Title Project Waveprofiles of maximal crest height
E. van Groesen, UTwente (groesen@math.utwente.nl)

MRI -Variational Structures and Methods

Project aim: find profiles of waves that have maximal crest height, for waves on the whole real line
with finite energy, and for periodic waves.

We first use a linear model (quadratic energy and momentum), and then a few aspects of a nonlinear
KdV (Korteweg-de Vries) model.

1 Methodology

We will denote by 7 (z,t) (real valued) wave fields depending on the spatial and temporal variables
x,t; when being concerned with the profiles we will simply write 7 (x). The interest will be in waves
described by a Hamiltonian system with Hamiltonian H and a momentum integral M. For definiteness
we take as governing evolution equation the Hamiltonian system

O = 0-0H (n) .
Here the Hamiltonian H is a translation invariant integral which is linearly independent from the

momentum functional )
M = / §n2dm7

which itself is an integral of the motion, with translation as its Hamiltonian flow.
For the extremal crest formulation we suppress the dependence on time, and denote the maximal crest
height functional for functions n by
C (n) = maxy (z).
Then the extremal problem can be written as
max { C'(n) [n€C},

where the constaint set is given by:

e for finite energy waves on the whole real line:

C=C(h,m):={n|H(n)=h M@ =m}
e for waves that are periodic with period L
C =C(h,m):={n|nis L-periodic, av(n) =0, H (n) = h, M (n) =m }
where the average is defined as av(n) = fOL 7 (x) dx.

We denote the value function as the extremal crest height for given constraint values (m, h) :

V (h,m) := mT;aX{ C(n) |necC(h,m) }.

Show that from the time invariance of M, H the dynamic result is that at each position and time the
evolution from an intial value 7, (z) will be such that
n(x,t) <V (mo, ho) where mo = M (), ho = H (1)

In all these cases, the constraint set is nonempty only if the values (m, h) are ‘feasible’ by satisfying
certain conditions.



2 Linear Equations

Take for the Hamiltonian the quadratic functional

H (1) = / (0,m)? de

1. Write down the dynamic equation, and investigate the periodic solutions on the whole real line.
Dispersion is the fact that waves with different wavelength travel at different speed (the so-caleld
wave speed). Investigate if the equation has dispersion or not.

Show directly that M is indeed an invariant functional.

2. Now investigate the maximal crest height problem on the whole real line for finite energy pro-
files. You will be able to find these profiles explicitly, and find that none of them is smooth
(differentiable).

3. Investigate the maximal crest height problem for periodic profiles with given period L. You will
be able to find two branches of profiles (a harmonic branch and a catenary branch... why these
names?), depending on the value of the quotient h/m. Observe that on one branch, there is for a
specific value of h/m a smooth solution; for all other values the profiles will have corners. Show
that the smooth solutions are actually relative equilibrium solutions of the dynamic system.

3 KdV extremal profiles of finite energy

Now take as Hamiltonian ) )
H = — 223
o= [ 5007~ 30°] do

which means that we are dealing with the KdV equation. We will only consider finite energy solutions
on the whole real line.

1. Show directly that M is indeed an invariant functional.
2. Find the relative equilibrium solutions explicitly, which are known as the KdV ‘solitons’.

3. Investigate the maximal crest height problem and show that extremal profiles are ‘cornered ’
solitons that can be found explicitly.

4. Discuss dynamic consequences of the results found.
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Project aim: find (characterise) periodic solutions of Hamiltonian systems in Classical Mechanics.
Study the attached 5 pages, and make all exercises (including proof of proposition 158).

Observe that by restricting the function space and/or by adding cleverly chosen natural constraints
saddle-point type of critical points are transformed to (constrained) extremisers.
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8.4 Periodic Hamiltonian motions

We now give a few, more difficult, examples of optimization problems in dy-
namics for which the existence of a critical point can be proved. In some way or
another, we prove the existence of a periodic motion of a classical Hamiltonian
system by using (variants of) the action functional.

Note that the restriction to periodic solutions (whether the period is prescribed
in advance, or when it is not prescribed but has to found as part of the solution)
makes the problem to one with boundary conditions, different from the initial
value problem that is usually considered; for an initial value problem local exis-
tence on a sufficiently small time interval around the initial time can be proved
with the ususal contraction argument. But for a boundary value problem, the
difficulty in the proof of existence is the fact that existence of a solution on the
periodic interval is a problem of existence of a global solution.

A second observation is that usually the periodic solution is a saddle point of
the action functional, while Weierstrasz theorem can only give results for mini-
mizers (or maximizers). By transforming the problem in various ways, we will
be able to reformulate the saddle point as a minimizer on a suitably restricted
subset.

In historic perspective, this specific application has lead to many new develop-
ments in variational methods over a period of more than two centuries.

We recall briefly the general setting.

The position of mass points (all masses normalized to 1 for simplicity) is de-
scribed by a vector from the configuration space: q € IR™. The state of
the dynamic system is described by a point in the state-, or phase space:
(¢,p) € IR™ x IR™, where p has the meaning of momentum (velocity ¢).

For given (smooth) potential energy function V' = V(q,t), defined on configu-
ration space and possibly depending on time (forcing), consider solutions of the
following Hamiltonian system, equivalently formulated on configuration space
(as Newton-like equation, 2-nd order in time) and on phase space (Hamilton
formulation, 1-st order in time):

—G="V'(g,t), resp {;]) ; ZiV’(q ) (8.14)

These systems arise from a dynamic variational principle: the equations are the
Euler-Lagrange equations of the action functional on configuration space:

Ato) = [15laP = Via.lar (5.15)

resp the canonical action functional on phase space:

CAlq,p) = / p-d— Vig.t)dt. (3.16)
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Periodic solutions

When V depends periodically on time, period T say, it is possible to look for
solutions that are T-periodic. (When V' is autonomous, 7T is not given a priori.)
Finding T-periodic solutions reduces the problem to a boundary-value problem
on the compact interval ¢ € [0, T], with boundary conditions:

q(0) = q(T) g(0) = q(T)
{q'(O) = §(T) 7’651"{ p(0) = p(T) (8.17)

and are obtained as critical points of
Crit {A(g)] ¢(0) =¢(T)}, resp Crit {CA(q,p)| q(0) =q(T)}.

Note that the remaining boundary conditions arise as natural boundary condi-
tions.

In particular when V' is autonomous, special periodic solutions can be considered
that are simple continuations of the motion on part of the period:
Brake orbits: motion between restpoints, satisfying

q(0) = 4(T/2) = 0, resp . p(0) = p(T/2) = 0; (8.18)

these boundary conditions are obtained as natural boundary conditions by not
prescribing any conditions at all.

If, moreover, V' is even in ¢: V(q) = V(—q), normal mode solutions are deter-
mined by the motion during a quarter period:

q(0) = ¢(T/4) =0, resp q(0) =p(T/4) =0, (8.19)
obtained by prescribing only ¢(0) = 0 in the variational principle.
Except for normal modes solutions (when ¢(0) = 0 is prescribed), the func-
tional [ |§|? is not equivalent to the H!-norm (it vanishes for constant vector
functions). In those cases it is natural to split H' in an orthogonal way:
Hp([0,T]) = {g € Hy((0.7]) | ¢(0) = ¢(T)} = IR" + Yr,

with
Ve = {ye mp1)| fv=0}.

S0 ¢ = ¢+ y, with a constant vector ¢ € IR™ and y € Y. Then [|¢|* = [ |y|?
is (equivalent to ) the norm in Y7p.
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8.4.1 Periodic motions with prescibed period

Proposition 153 If V(q) is even and subquadratic in q there exists a normal
mode solution related to the minimizer (when nontrivial) of

T/4
Min { | g v

The proof of the existence is contained in the previous examples and will not
be repeated.

q(0) = 0}

Proposition 154 Periodic potential and forcing.
Suppose q — V(q) is periodic in each component of q. Let f be a T-periodic

function with fOT ft)dt =0. Then the minimization problem

Min {/0 [%Iq'l2 —Vig) = f®)q(®)]dt] q(0) = q(T)} (8.20)

has a solution which is a T-periodic solution of the forced equation:
—G=V'(q) + f(2).

Exercise 155 1. Prove the proposition. Observe that by writing ¢(t) =
c+y(t)

T

T1,., 1.
| 5lP = Vi) = soa®lt = [ 513 - Vie+ o) - fopiolde
0 0

Then show that a minimizing sequence g, = ci+yk, {yx } is bounded (since
V is bounded); finally, from the periodicity of V, the elements {c;} can
be taken to be bounded.

2. Note that the special case f = 0 leads to a solution for any 7. Only for
certain values of T', however, the minimizer is non-trivial.

8. A specific example for which the minimizers are not trivial, are periodic
solutions of the forced pendulum equation:

—G = sin(q) + f(?).

As stated in the introduction, typically, periodic solutions correspond to saddle
points of the (canonical) action functional. As a first example, the following
result; in this case the saddle point can be characterized explicitly (analytically),
and transformed to a naturally constrained minimizer, i.e. the constraint does
not contribute to the governing equation for the critical point.



148 CHAPTER 8. FUNCTIONAL ANALYTIC ASPECTS

Proposition 156 Suppose V' is strictly convexr and subquadratic at infinity.
Then there exists a periodic solution corresponding to a saddle point:

Sad { | 5liR = Vilat] a0) = o(r))

T
, 1.
= Min yevy Maz e [ (510 = Vie+ p)lds
0

. { /0 (51 ~ V(@] g € 7}, /0 V'<q>=o}.

Exercise 157 Prove the proposition above; first prove the existence, then in-

vestigate the governing equation to show that the constraint fOT V'(g) =0is a
natural constraint: the multiplier in the equation vanishes.

8.4.2 Periodic motions with prescribed energy

In the following V is autonomous. Then the ”energy” is conserved (constant in
time) for all solutions:

1 1
§|q|2 +V(q)=E, resp . H(q,p) = §Ipl2 +V(g) =E. (8.21)

We try to find periodic solutions, with a priori unknown period T, that have a
prescribed value of the energy. It is simplest to normalize the time: 7 =t/T €
[0,1].

Proposition 158 Variational principles on phase space
Up to time-scaling, periodic solutions with prescribed energy E are critical points

of
1
Crit { / p - qdr
0

and also of

H(q,p) = E,q(0) = q(1)} (8.22)

Crit { / s q" / ' H(g.p)dr = E.q(0) = q(l)} (8.23)

In the last case, the (constant) multiplier X arising from the energy constraint
1s precisely the period T of the motion.

For fixed ¢ € IR™ such that V(q) < FE, the supremum over p in the above
principles is obtained for the vector collinear with ¢:

q¢=Ap, and |p| = +/2(FE —V(q))-

Hence, solutions of these optimization problems are obtained if solutions can be
found of the following variational problems.
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Proposition 159 Variational principles on configuration space
Up to time-scaling, periodic solutions with prescribed energy E are critical points
of the following Jacobi functional

1
Crit { | VEE=T@lliler| a0) = a0} (8.24)
and also of
Crit {T(a)| 4(0) = q(1)} (8.25)

where Jg is the following modified Jacobi functional
1q 1
Tola) = || gliPar)< (B~ [ Vigdr] (5.26)
0 0

The modified Jacobi functional is essentially easier to investigate (with standard
Hilbert space techniques) than the original Jacobi functional (in which the factor
V2(E —V(q)) can vanish at certain times, and hence does not easily define a
norm).

As an example of the use of Jg, the following proposition in which we use ”polar
coordinates”: for g € {g € H'([0,1]) | ¢(0) = 0}, ¢ = pw with w € S, S the unit
ball: § = {g| [ |q* = 1}.

Proposition 160 Assume that V(z) > 0,V(0) = 0 and that V is strictly
convex and even. For any E > 0 there is a periodic solution with energy E;
this solution is a normal mode and corresponds to a saddle point of Jg:

Sad {Te(q)| q(0) =0} (8.27)

The character of the saddle point can be found explicitly, and can be transformed
to a (naturally) constrained minimizer as follows:

Min ,es Maz ,>0 Je(pw) = Min {Jr(q)| ¢ € Ng} (8.28)

The set Ng s a natural constraint, explicitly given by
1
Ne={a| [W@+5vi@-d-£f. (8.29)

Exercise 161 Prove the proposition above; first existence, then verify that Ng
is a natural constraint.





