nodes of the game
tree on level i. As we deal with a full information game, (α-approximate) subgame
perfect equilibria can be computed via backward induction2. A nice feature of
set packing games is that the computation of (α-approximate) subgame perfect
equilibria is not suffering from the typical hardness results for sequential games
that is due to farsighted behaviour of players: Indeed, computing outcomes of
subgame perfect equilibria may be PSPACE-hard with n players [40], and NP-
hard even with two players only [16]. For set packing games, an optimal action for
the i-th player, upon observing the actions S1, . . . , Si−1 of the preceding players,
is computed by solving the optimization problem

max
T⊆J

w(T ) s.t. T ⊆ J \ ∪i−1
k=1Sk and T ∈ Si ,

This suffices, as by the specific payoff structure of set packing games, the value
attained by player i is no longer affected by payers i + 1,. . . , n, as long as they
are all rational. This problem is computationally hard only if the combinatorial
structure encoded by Si is hard; see the discussion in Section 2.

The price of anarchy for α-approximate subgame perfect equilibria, also called
sequential PoA [40], is then defined analogously to the price of anarchy in (2),

(α-approximate) sequential PoA = sup
I∈I

sup
S∈SPE(I)

w(OPT (I))

w(S)
, (3)

1 We use S to denote both, a strategy vector S = (S1, . . . , Sn) as well as the total set of
items that it induces, i.e., S = ∪ni=1Si. That will not yield any confusion, however.

2 See, e.g., [42]. That is conceptually simple but generally not polynomial time.
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where the first supremum supI∈I is also taken over all possible orders of players,
and SPE(I) denotes all outcomes that can be obtained as α-approximate subgame
perfect equilibria of instance I.

Finally, assume that up to k of the given n players may collude, and are allowed
to use any profit-sharing rule among them. In other words, we can think of a
group K of up to k players as maximizing their joint value w(∪i∈KSi). Then,
wK(SK , S−K) :=

∑
i∈K wi(Si, S−i) is the joint value achieved by players inK, and

an α-approximate k-collusion Nash equilibrium is a strategy profile (S1, . . . , Sn)
such that the following is true for all sets K of at most k players,

wK(SK , S−K) ≥ 1

α
wK(T, S−K) for all T = ∪i∈KTi and Ti ∈ Si . (4)

Obviously, the price of anarchy for α-approximate k-collusion Nash equilibria is
then again defined analogously to the price of anarchy in (2) by

(α-approximate) k-collusion PoA = sup
I∈I

sup
S∈CEk(I)

w(OPT (I))

w(S)
, (5)

where CEk(I) denotes the set of α-approximate k-collusion Nash equilibria of
instance I.

Symmetric Set Packing. We call a set packing game symmetric whenever there
is only one feasibility system S that is the same for all players i, and a player i
can select xi ≥ 1 feasible sets from S, for some integer xi ≥ 1. Note that when
all xi = 1, this exactly means that the strategic form game is symmetric in the
sense that all players have exactly the same strategy set. However we here choose
a slightly more general definition of symmetry, in that we allow players to select
multiple feasible sets. In the throughput scheduling context, that also captures
a setting where each player controls a subset of a set of identical machines. We
define x :=

∑n
i=1 xi to be the total number of feasible sets from S that can be

chosen by all players together, and note that x ≥ n.

4 The Price of Anarchy for Nash Equilibria

We begin by giving the simple proof for the upper bound on the price of anarchy
for arbitrary set packing games, assuming that the outcome is an α-approximate
Nash equilibrium.

Theorem 1 The α-approximate price of anarchy equals α + 1 for set packing
games.

Proof We first give the proof for the upper bound. Take any instance with optimal
solution OPT and Nash equilibrium S, and let Si and OPT i, i = 1, . . . , n, be the
items selected by player i in S and OPT , respectively. For W ⊆ J , let W = J \W
be the complement of W in J .

Since all items in S are available, and all items in OPT i are feasible for player
i, and all Si are downward closed, by the definition of α-approximate Nash equi-
librium we have for all players i that αw(Si) ≥ w(OPT i ∩ S). Now we get, by the



10 Jasper de Jong, Marc Uetz

fact that Si ∩ Sk = ∅ and OPT i ∩OPT k = ∅ for any i 6= k,

(α+ 1)w(S) ≥ αw(S) + w(OPT ∩ S)

=
∑n

i=1
αw(Si) + w(OPT ∩ S)

≥
∑n

i=1
w(OPT i ∩ S) + w(OPT ∩ S)

= w(OPT ) .

For a matching lower bound, see the proof of the next theorem. ut

We next give a matching lower bound example, which is an instance for through-
put scheduling (and an asymmetric set packing game).

Example 2 Assume that α = p/q, where p ≥ q. When α is not rational, note that
we can approximate α arbitrarily well by appropriate p and q. Consider a game
with q + 1 players. For each player i, there is one machine, which we also denote
by i. The set J of items are jobs that are partitioned into two sets P and Q, with
|P | = p, |Q| = q. Each job j ∈ J has deadline dj = 1, unit weight wj = 1, and its
processing time on machine 1 is pj1 = 1/p. Moreover, jobs j ∈ Q have processing
time pji = 1 on any other machine i 6= 1, while jobs j ∈ P have processing time
pji = 2 on any other machine i 6= 1. Note that any subset of jobs of size p can be
feasibly allocated to player 1. Players 2 . . . n can be allocated only one job each,
and only jobs from Q. See Figure 3 for an illustration in the case where α = 3/2.
/

P

Q

1

2

3

1

2

3

OPT Nash Equilibrium S

Q

Fig. 3 Example 2 for p = 3 and q = 2. Numbers represent machines. Rectangles represent
jobs. The left side of each job is its starting time, its width is its processing time on the machine
on which it is allocated. The dashed line is the deadline, which is the same for all jobs in this
example.

Theorem 2 The α-approximate price of anarchy equals α + 1 for throughput
scheduling games.
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Proof PoA ≤ α + 1 follows from Theorem 1, since throughput scheduling games
give rise to downward closed feasibility sets per player. To see that PoA ≥ α+ 1,
consider the instance of Example 2. In the optimum solution OPT , all p+ q jobs
are feasibly allocated: All jobs in P are allocated to player 1, and each of the
jobs in Q is allocated to one of the q other players 2, . . . , q + 1. Now consider the
α-approximate Nash equilibrium S where only q jobs are allocated: All jobs from
Q are allocated to player 1, and no jobs are allocated to players 2, . . . , q+ 1. This
is indeed an α-approximate Nash equilibrium, as player 1 achieves a total value
of q, while maximally that player can be allocated p = αq jobs. In other words,
the α-approximate Nash condition (1) holds for player 1. Moreover, given that all
jobs from Q are allocated to player 1, players 2, . . . , q + 1 cannot do better than
a value 0, as none of the jobs from P are feasible for these players. We conclude
that PoA ≥ w(OPT )/w(S) = (p+ q)/q = α+ 1. ut

Note that the upper bound is universal in the sense that it is independent
of how the (α-approximate) Nash equilibrium is obtained. It is conceivable that
specific algorithms can yield a better bound for the price of anarchy. However,
the existence of more complicated counter-examples for specific algorithms is not
unlikely either; see the next Section 5 for an example.

4.1 Symmetric Set Packing Games.

The price of anarchy of set packing games does not improve if the game is sym-
metric.

Theorem 3 The α-approximate price of anarchy equals α + 1 for symmetric set
packing games.

The upper bound α+ 1 is a consequence of Theorem 1. The lower bound follows
from the following theorem for throughput scheduling games, based on Example 3
below, which is an instance of a symmetric set packing game.

Example 3 Let α = p/q. There are n players i, each corresponding to one machine.
The set J of p+ (q + 1)(n− 1) jobs is again partitioned into two sets P,Q, |Q| =
q(n− 1) + p, |P | = (n− 1). All jobs j ∈ J have deadline dr = 1. Jobs j ∈ Q have
processing times pj = 1/(q(n− 1) + p) and weight wj = 1, while jobs j ∈ P have
processing times pj = 1 and weight wj = p. See Figure 4 for an illustration for the
case where p = 3, q = 2 and n = 3. /

Theorem 4 The α-approximate price of anarchy equals α + 1 for symmetric
throughput scheduling games.

Proof We are only left to show PoA ≥ α+1. Consider Example 3. In the optimum
solution OPT , player 1 is allocated all jobs j ∈ Q, and each remaining player is
allocated exactly one job in P . Consider Nash equilibrium S where each player is
allocated q jobs in Q. Note that S is indeed an α-approximate Nash equilibrium:
Any player i could choose at most one job from P or at most p jobs from Q, since
other players are allocated q(n − 1) jobs from Q in total. Neither of the feasible
deviations increases player i’s utility by more than a factor α. For this example,
w(OPT )/w(S) = pn+q(n−1)

qn = p+q
q −

1
n → 1 + α for n→∞. ut
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Q1

2

3

1

2

3

OPT Nash Equilibrium S

Q

P

Fig. 4 Example 3 for p = 3, q = 2, n = 3. Numbers represent machines. Rectangles represent
jobs. The left side of each job is its starting time, its width is its processing time. The dashed
line is the deadline, which is the same for all jobs in this example.

However this Nash equilibrium is generally not subgame perfect when con-
sidering the corresponding sequential game. This observation is exploited in the
following.

5 The Sequential Price of Anarchy

In this section we aim to show that substantial improvements for the price of anar-
chy are possible when considering sequential games and subgame perfect equilibria.
This improvement is interesting, we believe, because in almost all applications that
we can think of, it is the sequential version of the game which is practically rele-
vant. To start with, however, we observe that in general, Example 2 also provides a
lower bound for the quality of subgame perfect equilibria, and we get the following.

Theorem 5 The α-approximate sequential price of anarchy equals α + 1 for set
packing games and throughput scheduling games.

Proof Let us first argue that the sequential PoA ≥ α+ 1. Recall Example 2, and
assume that player 1 is the first to make a selection. Then if player 1 makes the
same selection of job set Q as in the proof of Theorem 2, the obtained solution can
indeed be obtained as an α-approximate subgame perfect equilibrium, as player 1
cannot improve by more than a factor α by selecting other jobs, and given that, all
other players have nothing to choose. (We can specify any reasonable actions for
those parts of the game tree that are not played in this equilibrium.) By the same
argument as before, the lower bound on the price of anarchy follows. To see that
the upper bound on the sequential PoA also holds, the next theorem shows that
any subgame perfect equilibrium of the sequential game is a Nash equilibrium of
the corresponding non-sequential game, hence Theorem 1 carries over. ut

Theorem 6 For set packing games and any α ≥ 1, the actions played in an
α-approximate subgame perfect equilibrium of any sequential version of the set
packing game, are an α-approximate Nash equilibrium in the corresponding non-
sequential strategic form game.
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Proof Consider the actions S = (S1, . . . , Sn) played in any subgame perfect equi-
librium SPE of any sequential version of the set packing game. Assume w.l.o.g. the
order was 1, . . . , n. Consider any player i choosing Si. We need to show that the
Nash condition holds, which is αw(Si) ≥ w(Ti) for all Ti ∈ Si with Ti ⊆ J\∪k 6=iSk.
But as the choice Si is part of a subgame perfect strategy, we even know that
αw(Si) ≥ w(Ti) for all Ti ∈ Si with Ti ⊆ J \ ∪i−1

k=1Sk. This inequality must be
true because i’s choice is α-approximately optimal, and since in a subgame perfect
equilibrium, i’s payoff is not affected by rational subsequent players k > i, for any
Ti that player i might choose. Hence S a Nash equilibrium in the non-sequential
game. ut

It is not generally true that subgame perfect equilibria of a sequential game are
Nash equilibria of the corresponding non-sequential game. See, e.g., [16] for an
example.

5.1 Symmetric Set Packing Games

When considering symmetric set packing games, sequential play and subgame
perfection rule out worst-case Nash equilibria. Assuming the outcome of such a
game is an α-approximate subgame perfect equilibrium, the main result of this
section is:

Theorem 7 The α-approximate sequential price of anarchy equals α
√
e/( α
√
e− 1)

for symmetric set packing games.

We prove the theorem in several steps. First we derive the lower bound, which
is again obtained by considering a throughput scheduling instance.

Example 4 There are n players. Each player i corresponds to one machine. The
set J of n2 jobs is partitioned into n sets J1, . . . , Jn, |Jk| = n for all k ∈ [n]. We
refer to a job from Jk as a k-job. All k-jobs have deadline k. All jobs j ∈ J have
processing time pj = 1 and weight wj = 1. See Figure 5 for an illustration for the
case where n = 5 and α = 1. /

Lemma 1 The α-approximate sequential PoA ≥ α
√
e/( α
√
e− 1) for symmetric set

packing games.

Proof In the optimum solution OPT , every player is allocated exactly one k-job
for all k = 1, . . . , n. Therefore w(OPT ) = n2.

We construct an α-approximate subgame perfect outcome S, as follows: For
every player i = 1, . . . , n in this order, we find the maximum number of jobs that
can be feasibly allocated to this player, given jobs already assigned to players
1, . . . , i− 1, and when considering jobs with the largest deadlines first (which are
the most flexible jobs). Denote this number of jobs mi. We allocate to player i
exactly dmi/αe of these jobs, so that the allocation is still an α-approximation.
Let Si be the jobs allocated to player i in this way.

We bound w(S) in the following way: Let rk(i) = |Si∩Jk|
|Si| , i.e. rk(i) is the

fraction of k-jobs allocated to player i, relative to the total number of jobs allocated
to player i. Let rk =

∑n
i=1 rk(i). Now,

n∑
k=1

rk =
n∑
k=1

n∑
i=1

rk(i) =
n∑
i=1

n∑
k=1

|Si ∩ Jk|
|Si|

=
n∑
i=1

1 = n . (6)
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J1 J2 J3 J4 J5

Fig. 5 Example 4 in case of 5 players and α = 1. Numbers represent machines. Rectangles
represent jobs. The left side of each job is its starting time, its width is its processing time.
The number in each job is its deadline.

In S, any player i who gets allocated a k-job, is not allocated any job from Jj , j ≥
k+ 2, hence she is allocated at most d(k + 1)/αe ≤ (k + 1 + α)/α jobs. Therefore,
each k-job contributes at least α/(k + 1 + α) to rk. For any k for which all of the
n k-jobs are allocated in S, we obtain

rk ≥ nα/(k + 1 + α) . (7)

Now, for some k′ ≥ 0, by construction of the allocation we have that for all
k ≥ n− k′, all n k-jobs are allocated, as well as a subset of the (n− (k′+ 1))-jobs.
We obtain

n ≥
n∑

k=n−k′
rk ≥

n∑
k=n−k′

nα

k + 1 + α
≥
∫ n

k=n−k′

nα

k + 1 + α
dk , (8)

where the first inequality follows from (6), the second inequality follows from (7),
and the last inequality follows from basic calculus.

Because the last term is upper bounded by n, we can derive an upper bound
on k′. In fact, basic calculus shows that

k′ >
(n+ 1 + α)( α

√
e− 1)

α
√
e

⇒
∫ n

k=n−k′

nα

k + 1 + α
dk > n ,

which together with (8) yields that k′ ≤ (n+1+α)( α
√
e−1)

α
√
e

. Because only k-jobs with

k ≥ n− (k′ + 1) are allocated, we conclude that

w(S) ≤ (k′ + 1)n ≤
(n+ 1 + α+

α
√
e

α
√
e−1

)( α
√
e− 1)

α
√
e

· n .
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We see that

w(OPT )

w(S)
≥ n α

√
e

(n+ 1 + α+
α
√
e

α
√
e−1

)( α
√
e− 1)

→
α
√
e

α
√
e− 1

for n→∞ ,

and the claim follows. ut

Note that the lower bound construction assumes that players choose the most
flexible jobs first, which is reasonable from a practical point of view. Also note that
in the lower bound example, xi = 1 for all players. Therefore, the lower bound
holds even in the special case when the strategic form game is a symmetric game.

To derive a matching upper bound on the sequential price of anarchy for sym-
metric set packing games, we generalize some of the proof ideas from [7] in their
analysis of the k-GREEDY algorithm for throughput scheduling. We here gener-
alize the proof to the case where players may control more than one machine, or
in our case, more that one feasible set. Algorithmically, that means that in one
iteration of the greedy algorithm not only one but several sets from the feasibility
system get chosen. Stripping off the technical details, one of the core ingredients
of the proof below is the fact that the next player may greedily choose her fea-
sible subset(s), and this choice approximates the optimal solution for the set of
currently available items. That optimal value is in turn at least as large as the op-
timal solution restricted to the set of currently available items. This is expressed
in inequality (9) below. Indeed, this is a generic approach when analyzing greedy
algorithms for subset selection problems, and the same idea also appears in the
analysis of the greedy algorithm for maximum coverage problems; see [27, Lemma
3.13]. We want to prove:

Lemma 2 The α-approximate sequential PoA ≤ α
√
e/( α
√
e− 1) for symmetric set

packing games.

Denote by Si the items selected by player i in an α-approximate subgame
perfect equilibrium, and recall that S denotes both the strategy vector and S =
∪ni=1Si, the total set of selected items. The following lemma lower bounds the total
weight collected by player i.

Lemma 3 We have for all players i

w(Si) ≥
xi
xα

w (OPT (J \ ∪j<iSj)) .

where OPT (W ) denotes an optimal solution for a fixed subset of items W ⊆ J .

Proof Let W := J \ ∪j<iSj . Let OPT i denote the maximum weight set of items
that player i can achieve from W . Observe that w(OPT i) ≥ (xi/x)w(OPT (W )).
This follows because player i could potentially select the xi most valuable feasible
sets from OPT (W ). Now, because we assume an α-approximate subgame perfect
equilibrium, w(Si) ≥ w(OPT i)/α ≥ xiw(OPT (W ))/(xα). ut

Proof (of Lemma 2.) Let γ := xα, and recall that w(OPT ) = w(OPT (J)) denotes
the value of an optimal solution. We use Lemma 3, to get

w(Si) ≥
xi
γ
w (OPT (J \ ∪j<iSj)) ≥

xi
γ

(
w(OPT )−

∑
j<i

w(Sj)
)
. (9)
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Here the last inequality is crucial and it holds because w(OPT ) −
∑
j<i w(Sj)

represents the value of some feasible solution for the items J \ ∪j<iSj . Now add∑i−1
j=1 w(Sj) to both sides to get

i∑
j=1

w(Sj) ≥
xiw(OPT )

γ
+
γ − xi
γ

i−1∑
j=1

w(Sj) . (10)

We now follow the proof of Theorem 3.3 in [7], and aim to prove that

i∑
j=1

w(Sj) ≥
γx
′
i − (γ − 1)x

′
i

γx
′
i

w(OPT ) , (11)

where x′i =
∑i
j=1 xj . This part of the proof is done by mathematical induction on

the player index i. In contrast to [7], this is technically more involved here. The
proof of inequality (11) is by double induction and given in Appendix A. Now we
get for i = n (cp. to the proof of Thm. 3.3 in [7])

w(S) =
n∑
j=1

w(Sj) ≥
γx − (γ − 1)x

γx
w(OPT ) .

We conclude that the

sequential PoA ≤ γx

γx − (γ − 1)x
=

(xα)x

(xα)x − (xα− 1)x
≤

α
√
e

α
√
e− 1

,

where the last inequality follows because the right hand side is exactly the limit
for x→∞, and the series bx = (xα)x/((xα)x − (xα− 1)x) is monotone in x, with
b1 = α ≤ α

√
e/( α
√
e− 1). This ends the proof of Lemma 2. ut

Basic calculus shows that

α+
1

2
≤

α
√
e

α
√
e− 1

≤ α+
1

e− 1

for α ≥ 1. Hence the improvement over the (pure Nash equilibrium) price of
anarchy of α + 1 is substantial, but only for small values of α. We explicitly
mention the special case where α = 1.

Corollary 1 The sequential price of anarchy for symmetric set packing games
equals 1 + 1/(e− 1) ≈ 1.58.

6 The k-Collusion Price of Anarchy

While sequential play is a way to reduce the price of anarchy for symmetric set
packing games, we now show that collusion of players helps to reduce the price of
anarchy, too. This is true also for general, asymmetric set packing games. Recall
that an α-approximate k-collusion Nash equilibrium means that no coalition K of
up to k players can improve their total value w(SK) by more than a factor α. The
following theorem generalizes Theorem 1 to the case where collusion is possible.
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Theorem 8 The α-approximate k-collusion price of anarchy equals α+ n−k
n−1 for

set packing games.

Note that for k = n, we consider an α-approximate (centralized) solution, and for
α = 1, this is an optimal solution. First we give a proof for the upper bound.

Lemma 4 The α-approximate k-collusion PoA ≤ α+ n−k
n−1 for set packing games.

Proof The proof mimics our earlier proof of Theorem 1, only here we have to keep
track of the values of more subsets of J . We fix an optimal solution OPT and
a k-collusion Nash equilibrium S, write N = {1, . . . , n}, and use the following
shorthand notation:

xij =


the total weight of items in OPT i ∩ Sj for i, j ∈ N ,

the total weight of items in Sj \OPT for i = 0, j ∈ N ,

the total weight of items in OPT i \ S for i ∈ N, j = 0 .

Our proof is based on the following observation: Players from any coalition K
collude and collectively deviate if and only if the total weight of items allocated
to them increases by more than a factor α ≥ 1, by choosing any set of items in
(∪i∈KSi) ∪ (J \ ∪i 6∈KSi). Therefore, in particular for all coalitions K of size k in
any α-approximate k-collusion Nash equilibrium, we have by (4) that

α

∑
j∈K

(∑
i∈N

xij + x0j

) ≥∑
i∈K

∑
j∈K

xij + xi0

 .

Note that all items that contribute to the left-hand side are allocated to players in
K in the equilibrium S. Also note that all items that contribute to the right-hand
side can be feasibly allocated to players in K, since these items are allocated to
players from K in OPT . Also, these items are available for coalition K, since they
are either allocated to players in K in S, or not allocated. We rewrite this as

α

∑
j∈K

(∑
i∈N

xij + x0j

) ≥∑
i∈K

∑
j∈K

i6=j

xij +
∑
i∈K

(xii + xi0) . (12)

Now, any player i is in
(
n−1
k−1

)
coalitions of size k, and any combination of two play-

ers i, j is in
(
n−2
k−2

)
coalitions of size k. Therefore, summing (12) over all coalitions

K of size k yields

α

(
n− 1

k − 1

)∑
j∈N

(∑
i∈N

xij + x0j

)
≥

(
n− 2

k − 2

)∑
i∈N

∑
j∈N

i6=j

xij +

(
n− 1

k − 1

)∑
i∈N

(xii + xi0) .

Adding ((
n− 1

k − 1

)
−

(
n− 2

k − 2

))∑
i∈N

∑
j∈N

i6=j

xij =

(
n− 2

k − 1

)∑
i∈N

∑
j∈N

i6=j

xij
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to both sides yields

α

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))∑
i∈N

∑
j∈N

i6=j

xij +

(
n− 1

k − 1

)∑
j∈N

(xjj + x0j)



≥

(
n− 1

k − 1

)∑
i∈N

∑
j∈N

i6=j

xij +

(
n− 1

k − 1

)∑
i∈N

(xii + xi0) . (13)

Therefore,

α

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))
w(S)

= α

((n− 1

k − 1

)
+

(
n− 2

k − 1

))∑
i∈N

∑
j∈N

xij +

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))∑
j∈N

x0j


≥ α

((
n− 1

k − 1

)
+

(
n− 2

k − 1

))∑
i∈N

∑
j∈N

i6=j

xij +

(
n− 1

k − 1

)∑
j∈N

(xjj + x0j)



≥

(
n− 1

k − 1

)∑
i∈N

∑
j∈N

i6=j

xij +

(
n− 1

k − 1

)∑
i∈N

(xii + xi0)

=

(
n− 1

k − 1

)
w(OPT ) ,

where the last inequality follows from (13). This yields

k-collusion PoA ≤ α
(
n−1
k−1

)
+
(
n−2
k−1

)(
n−1
k−1

) = α+
n− k
n− 1

.

ut

In fact, this proof of the upper bound provides us with an easy way to create
a tight lower bound example for any n.

Example 5 We make the upper bound analysis tight by setting xii = 0 and x0i = 0
for all players i ∈ N . We normalize xij = 1 for all players i, j ∈ N for which i 6= j,
and finally we set xi0 = n− k+ (n− 1)(α− 1) for all players i ∈ N . We construct
the strategy spaces such that any player i can only choose subsets of either OPT i
or Si, where Si is the set chosen in the in the k-collusion Nash equilibrium. The
resulting game for n = 3, k = 2 is shown in Figure 6. /

Proof (of the matching lower bound for α-approximate k-collusion PoA.) To see
that the above construction actually yields an α-approximate k-collusion Nash
equilibrium, consider any coalition K of k players. If players play strategy profile
S, any player in K has utility n− 1. By switching to the strategy chosen in OPT ,
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OPT Equilibrium S

player1

player2

player3

x10 =

2α− 1

x20 =

2α− 1

x30 =

2α− 1

x21 = 1

x31 = 1

x12 = 1

x32 = 1

x13 = 1

x23 = 1

player1 player1 player3

x10 =

2α− 1

x20 =

2α− 1

x30 =

2α− 1

x21 = 1

x31 = 1

x12 = 1

x32 = 1

x13 = 1

x23 = 1

Fig. 6 The k-collusion Nash equilibrium from Example 5 for k = 2 and n = 3. Circled items
are allocated to the same player. Each item is named after the value used in the upper bound
proof.

each player in K obtains utility (k − 1)1 + 1((n− 1)(α− 1) + n− k) = α(n− 1),
which is fine. If some players in K choose a subset of the items chosen in OPT ,
and other players in K choose a subset of the items chosen in S, then this yields a
total value at most α(n− 1) for each player. We see that no coalition of k players
can improve by deviating, from which the result follows. ut

For α = 1, we obtain the following as a special case.

Corollary 2 The k-collusion price of anarchy equals 1 + n−k
n−1 for set packing

games.

Although the k-collusion price of anarchy is strictly lower than the price of an-
archy for all k ≥ 2, note that this improvement becomes negligible for large n.
Interestingly, as opposed to all other lower bound examples in this paper, we did
not find a matching lower bound example for throughput scheduling games.

7 Concluding Remarks

As discussed earlier, when more than one player may select one and the same item,
one needs a utility sharing protocol, and the game becomes a covering game for
which several results have been obtained, e.g. by Gairing [18], and for more general
settings also by Paccagnan et al. [38,39]. The price of anarchy for Nash equilibria
is then 2−1/n, assuming that items are shared uniformly. We have also studied the
sequential version of that class of games [11], and observed that sequential play
does not allow to improve this price of anarchy bound. To pin down the exact
value of the sequential price of anarchy for that class of games is open.
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A Appendix: Proof of inequality (11) by induction.

Recall that we want to prove the following by induction on player index i.

i∑
j=1

w(Sj) ≥
γx
′
i − (γ − 1)x

′
i

γx
′
i

w(OPT ) ,

The base case i = 1 is the following lemma, proved by yet another inductive argument on x1.

Lemma 5

w(S1) ≥
γx1 − (γ − 1)x1

γx1
w(OPT ) .

Proof We know by definition of γ, and by plugging i = 1 into Lemma 3 that

w(S1) ≥
x1

γ
w(OPT ) .

Hence we are done when we can prove by induction on x1 that

x1

γ
≥
γx1 − (γ − 1)x1

γx1
.

When x1 = 1, we get

1

γ
≥
γ − (γ − 1)

γ
=

1

γ
,

which clearly holds. Assume the claim holds for x1 = k − 1. We get

k

γ
=
k − 1

γ
+

1

γ

≥
γk−1 − (γ − 1)k−1

γk−1
+

1

γ

=
γk − (γ − 1)k − (γ − 1)k−1 + γk−1

γk

≥
γk − (γ − 1)k

γk
,

proving Lemma 5. ut

Assume now that (11) holds for i− 1. Applying the induction hypothesis to (10) we get

i∑
j=1

w(Sj) ≥
xiw(OPT )

γ
+
γ − xi
γ

·
γx
′
i−1 − (γ − 1)x

′
i−1

γ
x′i−1

w(OPT ) .

This can be used to prove the inductive claim, using the following.

Lemma 6

xk

γ
+
γ − xk
γ

·
γx
′
k−1 − (γ − 1)x

′
k−1

γ
x′
k−1

≥
γx
′
k − (γ − 1)x

′
k

γx
′
k

.
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Proof We have

xk

γ
+
γ − xk
γ

·
γx
′
k−1 − (γ − 1)x

′
k−1

γ
x′
k−1

=
xk

γ
·

(γ − 1)x
′
k−1

γ
x′
k−1

+
γx
′
k−1 − (γ − 1)x

′
k−1

γ
x′
k−1

≥
γxk − (γ − 1)xk

γxk
·

(γ − 1)x
′
k−1

γ
x′
k−1

+
γx
′
k−1 − (γ − 1)x

′
k−1

γ
x′
k−1

=

(
1−

(γ − 1)xk

γxk

)
·

(γ − 1)x
′
k−1

γ
x′
k−1

+ 1−
(γ − 1)x

′
k−1

γ
x′
k−1

=1−
(γ − 1)xk

γxk
·

(γ − 1)x
′
k−1

γ
x′
k−1

=
γx
′
k − (γ − 1)x

′
k

γx
′
k

,

where the first inequality follows from xk
γ
≥ γxk−(γ−1)xk

γxk
, as shown in the proof of Lemma 5,

and the last equality follows from x′k = x′k−1 + xk. ut


