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Abstract

The exponential time integration, i.e., time integration which involves the
matrix exponential, is an attractive tool for time domain modeling involving
Maxwell’s equations. However, its application in practice often requires a
substantial knowledge of numerical linear algebra algorithms, such as Krylov
subspace methods.

In this note we discuss exponential Krylov subspace time integration
methods and provide a simple guide on how to use these methods in prac-
tice. While specifically aiming at nanophotonics applications, we intention-
ally keep the presentation as general as possible and consider full vector
Maxwell’s equations with damping (i.e., with nonzero conductivity terms).

Efficient techniques such as the Krylov shift-and-invert method and
residual-based stopping criteria are discussed in detail. Numerical exper-
iments are presented to demonstrate the efficiency of the discussed methods
and their mesh independent convergence. Some of the algorithms described
here are available as Octave/Matlab codes from www.math.utwente.nl/

~botchevma/expm/.
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1. Introduction

Photonic crystals, periodic nanostructures made of dielectric materials,
have been instrumental in many areas of science and technology, where
understanding and controlling optical material properties is the key issue [49,
55, 74]. Usually, physical models of processes in photonic crystals are based
on Maxwell’s equations formulated in time or frequency domain. Efficient
numerical solution of Maxwell’s equations, and their time integration in
particular, remains a challenging task. This is due to both an increasing
complexity of the electromagnetic models and a frequent need to couple
them with other models relevant for the process under consideration. An
important aspect in the numerical solution of Maxwell’s equations is their
space–time field geometric structure: to be successful a numerical solution
procedure has to respect it. Examples of such mimetic space discretization
schemes for Maxwell’s equations are the well-known Yee cell [92] and the
edge–face Whitney–Nédélec vector finite elements [64, 65, 8, 62].

Once a proper space discretization is applied, one is left with a large
system of ordinary differential equations (ODEs) to integrate in time. On
one hand, a good time integration scheme has to accurately resolve the
wave structure of the equations. On the other hand, it has to cope with
possible time step restrictions due to, for instance, a locally refined space
grid or large conductivity terms1. The exponential time integration schemes
seem to be especially well suited in this context, as they combine excellent
(unconditional) stability properties with ability to produce a very accurate
solution even for relatively large time step sizes.

Within the electromagnetic engineering community, exponential meth-
ods seem to slowly but surely gain acceptance and popularity over the last
years, see e.g. [23, 59, 16, 76]. Nevertheless, there are some recent de-
velopments in the Krylov subspace methods which significantly increase
the efficiency of the exponential time integration but seem to be up to
now overlooked by physicists and engineers. Such developments are the
shift-and-invert (SAI) techniques, restarting and efficient stopping crite-
ria [84, 31, 37, 11, 10]. Some promising results with Krylov / SAI type
of methods have recently been reported for electromagnetic problems [47, 7]
in the Numerical Analysis community. Yet, up to now we are unaware of
any single electromagnetics paper where the Krylov SAI exponential meth-

1In nanophotonics applications the conductivity is typically zero. However, large
nonzero conductivity values can be introduced by the so-called absorbing or nonreflecting
boundary conditions such as Perfectly Matched Layers (PMLs).
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ods are employed to solve Maxwell’s equations. This note aims to fill this
gap by demonstrating the efficiency of these new methods and providing a
simple guide on how to use these methods in practice and related software.

We note that in many cases splitting methods are a very competitive class
of time integration methods, especially when the underlying spatial mesh is
Cartesian (see [80, Chapter 18] and [48, 53, 54, 71, 15, 89]). A popular
splitting method (related to the famous Yee scheme and referred here to
as CO2, Composition Order 2 scheme) is discussed below and used in the
experiments presented. Multirate explicit local time stepping schemes form
another important class of time integration methods for solving Maxwell’s
equations, see e.g. [35].

While specifically aiming at nanophotonics applications, we intention-
ally keep the presentation as general as possible and consider full vector
Maxwell’s equations

µ∂tH = −∇×E,

ε∂tE = ∇×H − σE + J ,
(1)

where H = H(x, y, z, t) and E = E(x, y, z, t) are vector functions denot-
ing respectively magnetic and electric fields, µ = µ(x, y, z) is the magnetic
permeability, ε = ε(x, y, z) is the electric permittivity, σ = σ(x, y, z) is the R1:1
electric conduction and J = J(x, y, z, t) is the electric current. We assume
that the space variables (x, y, z) vary within a domain Ω ⊂ R3 and that
suitable initial and boundary conditions are set for system (1).

A chosen finite difference or (vector) finite element space discretization
then yields an ODE system

Mµh
′ = −Ke+ jh,

Mεe
′ = KTh−Mσe+ je,

(2)

where h = h(t) : R → Rnh and e = e(t) : R → Rne are vector functions,
whose components are time-dependent degrees of freedom associated with
the magnetic and electric fields, respectively. Furthermore, Mµ ∈ Rnh×nh
and Mε,Mσ ∈ Rne×ne are the mass matrices and K ∈ Rnh×ne is the dis-
cretized curl operator. Finally, jh = jh(t) : R → Rnh , je = je(t) : R → Rne
are the source functions containing contributions of the discretized current
function J and possibly also from the discretized boundary conditions. If
the standard Yee cell space discretization is used then nh is the total number
of the cell faces in the space grid, where the discrete values of H are defined,
and ne is the total number of the edges in the space grid, where the values
of E are defined. In this case Mµ, Mε and Mσ are simply diagonal matrices
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containing the grid values of µ, ε and σ, respectively. For details on how
an edge–face vector finite element discretization leads the ODE system of
type (2) see e.g. [71, 15].

Putting h(t) and e(t) into one vector function y = y(t) : R → Rn,
n = nh + ne, we can cast (2) into an equivalent form

y′(t) = −Ay(t) + g(t), (3)

with

y(t) =

[
h(t)
e(t)

]
, A =

[
0 M−1µ K

−M−1ε KT M−1ε Mσ

]
, g(t) =

[
M−1µ jh(t)

M−1ε je(t)

]
.

We emphasize that, unless the mass matrices are diagonal, one does not need
to compute their inverses. Indeed, as generally accepted in the numerical R2:1
literature, the notation M−1 here means a system solution with a matrix M
rather than its explicit inversion. The systems with the mass matrices can
be solved by computing a sparse Cholesky factorization for each of the mass
matrices once and applying it every time the action of the inverse is needed.
If the problem is too large, so that the sparse Cholesky is not possible, then
the action of the inverses can be computed by solving the linear systems with
the mass matrix by a preconditioned conjugate gradient (PCG) method,
see e.g. [3, 87, 73]. We note that the mass lumping techniques can also
be employed in this context, even though a special care should be taken
for vector finite element discretizations (see, e.g., [4, 29]). To keep the R2a:1
presentation general, we use the non-lumped form in this article.

If ε and σ are constant2 then the eigenvalues of A can be expressed
in terms of the singular values of the discrete rotor operator. In this case R1:2
system (2) can be uncoupled by an orthogonal transformation into a set of
harmonic oscillators, see [15].

Application of the Krylov/SAI type of methods to electromagnetic prob-
lems has recently been discussed in [47, 7]. The focus of [47] is on discontin-
uous Galerkin formulations for various wave problems, where the considered
exponential time integration methods employ matrix exponentials within
each time step. Our approach discussed here is aimed at using matrix expo-
nential across time steps, which, in our experience, often leads to a better
efficiency. The work [7] is devoted to a transient problem leading to a ODE
system with symmetric mass and stiffness curl-curl matrices, so that the

2More exactly, it is sufficient to assume that ε and σ are such that M−1
ε Mσ = αI, with

α ∈ R and I the identity matrix.
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full nonsymmetric Maxwell system is not considered. We note that Krylov
subspace methods are by no means the only way to compute the actions
of the matrix exponentials, but it is considered as one of the most efficient
methods for large scale matrices [61, 41]. Other possible methods, appli-
cable especially when the matrix is symmetric or skew-symmetric, include
e.g. [81, 82, 23, 2, 56, 57]. However, the full Maxwell matrix considered in
this note is neither symmetric nor skew-symmetric in general.

The paper is organized as follows. In the next section some basic ex-
ponential time integration methods for Maxwell’s equations are briefly dis-
cussed. Section 3 provides a short introduction to Krylov subspace methods
for the matrix exponential and presents in detail a simple algorithm of this
class. We discuss the Krylov subspace Krylov/SAI method and its imple-
mentation. Numerical tests are presented in Section 4 and conclusions are
drawn in the last section. Throughout the paper, unless indicated other-
wise, the norm sign ‖ · ‖ denotes the standard Euclidean vector 2-norm or
the corresponding operator (matrix) norm.

2. Exponential time integration

A standard second order method to integrate (2) reads

Mµ

hk+1/2 − hk−1/2
τ

= −Kek + (jh)k,

Mε
ek+1 − ek

τ
= KThk+1/2 −

1

2
Mσ(ek+1 + ek) +

1

2

(
(je)k + (je)k+1

)
,

(4)
where τ is the time step size and the subscript k refers to the time level,
e.g. (je)k = je(kτ). We refer to this method as CO2 (composition order 2)
method because it can be seen as a symplectic second order composition [15]
often used in the geometric time integration [38]. The method employs
the explicit staggered leapfrog time stepping for the curl terms −Kek and
KThk+1/2. It coincides with the classical Yee scheme for the Yee cell finite
difference space discretization and σ ≡ 0. The conductivity and the source
terms, i.e., −1

2Mσ(ek+1 +ek)+ 1
2((je)k+(je)k+1), are treated by the implicit

trapezoidal rule (ITR), also known as the Crank–Nicolson scheme. The
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scheme is thus implicit–explicit. Note that (4) can be rewritten as

Mµ

hk+1/2 − hk
τ/2

= −Kek + (jh)k,

Mε
ek+1 − ek

τ
= KThk+1/2 −

1

2
Mσ(ek+1 + ek) +

1

2
((je)k + (je)k+1),

Mµ

hk+1 − hk+1/2

τ/2
= −Kek+1 + (jh)k.

(5)
The equivalence with (4) can be seen by combining the first formula above
with the third formula for the previous step k − 1. The form of CO2 given
by (5) is actually the form the CO2 scheme is derived by the composition
approach [15], and it can also be used in practical computations at the first
and last time steps. In the vector finite element context, paper [71] discusses
a closely related leapfrog scheme which differs from CO2 (4) in the way the
source term is treated.

The CO2 scheme is second accurate and conditionally stable with the
sufficient stability condition

τ 6
2√

maxψ
,

where ψ denote the eigenvalues of the matrix M−1ε KTM−1µ K. This matrix
can be shown to be positive semidefinite [15], which justifies the expression√

maxψ. If σ ≡ 0 then the inequality in the stability condition above has to
be strict to provide stability. Implementation of CO2 involves solution of a
linear system with the symmetric positive definite matrix Mε + τ

2Mσ. The
solution can be efficiently carried out by a sparse direct Cholesky solver or
by PCG, see e.g. [3, 87, 73].

Another scheme which can be used for time integration of Maxwell’s
equations is the ITR or Crank-Nicolson scheme. When applied to (3), it
reads

yk+1 − yk
τ

= −1

2
A(yk + yk+1) +

1

2
(gk + gk+1). (6)

The scheme is second order accurate and unconditionally stable, at least
for smooth initial data. At each time step a linear system with the matrix R2:2
I + τ

2A has to be solved. This is a computationally expensive task, much
more expensive than solving a linear system with a mass matrix (as e.g.
in the CO2 scheme) [90]. The matrix I + τ

2A is (strongly) nonsymmetric
and its sparsity structure is much less favorable for a sparse direct solver
than it is in a mass matrix. Moreover, standard preconditioners may not
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be efficient and a choice of a proper preconditioned iterative solver is far
from trivial, see [90] for a discussion and numerical results in a vector finite
element setting.

On the other hand, even if an efficient direct sparse or preconditioned
iterative solution of the ITR linear system is possible, it is advantageous to
use another type of scheme, namely, an exponential time integration scheme.
This will be demonstrated in the numerical experiments section.

To solve the linear system with the matrix I + τ
2A in the context of a

finite element discretization, we can rewrite the matrix as

I +
τ

2
A = I +

τ

2
M−1∗ A∗ = M−1∗ (M∗ +

τ

2
A∗),

with A∗ =

[
0 K
−KT Mσ

]
, M∗ =

[
Mµ 0
0 Mε

]
.

(7)

Thus, one does not need to form the inverse mass matrices explicitly.
For a more detailed discussion of regular time integration methods for

Maxwell’s equations see e.g. [48, 15, 88]. We now give a short discussion
of the exponential time integration. It is an active field of research [45, 5,
6, 60, 67, 42] and we only give some basic ideas here. First, note that the
solution of the initial value problem (IVP) with A ∈ Rn×n

y′(t) = −Ay(t), y(0) = v, t > 0, (8)

can be written as
y(t) = exp(−tA)v, t > 0, (9)

where exp(−tA) ∈ Rn×n is the matrix exponential [33, 34, 61, 40, 30, 41].
Note also that to compute y(t) for several specific values of t with (9) we
only need to compute the action of the matrix exponential on the vector v,
note the matrix exponential itself. In the next section, we discuss how this
action on a vector can be computed.

Consider an IVP with a constant inhomogeneous term g0 ∈ R

y′(t) = −Ay(t) + g0, y(0) = v, t > 0. (10)

Assuming for the moment that A is invertible, we can rewrite the ODE
system y′(t) = −Ay(t) + g0 as

(y(t)−A−1g0)′ = −A((y(t)−A−1g0),

which is a homogeneous ODE of the form (8). Hence, its solution satisfying
initial condition y(0) = v reads

y(t)−A−1g0 = exp(−tA)(v −A−1g0). (11)
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Let us now introduce functions ϕj , j = 0, 1, . . . , which are extensively used
in exponential time integration:

ϕ0(x) = exp(x), ϕj(x) =
ϕj−1(x)− ϕj−1(0)

x
, j = 1, 2, . . . .

Note that ϕj(0) = 1/j! and that, in particular,

ϕ1(x) =
exp(x)− 1

x
= 1 +

x

2!
+
x2

3!
+
x3

4!
+ . . . .

The expression (11) can be modified as

y(t) = exp(−tA)v + tϕ1(−tA)g0

= v + tϕ1(−tA)(−Av + g0), t > 0.
(12)

Since the functions ϕj(x) are smooth for all x ∈ C, the last relations hold
for any, not necessarily nonsingular A. The first expression for y(t) in (12)
is instructive as it shows the effect of the inhomogeneous constant term
on the solution (cf. (9)), whereas the second one can be preferably used
in computations. Indeed, the second formula requires evaluation of just a
single matrix function times a vector and this can be computed similarly to
the evaluation of the matrix exponential (see the next section).

For ODE system (3) with general, non-constant source term g(t), its
solution satisfying initial condition y(0) = v can be expressed with the help
of the so-called variation-of-constants formula:

y(t) = exp(−tA)v +

∫ t

0
exp
(
−(t− s)A

)
g(s)ds, t > 0. (13)

This formula is a backbone for exponential time integration, it often serves
as a starting point for the derivation of exponential integrators. Note that, R1:3
as soon as g(t) = g0 = const(t), (12) can be obtained directly from (13) by
evaluating the integral term. Similarly, if g(t) is assumed to be constant for
t ∈ [tk, tk + τ ], i.e, g(t) = gk, we can write

yk+1 = exp(−τA)yk + τϕ1(−τA)gk = yk + τϕ1(−τA)(−Ayk + gk), (14)

which is known as the exponentially fitted Euler scheme, see e.g. [44]. The
method is first order accurate when applied to (3) with general, time depen-
dent g(t) and exact for any τ > 0 as soon as g = const(t). The method is
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unconditionally stable in the sense of A-stability3.
We now give an example of second-order accurate exponential time in-

tegrator, called EK2, exponential Krylov scheme of order 2, see [90]:

yk+1 = yk+τ(−Ayk+gk)+τϕ2(−τA)
(
−τA(−Ayk+gk)+gk+1−gk

)
. (15)

This method, which goes back to [19, 58], can be derived by interpolating
the function g under the integral in (13) linearly and evaluating the integral.
This approach is sometimes referred to as exponential time differencing [20,
70] and is closely related to a class of exponential Runge–Kutta–Rosenbrock
methods [46].

It should be emphasized that, as we see, exponential time integrators
considered in this section can be applied in two essentially different settings.
In the first one, just a few actions of matrix functions are required to compute
solution at any time t of interest, t ∈ [0, T ]. This is possible when the source
term is zero or (almost) constant, cf. (9),(12). In the second setting, we have
a time stepping procedure, where actions of matrix functions are required
every time step, see (14),(15). In our limited experience, exponential time
integrators are computationally efficient for Maxwell’s equations primarily
in the first setting. For instance, the CO2 scheme appears to be much more
efficient than EK2 in the experiments from [90], even though some promising,
in terms of computational efficiency, results with exponential integration
are reported in [12]. An approach to reduce the number of matrix function
actions and, hence, to increase efficiency of the exponential integration is
presented in [10].

We now describe a way to compute exp(−tA)v or ϕk(−tA)v for a given
vector v ∈ Rn.

3. Computing the matrix exponential action by Krylov subspaces

There are several ways to compute the action of the matrix exponential
exp(−tA) (or the related matrix functions ϕk(−tA)) of a large matrix A on
a given vector v. These methods include Krylov subspace methods [86, 25,
52, 32, 72, 26, 43, 44, 27], the Chebyshev polynomials, scaling and squaring
with Padé or Taylor approximations and other methods [82, 23, 75, 17,

3A-stability of a method means that the method applied to the so-called Dahlquist
scalar test problem y′ = λy yields a bounded solution for any time step size as soon as
λ ∈ C has a negative real part. All exponential methods considered in this note are exact
for this test problem and, thus, are A-stable.
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2]. Here, we describe only one group of the methods, namely, the Krylov
subspace methods. We choose to restrict ourselves to these methods because
they seem to combine versatility and efficiency. The Chebyshev polynomials
are mostly used for computing the matrix functions of symmetric or skew-
symmetric matrices, whereas the matrix A from (3) is in general neither
of both. Computing matrix functions with the Chebyshev polynomials for
general matrices is possible but not trivial [57]. For σ ≡ 0 the Maxwell
matrix A can be transformed into a skew-symmetric matrix and, hence, its
exponential can be computed via the Chebyshev polynomials, see e.g. [23].

3.1. Computing the action of exp(−tA) R1:4
In Krylov subspace methods an orthogonal basis {v1, . . . , vm} of the

Krylov subspace

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}

is built and stored as the columns of a matrix Vm = [v1, . . . , vm] ∈ Rn×m.
The matrix Vm is usually computed with the help of the Arnoldi process
(see, e.g., [87, 73]), which is also implemented in the software provided with
this article [9]. As will be discussed slightly later, the software algorithm R1a:1
determines the value of m adaptively, based on the accuracy requirements. R2:4
The matrix Vm satisfies the so-called Arnoldi decomposition [87, 73]

AVm = Vm+1Hm+1,m, Hm+1,m ∈ Rm+1,m. (16)

The matrix Hm+1,m is upper-Hessenberg, which means that its entries hi,j
are zero as soon as i > j + 1. Denoting by Hm,m the matrix composed of
the first m rows of Hm+1,m, we can rewrite (16) as

AVm = VmHm,m + vm+1hm+1,me
T
m, (17)

where em = [0, . . . 0, 1]T ∈ Rm is the last canonical basis vector in Rm. The
last relation basically says that A times any vector of the Krylov subspace
is again a vector from the same subspace plus a multiple of the next Krylov
basis vector vm+1. Krylov subspace methods are usually successful if this
last term vm+1hm+1,me

T
m turns out to be, for some m, small. This means

that the Krylov subspace is close to an invariant subspace of A.
To compute y(t) = exp(−tA)v for a given v ∈ Rn, we set the first Krylov

basis vector v1 to be the normalized vector v (β := ‖v‖, v1 := v/β), and,
once Vm and Hm,m are computed, obtain an approximation ym(t) to y(t) as

y(t) = exp(−tA)v = exp(−tA)(Vmβe1)

≈ ym(t) = Vm exp(−tHm,m)βe1︸ ︷︷ ︸
um(t)

. (18)
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Here e1 = [1 , 0, . . . 0]T ∈ Rm is the first canonical basis vector in Rm. The
rational behind (18) is that if A times a Krylov subspace vector is approxi-
mately again a Krylov subspace vector, then so is exp(−tA) times a Krylov
subspace vector. This is true because exp(−tA), as any matrix function of
A, is a polynomial in A. Computing ym(t) in (18) is much cheaper than com-
puting y(t) because we hope to have m� n and usually m does not exceed a
hundred approximately. The exponential of −tHm,m then can be computed R1:5
by any suitable scheme for matrices of a moderate size, see e.g. [40, Chap-
ter 10] and [78, 5]. Note that software packages Matlab and Mathematica
use the scaling and squaring algorithm of [39].

An algorithm for computing y(t) = exp(−tA)v for a given v ∈ Rn
by the just described Krylov subspace method is available as the function
expm Arnoldi.m in [9]. An essential part of the algorithm is a residual-
based stopping criterion, see [18, 24, 51, 11]. The stopping criterion is
based on controlling the residual of the approximation ym(t) from (18) with
respect to the ODE (8), i.e., the exponential residual is defined as [18]

rm(t) ≡ −Aym(t)− y′m(t). (19)

Indeed, with (17) and (18) it is not difficult to see that [24, 11]

rm(t) = −(hm+1,me
T
mum(t))vm+1, ‖rm(t)‖ = |hm+1,me

T
mum(t)|. (20)

The value resnorm computed by the algorithm is the residual norm relative
to the norm β of the initial vector v,

resnorm =
‖rm(t)‖

β
.

Since rm(t) is a time dependent function it is possible that ‖rm(t)‖ ≈ 0 oc-
casionally at some specific points t only. Ideally, one might want to compute
the L2 norm (

∫ t
0 ‖rm(s)‖2ds)1/2. In practice it appears to be sufficient to R1:6

compute the residual norm at several time moments s ∈ (0, t]. For more R2:5
detail and discussion on the relation to other possible stopping criteria we
refer to [11].

The exponential exp(−tHm,m) is computed with a function expm, a built
in function available in both Octave and Matlab. Both the Octave and Mat-
lab implementations of expm, based respectively on papers [91] and [39], are
the scaling and squaring algorithms combined with Padé approximations.
We should emphasize that the costs for computing exp(−tHm,m) are usu-
ally negligible with respect to the other costs of the algorithm. These are

11



dominated by the matrix–vector products with A and Gram-Schmidt or-
thogonalization of the Arnoldi process. Therefore, if m is not too large,
the choice of method to compute exp(−tHm,m) hardly influences the total
performance. When implementing the algorithm in languages other than
Matlab/Octave, where expm is not available, to compute exp(−tHm,m) one
could use C/C++ embeddable FORTRAN codes from the EXPOKIT pack-
age [78], in particular the dgpadm.f subroutine.

3.2. Computing the action of ϕ1(−tA) R1:7
The solution of IVP (10) can be written as y(t) = v + tϕ1(−tA)(−Av +

g0), cf. (12). The Krylov subspace method described above can be easily
adapted to compute the action of ϕ1(−tA). First of all, the initial vector v1
of the Krylov subspace is defined as

β = ‖ −Av + g0‖, v1 =
1

β
(−Av + g0) (21)

and the approximate Krylov subspace solution now reads

ym = v + Vm tϕ1(−tHm,m)βe1︸ ︷︷ ︸
um(t)

, (22)

with the familiar Arnoldi matrices Vm and Hm,m defined as above. Note is
that um(t) is not the same as one from (18) and satisfies the inhomogeneous
projected IVP R1:8

u′m = −Hm,mum + βe1, um(0) = 0, t > 0. (23)

If we now introduce the residual of ym as

rm(t) ≡ −Aym(t)− y′m(t) + g0, (24)

it is straightforward to show that ‖rm(t)‖ can be computed as given by (20)
with the new um from (23).

The code expm Arnoldi.m in [9] should then be adjusted accordingly.
The small matrix function ϕ1(−tHm,m) can be computed with the help of
the freely available code phipade [5].

3.3. Actions of exp(−tA) with the Krylov shift-and-invert (SAI) method

A well-known problem with the Krylov subspace methods for evaluating
the matrix exponential is their slow convergence for matrices with stiff spec-
trum, i.e., with the eigenvalues of both relatively small and large magnitude.
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The eigenvalues of the matrix Hm,m tend to better approximate the large
eigenvalues of A, whereas the components corresponding to these eigenval-
ues are not important for the matrix exponential (due to the exponential
decay). To emphasize the important small eigenvalues, the so-called rational
Krylov subspace approximations can be used [31, 36, 37]. A relatively simple
yet powerful representative of this class of methods is the shift-and-invert
(SAI) Krylov subspace method [63, 84]. The idea is to build up the Krylov
subspace for the transformed, shifted and inverted matrix A, namely, for
(I + γA)−1. Here γ is a parameter, to be chosen later (see the numerical
experiments section).

The resulting algorithm is referred to as Krylov/SAI and proceeds as
follows. The Krylov subspace built up for (I + γA)−1 gives, cf. (17),

(I + γA)−1Vm = Vm+1H̃m+1,m

= VmH̃m,m + vm+1h̃m+1,me
T
m.

(25)

The approximation ym(t) ≈ exp(−tA)v is then obtained by (18), with

Hm,m =
1

γ
(H̃−1m,m − I). (26)

Here we, in fact, apply the inverse SAI transformation on the projected
matrix. An implementation of the algorithm, available as the function
expm ArnoldiSAI.m in [9], closely follows the lines of expm Arnoldi.m dis-
cussed above. An important point is that the matrix (I + γA)−1 does
not have to be available, only its action on vectors is needed. Of course, in
many real life problems, including three-dimensional Maxwell’s equations,
obtaining (I + γA)−1 would not be possible. To carry out operations of the
form w := (I+γA)−1vj in the Krylov/SAI method, we solve a linear system
(I + γA)w = vj . This can be done either by a direct or a preconditioned
iterative solver, similarly to implicit time integration schemes. In the former
case, a (sparse) LU factorization of I + γA can be computed once at the
beginning of the algorithm and reused every time a new vector w has to be
computed. In practice, the Krylov/SAI method often converges fast so that
additional work to solve the SAI systems is paid off.

If a preconditioned iterative solver is used to solve (I + γA)w = vj , then
we have to know when to stop the iterations. Too many iterations would be
a waste of computational work, too few iterations could be harmful for the
accuracy and convergence of the method. Since the action of (I + γA)−1 is
computed approximately, we have a method which belongs to a class of the R2:6
inexact Krylov subspace methods. As analysis of these methods suggests
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(see, e.g., [79, 85]), the inexactness of the matrix-vector multiplication (in
our case, with (I+γA)−1) can be bounded to maintain the convergence of the
original exact Krylov subspace method. The question of a proper stopping
criterion of the iterative linear solver within the inexact Krylov/SAI method
is analyzed in [84]: we do not have to solve the SAI system (I + γA)w = vj
very accurately and the tolerance to which it is solved can be relaxed as R1:9
the Krylov iterations j converge. More precisely, the iterations in the inner
SAI solver should be stopped as soon as the SAI residual vector rSAI

(i) =

vj − (I + γA)w(i) satisfies

‖rSAI
(i) ‖
‖vj‖

= ‖rSAI
(i) ‖ 6

toler

resnorm + toler
, (27)

where ‖vj‖ = 1 due the Gram-Schmidt orthonormalization, i is the iteration
number in the inner SAI solver, w(i) is the approximate solution at iteration
i, toler is the required tolerance for the vector ym(t) ≈ exp(−tA)v and
resnorm is the exponential residual norm, cf. (19), evaluated at step j.
Note that the SAI stopping criterion proposed in [84] slightly differs from
the one we propose here in (27), namely, [84] uses an error bound rather
than the exponential residual norm.

The resulting Krylov/SAI algorithm to compute y(t) = exp(−tA)v for
a given v ∈ Rn (available as expm ArnoldiSAI.m in [9]) solves the SAI
linear system (I + γA)w = vj by the sparse LU factorization PAQ = LU ,
where P and Q are permutation matrices (PAQ is A with permuted rows
and columns). This sparse factorization is provided by the UMFPACK
package [22, 21] (and adopted in both Octave and Matlab as the lu function).
It is crucial for the computational performance that the factorization is
computed once and reused in every Krylov step. R1:10

The algorithm of expm ArnoldiSAI.m in [9] has the same structure as R1:11
the Krylov algorithm from expm Arnoldi.m, i.e., the Gram-Schmidt orthog-
onalization of the new Krylov basis vector w is followed by computing um(t)
(cf. (18)) and the residual norm check. The main costs of the algorithm are
the solution of the linear system (I + γA)w = vj and the Gram-Schmidt
orthogonalization.

Computing the residual (19) in the Krylov/SAI method is slightly more
involved than in the Krylov method. The Krylov/SAI decomposition (25)
can be transformed into

AVm = VmHm,m −
h̃m+1,m

γ
(I + γA)vm+1e

T
mH̃

−1
m,m.
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Then

rm(t) = −y′m −Aym = (VmHm,m −AVm) exp(−tHm,m)(βe1)

=
h̃m+1,m

γ
(I + γA)vm+1

[
eTmH̃

−1
m,mum(t)

]
,

(28)

where the expression in the square brackets is a scalar value, namely the R1:12
last component of the vector H̃−1m,mum(t), with um(t) defined in (18). The
value resnorm computed by the algorithm of expm ArnoldiSAI.m in [9] is R1:13
again the relative residual norm resnorm = ‖rm(s)‖/β computed for several
values s ∈ (0, t].

3.4. Actions of ϕ1(−tA) with Krylov/SAI

The described Krylov/SAI method can be easily applied to compute the
action of ϕ1(−tA) as well. The starting Krylov vector v1 should be defined
according to (21) and the approximate solution ym(t) is given by (22),(23).
It is easy to show that the residual of ym(t), defined for ϕ1(−tA) as rm(t) =
−Aym(t)− y′m(t) + g0, satisfies (28), namely,

rm(t) =
[
eTmH̃

−1
m,mum(t)

]
,

where um(t) is defined in (23).

4. Numerical experiments

We now present two numerical tests. The first one is a photonic crystal
model where the conductivity damping is present due to the absorbing PML
(perfectly matched layer) boundary conditions. The second test comes from
gas-and-oil industry applications; here the piecewise constant conductivity
plays a central role in the model: it allows for detection of subterranean
structures.

In both tests, we solve Maxwell’s equations in a dimensionless form,
which is obtained by the introducing the dimensionless quantities as

x =
1

L
xs (similarly for y, z), t =

c0
L
ts,

E =
1

H0Z0
Es =

1

H0 · 120π
Es, J =

L

H0
Js,

(29)

where the subindex ·s is used to indicate the values in the SI units, L is
the typical length, H0 is the typical magnetic strength, c0 = 1/

√
µ0ε0 ≈
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Figure 1: The photonic crystal setup and the Ez field in dimensionless units at t = 0 (left)
and t = 2 (right). The region of interest lies within the dashed line, surrounded by the
PML regions.

3 × 108 m/s is the speed of light in vacuum, Z0 =
√
µ0/ε0 = 120π [Ω]

is the free space intrinsic impedance. Note that this dimensionless scaling
introduces the factor Z0L = 120πL in the conductivity values. In both tests R1:14
we discretize the problem in space by the standard Yee finite differences.

4.1. Test 1: a photonic crystal model

In this model, we consider a two-dimensional photonic crystal with 6×6
rods, where the top 3 rows of rods (with 6 rods per row) are separated
by the bottom 3 rows of rods by a line defect, see Figure 1. Each rod
has a radius of 0.055 dimensionless units and consists of a material with
relative permittivity εr = 8.9 (corresponding to materials such as sapphire
or diamond). The grid of rods is surrounded by air with εr = 1. In this
test the two-dimensional Maxwell’s equations are solved for the x and y R1:5
components of the magnetic field and the z component of electric field (i.e.,
in the TM mode as it is usually called in the photonic-crystal literature [49]).
A Gaussian pulse is emitted at initial time t = 0 (see Figure 1) and we follow
its evolution until the time moment T = 2 dimensionless units.

Around the region of interest [ax, bx]× [ay, by], with ax = −2, bx = −0.5,
ay = 1, by = 2.75, the PMLs are situated. We implemented the PMLs
following [50]. The PML conductivity values σx and σy are zero inside the
domain of interest and grow quadratically with the distance to the region
of interest to reach the maximum value of 1000. In Figure 2 we show the
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Figure 2: The influence of the PMLs on the spectrum of the Maxwell matrix. The
eigenvalues λ are plot on the complex plane.

effect of the PMLs on the spectrum of the Maxwell matrix: the PMLs
introduce damping by adding a symmetric part to the matrix so that the R1:17
matrix spectrum is not purely imaginary anymore.

Choice of the parameters in the Krylov/SAI algorithm

To have a good performance, it is important that the parameters in the
Krylov/SAI algorithm are chosen properly and we now explain how this can
be done. Two parameters have to be chosen: the shift value γ, introduced
in (25), and the restart value mrestart. Restart means that, to avoid storing
all the Krylov basis vectors (the columns of Vm), we store only the mrestart

basis vectors, which are typically the last mrestart computed vectors. In this
note we use the restarting strategy introduced in [66], for other possible
ways to restart see [83, 1, 28, 36, 66, 11].

The standard ways to choose the shift value γ, see e.g. [84], is to assume
that the matrix is a discretized elliptic operator, so that the spectrum is more
or less evenly spread along the real axis. In our case, the damping is only
present in the PML regions, which means that the eigenvalues are mostly
situated near the imaginary axis, with a few clusters of outliers along the
real axis. Since the bulk of the spectrum lies closely to the imaginary axis,
we might try to decrease the shift value γ. Another important point is that
the Krylov/SAI, as suggested by the analysis in [63, 84], usually exhibits
a mesh independent convergence. In [84], a mesh independent convergence
is proved for discretized elliptic operators. This means that we can choose R2:7a
both parameters (namely, the shift value γ and the restart value mrestart)
cheaply by test runs on a coarse mesh and then use the chosen values for all R2:7b
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Table 1: Dependence of the residual and error on the shift parameter γ. A coarse mesh
200× 220 is used.

γ/T 0.2 0.1 0.05 0.025 0.012 0.005

aver.residual 0.4788 0.1887 0.0254 0.0190 0.0077 0.9854
rel.error 3.3e-02 7.1e-03 1.4e-03 7.9e-04 4.4e-04 6.0e-01

the meshes.
We first choose the shift value γ. It is usually chosen relatively with

respect to the length of the time interval T , owing to the fact that the
action of the matrix exponential is computed for the matrix −TA. Table 1
contains results of test runs where we vary γ around a suitable value of 0.1T
(T = 2 in this test), as suggested by [84, Table 3.1]. We carry out 100
Krylov steps without restart and judge the convergence by looking at the
average residual

100∑
m=91

‖rm(T )‖

for the last 10 Krylov steps. Averaging is necessary because the residual
converges to zero very wiggly; this is typical for wave problems. We see that
our expectations are correct: decreasing γ to some extent helps to improve R2:7c
convergence. From now on we set γ to 0.012T for all runs in this sections.
Note that we report the error values in Table 1 only for reference purposes.
In practice, the error values are not available, of course, and we choose γ
based on the residual.

To choose a proper restart value mrestart, we take a coarse mesh 200×220,
and carry out several test runs for different, decreasing values of mrestart.
This means that the Krylov/SAI iterative process, running iterations m = R2:7d
0, 1, 2, . . . , stores and uses only the last mrestart Krylov basis vectors (see [66]
for details). The smaller mrestart, the less computational work and mem-
ory resources are required by the method, as fewer Krylov basis vectors
have to handled. However, the convergence of the Krylov/SAI method may
deteriorate with decreasing mrestart and we look for a compromise value
for mrestart. As plots in Figure 3 demonstrate, the convergence of the
Krylov/SAI scheme is quite robust with respect to the restart value and
therefore we set mrestart = 2 in all remaining tests in this section.

We compare the Krylov/SAI method against the implicit trapezoidal
rule (ITR) scheme and the phiv function from the EXPOKIT package [78].
The phiv function solves, following the first formula in (12) and using the R2a:2
conventional (non SAI) Krylov subspace method, IVP (10). It is instruc-
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Figure 3: Convergence of the Krylov/SAI method for different restart values mrestart. The
residual (cf. (28)) and the absolute error norms (y axis) are shown versus the number
of Krylov subspace iterations m (x axis). The iterative process is restarted every mrestart

iterations. A coarse 200× 220 mesh is used.
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tive to compare our method with these two methods because the ITR is an
implicit scheme well suited for Maxwell’s equations [90], and it requires ef-
forts to solve the linear systems comparable to those in Krylov/SAI method.
Furthermore, the phiv scheme is an efficient implementation of the regular
Krylov method where, to achieve a better performance, the time interval can
be adaptively divided into subintervals (this approach is recently extended
in [67]). In the tests reported here EXPOKIT’s phiv was run with maximal
Krylov dimension increased to 100 (the default EXPOKIT’s value is 30).
Increasing the maximal Krylov subspace dimension in phiv is, as far as we R2a:3
know, profitable for the performance of the function and does not influence
its stopping criterion [78]. In fact, if the stopping criterion is not satisfied
within the maximal allowed Krylov subspace dimension, the code divides
the time interval into subintervals and evaluates the matrix function actions
on each of the subintervals.

In both Krylov/SAI and ITR schemes the linear systems are solved by
the UMFPACK sparse LU solver (the lu function in Matlab and Octave),
which provides the LU factorization as discussed in Section 3.3.

The tests of this section are carried out on a Linux PC with 8 Gb memory
and eight CPU cores of 3.40 GHz. We run the Krylov/SAI method with
the tolerance value 1e-03 and EXPOKIT with the tolerance 1e-01. A R2:7e
less stringent tolerance for EXPOKIT is taken because in this test it tends
to produce a more accurate solution than required by the tolerance. The
results of the test runs are presented in Table 2. The error values reported
in the table are relative errors with respect to the reference solution (which
was produced by EXPOKIT run with a stringent tolerance 1e-06). We see
that Krylov/SAI outperforms the ITR scheme by approximately a factor
of 4 in CPU time and that EXPOKIT is much slower than the other two
schemes. For larger problems and in three spatial dimensions the relative
cost of linear system solution will be higher in the total costs. This favors the
Krylov/SAI method which requires a factor of 8 less linear system solutions
(800 ITR time steps with one solution per time step versus 2×54 solutions in R2a:4
Krylov/SAI). Last but not least, the results confirm the mesh independent
convergence of the Krylov/SAI method, see also Figure 4.

4.2. Test 2: electromagnetic imaging

This numerical test comes from the field of electromagnetic imaging and
fault detection in gas-and-oil industry [77]. Maxwell’s equations (1) are
posed in a cubical physical domain [−20, 20]3 (the size is given in meters),
which is divided by the plane x = 10 into two regions, where the conductivity
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Table 2: Numerical results for the photonic crystal model. The accuracy values are relative
error norms with respect to the reference solution. Matvec stands for a matrix–vector
multiplication.

problem size method CPU time, s number of steps /
(mesh) / accuracy Krylov dimension m

n = 167 023 EXPOKIT 27.1 / 9.8e-05 1428 matvecs
(200× 220) ITR 9.9 / 7.1e-04 800 steps

Krylov/SAI 2.6 / 4.4e-04 54 restarts with mrestart = 2

n = 665 243 EXPOKIT 174 / 6.7e-04 1938 matvecs
(400× 440) ITR 46 / 7.0e-04 800 steps

Krylov/SAI 13.4 / 3.0e-04 65 restarts with mrestart = 2

n = 1 494 663 EXPOKIT 621 / 1.4e-03 2652 matvecs
(600× 660) ITR 117 / 6.9e-04 800 steps

Krylov/SAI 27 / 3.4e-04 54 restarts with mrestart = 2

n = 2 655 283 EXPOKIT 1271 / 1.7e-05 3060 matvecs
(800× 880) ITR 220 / 6.9e-04 800 steps

Krylov/SAI 54 / 3.2e-04 54 restarts with mrestart = 2
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Figure 4: Convergence of the Krylov/SAI method for 200×220 (left) and 800×880 (right)
meshes. The residual (cf. (28)) and absolute error norms are shown versus the number
of Krylov subspace iterations m. The iterative process is restarted every mrestart = 2
iterations.
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Table 3: Results for the test runs on the 20×20×20 mesh, n = 55 566. The CPU timings
are made in Matlab and thus give only an indication of the actual performance. The
results for Krylov/SAI, T = 750 are given for two different tolerance values 1e-10 and
1e-14.

scheme T # time CPU rel. Krylov
steps time, s error dimension

CO2 100 4000 18 4.6e−07 —
Krylov 100 1 > 1 000 1.0e−03a restart 300

Krylov/SAI 100 1 6.5 1.5e−10 25
ITR 100 400 31 2.7e−05 —

EXPOKIT 100 — 143 1.1e−10b 100
CO2 750 30 000 142 2.2e−07 —

Krylov/SAI 750 4 7.3 2.7e−05 17,12,5,8
Krylov/SAI 750 4 9.8 2.1e−08 31,16,8,6
a a higher accuracy can be reached if necessary
b provided by the EXPOKIT error estimator

is defined as

σ =

{
0.1 S/m, x 6 10,

0.001 S/m, x > 10,
(30)

and µ = µ0, ε = ε0 in the whole domain. In the larger region x 6 10 a coil of
a square shape is placed connecting four points, whose coordinates (x, y, z)
are (−2,−2, 0), (−2, 2, 0), (2, 2, 0) and (2,−2, 0). The boundary conditions
are the far field conditions (homogeneous Dirichlet) and the initial conditions
are zero for the both fields. At the initial time t = 0 s a current in the
coil is switched on and increases linearly to reach 1 A at the time moment
t = 10−6 s. The current remains constant for 10−4 s, is switched off at t =
1.01× 10−4 s and decays linearly to reach its zero value at t = 1.02× 10−4 s.
After that the current remains zero until the final time 2.02 × 10−4 s is
reached.

The tests of this section are carried out in Matlab on a Linux computer
with two “quad core” 2.40GHz CPU’s, each with 48 Gb memory. The
results of the test runs are presented in Tables 3 and 4. Several methods are
compared there: the CO2 scheme (4), the Crank–Nicolson ITR scheme (6),
the exponential scheme phiv.m of the EXPOKIT package [78], the Krylov
and Krylov/SAI methods. The Krylov/SAI method uses a default value of
the shift value γ, namely γ = 0.1τ , which is suggested by [84, Table 3.1] for
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Table 4: Results for the test runs on the 40 × 40 × 40 mesh, n = 413 526. The CPU
timings are made in Matlab and thus give only an indication of the actual performance.
The results for Krylov/SAI, T = 750 are given for two different tolerance values 1e-10

and 1e-14.

scheme T # time CPU rel. Krylov
steps time, s error dimension

CO2 100 8000 130 1.2e−07 —
Krylov 100 1 > 3 000 3.0e−01a restart 300

Krylov/SAI 100 1 133 2.1e−08 20
ITR 100 400 903 3.9e−05 —

EXPOKIT 100 — 2 673 1.7e−10b 100
CO2 750 60 000 1142 5.6e−08 —

Krylov/SAI 750 4 203 4.7e−05 17,10,5,8
Krylov/SAI 750 4 225 1.2e−07 28,14,10,6
a a higher accuracy can be reached if necessary
b provided by the EXPOKIT error estimator

moderate accuracy requirements. The runs are done for two time intervals
[t0; t0 +T ], with the initial (dimensionless) time t0 = 765 (the moment when
the coil current has become zero) and either T = 100 or T = 750. In the
latter case the dimensionless time 1515 corresponds to the physical time
2.02 × 10−4 s, the final time of interest. The initial values for t0 = 765 and
the reference solution for t0 + T are obtained by running the CO2 scheme
with a tiny time step and extrapolating the results. The relative error with
respect to the reference solution yref is computed as ‖y − yref‖/‖yref‖, with
y being the numerical solution vector containing all the degrees of freedom
for both fields.

The CO2 scheme is run with roughly a maximal allowable time step size
(increasing the time step size by a factor of two leads to an instability).
As we see from Tables 3 and 4, the regular Krylov method is not efficient.
The method has been used in combination with restarting after every 300
Krylov steps. This value is chosen as the largest number of Krylov basis R2:7f
vectors to store and handle which is still practical for this problem size.
Taking a restart value different than 300 does not help at all (smaller values
are harmful for convergence, bigger values increase computational work and
CPU time).

The Krylov/SAI method is used with the UMFPACK sparse LU solver
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Table 5: CPU time needed to compute the sparse LU factorization of the matrix I + γA
versus the τ ≡ 10γ values. The 40×40×40 mesh is used (n = 413 526). The fill-in factors
are approximately 250 for τ 6 200 and 1000 for τ = 400.

τ ≡ 10γ 50 100 200 400

CPU time, s 152.7 148.9 153.8 3989

(the lu function in Matlab). This sparse solver uses strategies with compro-
mise between the sparsity in the triangular factors and numerical stability
of the LU factorization. Increasing the time interval τ leads at some point
to a very off-diagonal-dominant matrix I + γA, γ = τ/10, and, hence, to a
dramatic increase in the CPU time to compute its sparse LU factorization,
see Table 5. For this reason we use the Krylov/SAI method with the time
step τ = 200 at most. For the time interval T = 750, the method carries
out four time steps, 3× 200 + 1× 150, and uses the same LU factorization
for all four steps. For this reason, the CPU timings for Krylov/SAI are not
proportional to the time interval T . Note that using the LU factorization
computed for τ = 200 for the last time step τ = 150 means that we effec-
tively change the value of γ. This is not a problem because, as observed
in [84] and confirmed in our experiments, the Krylov/SAI is known to be
not very sensitive to the choice of γ.

It is important to realize that a similar, efficient performance could be
achieved with Krylov/SAI method combined with an efficient preconditioned
iterative solver, if one was available. However, standard preconditioners,
such as incomplete LU with dropping tolerance, appear not to be efficient
for this problem. We note that the block structure of the discretized Maxwell
operator should be used when constructing a preconditioner, see [90] or [13,
Section 5.3] for possible inexact Schur complement preconditioners in the
context of time dependent Maxwell’s equations.4

Of course, once a sparse LU factorization is affordable, one can use a
fully implicit scheme such as ITR. The scheme computes the same (as used

4Replacing the direct sparse UMFPACK solver in the Krylov/SAI method by GMRES
with the inexact Schur complement preconditioner of [13], we are able to get the same
results in terms of accuracy and number (outer) Krylov iterations. However, at least when
measured in Matlab, the CPU needed by the preconditioned iterative solver is much higher
than required by the direct solver. This may be caused by the Matlab environment and
we plan to investigate this further in future.
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for the SAI system) sparse LU factorization once and keeps on using it all
the time steps. However, the CPU timings of the scheme are much higher
than for Krylov/SAI due many more time steps needed.

This numerical test is rather instructive. Indeed, assume a more complex
problem is solved, when the source function g(t) in (3) is not constant and,
hence, the simple evaluation ym(t) ≈ exp(−tA)v or ym(t) ≈ ϕ1(−tA)v does
not suffice to get a solution. The test shows that an exponential time inte-
gration scheme, such as EK2 (15), combined with the Krylov/SAI method
will likely not be more efficient than CO2. Indeed, one would need to make
many more time steps (and many more matrix function evaluations). These
arguments are confirmed by the tests reported for EK2 in [90]. Thus, for
general time dependent g(t) we need exponential time integration meth-
ods which would allow (a) very large steps without an accuracy loss and
(b) reusing numerical linear algebra work as much as possible. An example
of such a scheme is presented in [10].

In the tests reported in Tables 3 and 4 EXPOKIT’s phiv is run with
maximal Krylov dimension increased to 100 (the default EXPOKIT’s value
is 30).

Remark on the computational complexity

It is in general difficult to provide a detailed picture for the computa-
tional complexity of the Krylov/SAI method, as it depends on many prob-
lem dependent factors. However, one conclusion can be drawn from the
both numerical tests (Sections 4.1 and 4.2) presented here. If a direct solver
for the SAI systems with I + γA is affordable, it is sensible to compare the
Krylov/SAI method with an implicit scheme such as ITR.

For the ITR or other implicit schemes, one can estimate a number of R2a:6
time steps required to reach the desirable accuracy and, as we can observe
from the results of the experiments, we typically need hundreds of time
steps with an implicit scheme to get a reasonable accuracy. At each time
step (at least) one linear system with the matrix I + τA or alike should be
solved. With the Krylov/SAI method, we need a couple of dozen actions
of (I + γA)−1 but, compared to an implicit scheme, there is an additional
overhead such as the Arnoldi process. This comparison holds as soon as R2a:6
the costs for solving the systems with the matrices I + τA and I + γA are
comparable, which may not be the case if γ 6≈ τ (cf. Table 5).

When direct solutions of the SAI systems are not affordable, one may
use a preconditioned iterative solver in both the implicit scheme and the
Krylov/SAI method. In this case, a lot depends on whether a good pre-
conditioner is available. However, it is not trivial to properly combine an
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implicit scheme with an iterative solver such that the accuracy and stability
properties of the scheme are maintained. Indeed, too many linear solver iter- R2a:7
ations per time steps would be a waste of computational efforts, whereas too
few iterations might mean that the system is not solved accurately enough
to preserve the stability properties of the implicit scheme [14]. On the other
hand, for the Krylov/SAI method there is a developed theory on how to
solve the SAI systems approximately [79, 85, 84].

5. Conclusions

We have presented recent numerical techniques for computing the action
of the matrix exponential of a large matrix in the context of time depen- R1:18
dent Maxwell’s equations. The Krylov subspace method, combined with the
shift-and-invert (SAI) technique and a residual-based stopping criterion, is
shown to be a very competitive tool for the test problems. In particular, the
observed (i) mesh independent convergence and (ii) robustness with respect
to the restart values make the method very promising. We have shown how
the parameters in the method can be chosen in a simple way.

Due to the more work per time step than in conventional schemes, the
exponential methods appear to be efficient for sufficiently large time steps
and when the numerical linear algebra overhead is minimized. This can for
instance be done by restarting the Krylov basis (as in the first numerical
test) or by reusing the computed sparse LU factorization (as in the second
numerical test).

Furthermore, the presented experiments show superiority of the expo-
nential schemes with respect to the standard implicit schemes in cases when
both types of schemes can be implemented efficiently.

In overall, the efficient solution of the SAI systems seems to be very
important. Therefore it is our plan to concentrate a further research on R2a:8
development of (parallel) preconditioned iterative solvers, possibly including
the recent developments in algebraic multigrid methods (as, e.g., [68]) and
the so-called Krylov subspace recycling techniques [69].

The Matlab implementations expm_Arnoldi and expm_ArnoldiSAI of
the algorithms described in Sections 3.1 and 3.3 can be downloaded from [9].
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