
Frequency response of nonlinear oscillator

H.G.E. Meijer

June 23, 2023

1 A nonlinear periodically forced oscillator (Duffing)

In physics and engineering, we often look at the frequency response of an oscillator, i.e., the amplitude of

the oscillation evoked by periodic forcing. As an example, we consider the Duffing oscillator given by the

following second-order equation

mx′′ + δx′ + αx+ βx3 = γ cos(ωt), (1)

where δ is the damping coefficient, α the stiffnes constant, and a nonlinear correction β. We set the mass
m = 1 as it would only scale the other constants. The forcing has an amplitude γ and a frequency ω. Without
forcing the solution x(t) will decay to zero. When applying forcing with a small amplitude, the result may be
a periodic response. This tutorial aims to show how to obtain the amplitude using MatCont [3]. This toolbox

used numerical continuation to track solutions as a parameter varies. The periodic response is numerically

approximated using orthogonal collocation, i.e. a discrete mesh with approximating polynomials satisfying

the system on each interval glued together at the mesh points. Any other continuation package allowing

for tracking periodic orbits can be used too. Here, we focus on this toolbox. This tutorial has been tested

with MATCONT version 7p2 and MATLABR2020A.

1.1 Modelling

To interpret these solutions, we review a derivation for a nonlinear spring. Starting from Newton’s second

law, we have

mx′′ = Fspring + Ffriction + Fforcing.

According to Hooke’s law, the force generated by the spring is proportional to the deviation x from rest,

i.e., Fspring = −αx and tries to restore the spring to its rest position. The elasticity is no longer linear for
large deviations, and a nonlinear term βx3 must be included. The quadratic term vanishes as we require

the force to be an odd function of position x. The constant β is a material property, and the spring is

hardening for β < 0 as the restoring force becomes larger, and softening for β > 0. Alternatively, thinking
of the mathematical pendulum with gravity instead of a spring force, we expand the force including one

more term in the Taylor expansion, i.e., Fgravity = −mg sin(x) ≈ −mg(x− 1
6x

3 + ...). It really is a better
approximation, as there are still two saddle equilibria. As with the ideal pendulum, the system also permits

a constant of motion, sometimes used for analysis. Next, friction is modelled as a force proportional to

the speed x′ and in the opposite direction. Finally, periodic forcing models the dominant Fourier mode of a

general forcing signal.

1.2 The augmented nonlinear system

MATCONT allows continuation of periodic solutions of autonomous nonlinear first-order equations. As we

have a second-order nonautonomous equation (1), we do some transformations. First, we introduce the

dummy variable y = x′ for the speed. We then obtain the first-order nonautonomous system{
x′ = y,

x′′ = y′ = γ cos(ωt)− αx− δy − βx3.
(2)

1

This system is still nonautonomous. To overcome this, we use the Hopf normal form 1{
u′ = −ωv + u(1− u2 − v2),
v′ = ωu+ v(1− u2 − v2).

(3)

The solutions of this system follow a periodic orbit on the circle of radius 1. For more details, see the

exercises below. They transverse this circle with frequency ω. The initial conditions set the phase. Choosing
(u0, v0) = (1, 0), we have u(t) = cos(ωt). Combining (2) and (3), we arrive at a system that we can use

for numerical continuation
x′ = y,
y′ = γu− αx− δy − βx3,
u′ = −ωv + u(1− u2 − v2),
v′ = ωu+ v(1− u2 − v2).

(4)

2 MatCont Steps to Obtain Frequency Response

We assume you have downloaded the textscMatCont package from SourceForge, and extracted the pack-

age into some folder. Change your Matlab working folder to this folder, i.e. the folder containing the file

matcont.m.

2.1 Setting up the System

Type ”matcont” from the Matlab command line to start up the toolbox. The main window appears, and

possibly others too, if some other system is already active. We want the system (4) to be available in

MatCont, and to define this system, we choose in the main window Select → System → New, see Figure

1(left). We then fill in all the fields according to Figure 1(right), or see the listing below for all fields. Note

you can also copy-paste this input from https://wwwhome.ewi.utwente.nl/~meijerhge/MT.txt.

Name DuffingForced
Coordinates x , y , u , v
Parameters alpha , beta , gamma, delta , omega
Equations
x’= y
y’= gamma*u- alpha*x - delta *y - beta*x^3
u’= -omega*v+u*(1 -u^2 -v^2)
v’= omega*u+v*(1 -u^2 -v^2)

If you have access to the Symbolic Toolbox in Matlab, then select symbolic derivatives up to order three. If

not, textscMatCont will use finite differences to determine certain derivatives. When you are ready, press

”OK”.

2.2 Initial Simulation on an Oscillation

We will now perform a simulation in order to simulate roughly one period of the periodic orbit. This simulation

will serve as initial data for the continuation. Selecting a proper orbit segment from an arbitrary simulation

is difficult. So we first do one long simulation and then pick up the final point of this simulation to simulate

one forcing period. This procedure may seem like doing work twice, but it is the most robust method to

provide the initial data.

We set the Type of the Initial Point to Point, see Figure 2(top). The Curve Type is now set to Orbit

automatically. Two windows appear, called Starter and Integrator.2 We can enter initial conditions and

1Another idea would be to introduce a cyclic variable ϕ = ωt satisfying ϕ′ = ω, but the continuation of periodic orbits of
systems with cyclic variables is (currently) not supported in MatCont. After transforming to polar coordinates, the system reads
r′ = r(1− r2), θ′ = ω, with a fixed point r∗ = 1 So, ignoring transients, the solution for u approaches u = r∗ cos(ωt+ θ0), and
as this part is autonomous we may consider θ0 = 0.

2If for some reason they do not appear, then right-click in the lower (curve) part of the main MatCont window, and select them in
the Pop-up menu.

2

https://wwwhome.ewi.utwente.nl/~meijerhge/MT.txt

Figure 1: Left: The main MatCont window starting from some arbitrary system. Right: Entering the equa-

tions for the Morris-Lecar model.

parameter values. We choose α = 2, β = 0.2, γ = 0.4, δ = 0.04, ω = 1. Note the natural frequency
of this oscillator, based on the linear terms, is Ω =

√
α ≈ 1.41. For the initial condition, we choose

x = y = 0 as this will not matter too much. For the auxiliary variables, we set u = 1 and v = 0 to
start on the attracting periodic orbit in this subsystem. Starting with u = v = 0 will mean they stay at
the origin, and then there is no periodic forcing. So any other nonzero initial condition can be chosen, but

then transients may last longer. For the integrator settings, we set Interval=200 and MaxStepSize=0.1.

The first option ensures we simulate long enough to achieve convergence to the periodic response after

transients, and the latter gives sufficient accuracy. See also Figure 2 for all fields. It is time to perform

Figure 2: Top: Selecting the type for the initial point. Bottom: Numerical values and Integrator settings.

the simulation; Press ”Compute|Forward” in the main window. Quickly, a pop-up window with messages

appears, and the simulation has finished. Now that we have performed the simulation, we will visualize the

orbit in the xy-phase plane via ”Window/Output|Graphic|2D plot”. A new window appears, and by clicking

on ”MatCont|Layout” we can set the Axis properties. Select ”MatCont|Redraw Curve”. The result looks a bit

cluttered as initial transients are also plotted, see Figure 3. We could also have opened the plot window first

before simulating, but plotting during simulations is rather slow, especially if we want transients to fade out.

To see the periodic orbit, we first clear the window ”2DPlot|MatCont|Clear”, and then in the Main window,

3

Figure 3: Left: Setting the Layout for the 2D Plot. Right: The simulated orbit projected onto the xy-plane

with transients towards the periodic orbit.

we select ”Compute|Extend” to extend the current simulation. The result looks as in Figure 4. You can also

check in the uv-plane that the uv-subsystem traverses the unit circle by selecting different variables to plot

in the Layout.

Figure 4: Left: zooming in on the orbit by extending after transients. Right: Message window when the

simulation has finished.

We can now gather the proper initial data. After pressing ”View Result” in the Control/Message window,

a window called Data Browser opens. On the left, click on ”P Last Point”, and next ”Select Point” on the

Bottom, see Figure 5. In the Integrator Window set Interval=2.2, which is a little more than one period of

the forcing (2π/ω ≈ 2.09). We start the simulation with ”Compute|Forward” in the Main window, and in
the Message window, we click on ”View Result”. Now in the Data Browser, LC Select Cycle is highlighted,

and we select that as new initial data; Press Select Point. A small window appears asking you to set the

tolerance and the number of intervals. These standard settings are ok. Press ”OK”, and we are ready to

proceed to the continuation.

2.3 Continuation of the Limit Cycle

Here we will perform the numerical continuation of the limit cycle, i.e. an isolated periodic orbit. The

continuation requires selecting two parameters; we select the forcing frequency ω and the period, see Figure
5(right), by ticking the boxes. You can observe that the period equals 2π/ω, reflecting the periodic response.
We turn off the detection of BPC-points. The standard settings in the Continuer window are fine. To prepare

4

Figure 5: Left:Selecting the final point of a simulation as new initial point. Right: Preparing the continuation

of the limit cycle.

for the output, we change the layout of the 2D plot. The amplitude really is the maximal absolute value of

the variable x along the limit cycle. Therefore we select the parameter ω on the horizontal axis (Abscissa)

and the Max of x on the vertical one (Ordinate), see Figure 6(Left). Now select ”Compute|Forward”. If all

is well, the parameter ω will decrease during continuation initially, otherwise select ”Compute|Backward”.

You will get a message LPC twice, just press ”Resume” and extend the computation until the parameter ω
has decreased to 0.5. You will now have the plot in Figure 6(right). This plot, in principle, is the frequency

response plot. Note the large response near the natural frequency.

Figure 6: Setting the Layout for the 2D-Plot and the result of the continuation.

2.4 Final Visualization of the Frequency Response

We can improve the frequency plot by indicating the stability of the branches. In the 2D Plot window, we

select MatCont|Plot Properties. Search for the field LC if unstable and enter: ’Color’, ’red’, ’linestyle’, ’:’ .

The dashed line style (’- -’) did not work for this tutorial.

The two LPC points explain the hysteresis phenomenon occurring when ω is slowly varied. Starting with
ω = 1.0 and increasing it slowly, we track the stable branch of the limit cycle until we get close to the upper

5

LPC near ω = 1.77. Continuing further, the amplitude suddenly drops to the other stable branch. Similarly,
starting with ω = 2.0 and decreasing the parameter value, the amplitude suddenly jumps up once we are
past the LPC at ω = 1.52.

Figure 7: The frequency response curve for a hardening nonlinearity (β > 0) with the tip bending to the
right. Changing the plot options, the unstable part is highlighted.

3 Remarks and Exercises

1. In the Appendix below, there are two m-files to achieve the same using the Matlab command line

instead of the GUI.

2. For small amplitudes γ, a nonlinear equation for the frequency response can be derived.

• Assume x(t) = a cos(ωt) + b sin(ωt). Insert this into equation (1) and collect the coefficients
of the terms with cos(ωt) and sin(ωt). Ignore the 3ω-terms.

• Combine the equations given by these coefficients to obtain an equation F (z, ω) for the ampli-
tude z2 = a2 + b2.
Hint: Square and add both.

• Verify the accuracy of this approximation for strong forcing, i.e. high values for γ, by comparing
to the frequency response obtained using numerical continuation. Set α = 1, δ = 0.2, β = 0.4
and γ = 0.8.
Hint: the analytical approximation is a sixth-order polynomial in the amplitude variable that

requires numerical approximations. Roots of this equation can be found using numerical con-

tinuation too, using the system z′ = F (z, ω) with ω as a parameter.

3. Obtain the frequency response for the forced van der Pol oscillator

mẍ+ αx+ βẋ(1− x2) = γ cos(ωt).

4 A classical approximation technique for comparison

Traditionally, this equation has been studied using the method of multiple scales [4]. Here, we rewrite the

equations of motion (1) as a perturbed oscillator as follows,

mx′′ + ω2
nx = ε

(
F̃ cos(ωt)− δ̃x′ − β̃x3

)
(5)

6

with natural frequency ωn :=
√
α and a small parameter ε. We use the˜ to indicate the rescaled version of

the parameter. We now look for a periodic solution that is a modulation of a pure harmonic oscillation using

an expansion of the form

x(t) = x0(T0, T1, . . .) + εx1(T0, T1, . . .) + . . . , Tn = εnt, n = 0, 1, 2, (6)

The use of T1 and x1 indicates the method of multiple scales. This method yields equations that are solved

successively and leads to a formula for the amplitude that is valid for small values of ε. Substituting (6)
into (5) and collecting powers of ε, we get

(D2
0 + ω2

n)x0 =0,

(D2
0 + ω2

n)x1 =F̃ cos(ωT0)− 2D0D1x0 − δ̃D0x0 − β̃x3
0,

(7a)

(7b)

where Dj
i = ∂j

∂T j
i

indicates the partial derivative w.r.t. to the ith-timescale. The general solution for Eq.

(7a) is given by

x0 = A(T1)e
iωnT0 + Ā(T1)e

−iωnT0 ,

where the amplitude A does not depend on T0, but possibly on the timescale T1. Even higher scales are

ignored. The goal is now to find an expression for A by finding a solution for x1. The response frequency

will follow the driving frequency, but there is some detuning w.r.t. the natural frequency. Hence, we write

ω = ωn + εσ and ωt = ωnT0 + σT1. Substituting the general solution of x0 into (7b), we find

(D2
0 + ω2

n)x1 =

(
1

2
F̃ eiσT1 − ωni(δ̃A+A′)− 3β̃A2Ā

)
eiωnT0 − β̃A3e3iωnT0 + c.c., (8)

with c.c. indicating complex conjugate. For bounded solutions x1, we require the coefficient of the e
iωnT0-

term to vanish as it is resonant. This coefficient is an ODE for A w.r.t. time T1. We will now solve for

A(T1), but once we have it, then we find x1 =
β̃

8ω2
n

A3eiωnT0 where the homogeneous solution may be

added. Writing A = 1
2a(T1)e

iθ(T1), and splitting real and imaginary parts, we find the following system of

modulation equations {
a′ = −da+ F

2ωn
sin(σT1 − θ),

aθ′ = σa− 3β̄a3

8ω2
n
+ F̄

2ωn
cos(σT1 − θ).

(9)

A periodic solution of (5) corresponds to a stationary solution of (9). Such a solution is implicitly defined by

the equation

σ =
3β̄a2

8ωn
±

√(
F̄

2aωn

)2

− δ̄2.

Finally, given this expression, we can solve for the driving frequency ω admitting a given amplitude a. We
note there is a finite interval for a to find real solutions for ω. In figure (??), we show the amplitude obtained
by the approximation with multiple scales and the numerical approach. For small values of ε, the results
agree very well, while for larger values, the approximation starts to differ considerably. As we used only the

first-order term for ε, it is not strange the validity of the approximation breaks down, which is also noted in
[4]. Also, note that the multiple time-scales method does not yield the stability of this branch.

References

[1] Duffing equation, Wikipedia https://en.wikipedia.org/wiki/Duffing_equation

[2] Takashi Kanamaru (2008) Duffing oscillator. Scholarpedia, 3(3):6327. https://dx.doi.org/10.
4249/scholarpedia.6327

[3] A. Dhooge, and W. Govaerts, Yu.A. Kuznetsov, H.G.E. Meijer and B. Sautois, New features of the

software MatCont for bifurcation analysis of dynamical systems (2008) MCMDS, Vol. 14, No. 2, pp

147-175, available at https://sourceforge.net/projects/matcont/.

7

https://en.wikipedia.org/wiki/Duffing_equation
https://dx.doi.org/10.4249/scholarpedia.6327
https://dx.doi.org/10.4249/scholarpedia.6327
https://sourceforge.net/projects/matcont/

[4] Nayfeh, A.H., Resolving Controversies in the Application of the Method of Multiple Scales and the

Generalized Method of Averaging, Nonlinear Dynamics (2005) Vol. 40, pp. 6-102, https://doi.
org/10.1007/s11071-005-3937-y

[5] Kolan, A., Lecture on ”Classical treatment of the Duffing oscillator”, (Dec 2017)https://www.
youtube.com/watch?v=iS7PJSi1gA4, note=Accessed 25-08-2022

5 Appendix – Command Line Script

This is a minimal system definition file to define a periodically forced Duffing oscillator.

% Name; DuffingForced
function out = DuffingForced
out{2} = @fun_eval ;
out{9} = [] ;
% -
function dydt = fun_eval (t , kmrgd , par_alpha , par_beta ,par_gamma, par_delta , par_omega2)
dydt=[kmrgd(2) ;
par_gamma*kmrgd(3) -par_alpha*kmrgd(1) - par_delta*kmrgd(2) -par_beta*kmrgd(1) ^3;
-par_omega*kmrgd(4)+kmrgd(3) *(1 -kmrgd(3) ^2 -kmrgd(4) ^2) ;
par_omega*kmrgd(3)+kmrgd(4) *(1 -kmrgd(3) ^2 -kmrgd(4) ^2) ;] ;

This is a script to determine Frequency Response of a Duffing oscillator using numerical continuation. It

is assumed that the above file (DuffingForced.m) can be called.

% Name; Test_DuffingForced
i n i t ; % I n i t i a l i z e Matcont

%% In i t i a l s imulation
% We assume that we have an m- f i l e setup for MatCont
fun=DuffingForced () ;

%Parameter values and i n i t i t a l condit ion
p=[2; 0 .75 ; 0 .1 ; 0 .04 ; 3] ; %Parameters alpha , beta ,gamma, delta , omega
X0=[0; 0 ; 1 ; 0] ; %I n i t i a l condit ion ; third and fourth should not be zero
P0=num2cell (p) ;
%Running a f i r s t simulation for t rans i ents
[� ,y] = ode45 (fun {2} , [0 500] , [0 ; 0 ; 1 ; 0] , [] , P0{ :}) ;

% Now we take the f i n a l point and simulate over a l i t t l e more than one period :
% 2pi/omega=2.1 (and add +.1=2.2)
% To i n i t i a l i z e the continuation i t i s better to have smaller steps as that
% adds to accuracy more than set t ing RelTol or AbsTol.
opt=odeset (’MaxStep ’ , .01) ;
x1 = y(end , :) ;
[t , y] = ode45 (fun {2} , [0 2 .15] , x1 , opt ,P0{ :}) ;

% Let ’ s check the response i s indeed periodic , and trans i ents are gone.
f i gu re (1)
plot (y (: , 1) ,y (: , 2)) ;
%% Numerical continuation of the per iod ic orb i t
% We provide the simulated response (y) to the i n i t i a l i z e r
% In the part below , you may need to switch Backward from 1 to 0 , th i s i s
% simply unpredictable across systems.
to lerance=1e - 3 ;
ap=5; % omega w i l l be the act ive parameter
[x0 , v0]=initOrbLC(@DuffingForced , t , y , p , ap ,40 ,4 , to lerance) ;
opt=contset ;
opt=contset (opt , ’MaxNumPoints ’ ,800) ;
opt=contset (opt , ’Backward ’ ,1) ;
opt=contset (opt , ’ S i ngu l a r i t i e s ’ ,1) ;
opt=contset (opt , ’ IgnoreSingular i ty ’ , [1 2 4]) ; %Ignore everything except LPC

8

https://doi.org/10.1007/s11071-005-3937-y
https://doi.org/10.1007/s11071-005-3937-y
https://www.youtube.com/watch?v=iS7PJSi1gA4
https://www.youtube.com/watch?v=iS7PJSi1gA4

[xlc1 , vlc1 , s lc1 , hlc1 , f l c 1]=cont (@limitcycle , x0 , v0 , opt) ;
% For the backward branch , we have to re - i n i t i a l i z e as some global
% var iab les change during the cont inuat ion. Else , we might get the same
% branch. We need fewer points here , and we know there are no s i n gu l a r i t i e s
% on th i s part , so we switch o f f monitoring for b i f u r ca t i on s .
[x0 , v0]=initOrbLC(@DuffingForced , t , y , p , ap ,40 ,4 , to lerance) ;
opt=contset (opt , ’MaxNumPoints ’ ,100) ;
opt=contset (opt , ’Backward ’ ,0) ;
opt=contset (opt , ’ S i ngu l a r i t i e s ’ ,0) ;
[xlc2 , vlc2 , s lc2 , hlc2 , f l c 2]=cont (@limitcycle , x0 , v0 , opt) ;

%% Visual i zat ion of Results
% Determine the amplitude
A1=max(xlc1 (1 :4 :end -2 , :)) ;
A2=max(xlc2 (1 :4 :end -2 , :)) ;

% A simple b i furcat ion diagram (amplitude as function of parameter)
f i gu re (2) ; c l f (2) ; hold on ;
plot (xlc1 (end , :) ,A1, xlc2 (end , :) ,A2) ;

% A pol ished b i furcat ion diagram including s t ab i l i t y
f i gure (3) ; c l f (3) ; hold on ;
ind1=(1: s l c1 (2) . index) ; % sp l i t into separate parts
ind2=(s l c1 (2) . index : s l c1 (3) . index) ;
ind3=(s l c1 (3) . index : s l c1 (4) . index) ;
plot (xlc1 (end , ind1) ,A1(ind1) , xlc1 (end , ind3) ,A1(ind3) , xlc2 (end , :) ,A2, ’ Color ’ , ’ blue ’) ;
plot (xlc1 (end , ind2) ,A1(ind2) , ’ Color ’ , ’ red ’ , ’ LineStyle ’ , ’ - - ’) ;
x labe l (’omega ’) ; y labe l (’Amplitude ’) ;
xlim ([0 .5 4]) ;

9

	A nonlinear periodically forced oscillator (Duffing)
	Modelling
	The augmented nonlinear system

	MatCont Steps to Obtain Frequency Response
	Setting up the System
	Initial Simulation on an Oscillation
	Continuation of the Limit Cycle
	Final Visualization of the Frequency Response

	Remarks and Exercises
	A classical approximation technique for comparison
	Appendix – Command Line Script

