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Preface

The purpose of this preface is twofold. Firstly, to give an informal historical
introduction to the subject area of this book, Systems and Control, and
secondly, to explain the philosophy of the approach to this subject taken
in this book and to outline the topics that will be covered.

A brief history of systems and control

Control theory has two main roots: regulation and trajectory optimization.
The first, regulation, is the more important and engineering oriented one.
The second, trajectory optimization, is mathematics based. However, as we
shall see, these roots have to a large extent merged in the second half of
the twentieth century.

The problem of regulation is to design mechanisms that keep certain to-be-
controlled variables at constant values against external disturbances that
act on the plant that is being regulated, or changes in its properties. The
system that is being controlled is usually referred to as the plant, a passe-
partout term that can mean a physical or a chemical system, for example.
It could also be an economic or a biological system, but one would not use
the engineering term “plant” in that case.

Examples of regulation problems from our immediate environment abound.
Houses are regulated by thermostats so that the inside temperature remains
constant, notwithstanding variations in the outside weather conditions or
changes in the situation in the house: doors that may be open or closed, the
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number of persons present in a room, activity in the kitchen, etc. Motors in
washing machines, in dryers, and in many other household appliances are
controlled to run at a fixed speed, independent of the load. Modern auto-
mobiles have dozens of devices that regulate various variables. It is, in fact,
possible to view also the suspension of an automobile as a regulatory device
that absorbs the irregularities of the road so as to improve the comfort and
safety of the passengers. Regulation is indeed a very important aspect of
modern technology. For many reasons, such as efficiency, quality control,
safety, and reliability, industrial production processes require regulation in
order to guarantee that certain key variables (temperatures, mixtures, pres-
sures, etc.) be kept at appropriate values. Factors that inhibit these desired
values from being achieved are external disturbances, as for example the
properties of raw materials and loading levels or changes in the properties
of the plant, for example due to aging of the equipment or to failure of some
devices. Regulation problems also occur in other areas, such as economics
and biology.

One of the central concepts in control is feedback: the value of one variable in
the plant is measured and used (fed back) in order to take appropriate action
through a control variable at another point in the plant. A good example
of a feedback regulator is a thermostat: it senses the room temperature,
compares it with the set point (the desired temperature), and feeds back
the result to the boiler, which then starts or shuts off depending on whether
the temperature is too low or too high.

Man has been devising control devices ever since the beginning of civiliza-
tion, as can be expected from the prevalence of regulation problems. Con-
trol historians attribute the first conscious design of a regulatory feedback
mechanism in the West to the Dutch inventor Cornelis Drebbel (1572–1633).
Drebbel designed a clever contraption combining thermal and mechanical
effects in order to keep the temperature of an oven at a constant tempera-
ture. Being an alchemist as well as an inventor, Drebbel believed that his
oven, the Athanor, would turn lead into gold. Needless to say, he did not
meet with much success in this endeavor, notwithstanding the inventive-
ness of his temperature control mechanism. Later in the seventeenth cen-
tury, Christiaan Huygens (1629–1695) invented a flywheel device for speed
control of windmills. This idea was the basis of the centrifugal fly-ball gov-
ernor (see Figure P.1) used by James Watt (1736–1819), the inventor of
the steam engine. The centrifugal governor regulated the speed of a steam
engine. It was a very successful device used in all steam engines during the
industrial revolution, and it became the first mass-produced control mech-
anism in existence. Many control laboratories have therefore taken Watt’s
fly-ball governor as their favorite icon. The control problem for steam en-
gine speed occurred in a very natural way. During the nineteenth century,
prime movers driven by steam engines were running throughout the grim
factories of the industrial revolution. It was clearly important to avoid the
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FIGURE P.1. Fly ball governor.

speed changes that would naturally occur in the prime mover when there
was a change in the load, which occurred, for example, when a machine was
disconnected from the prime mover. Watt’s fly-ball governor achieved this
goal by letting more steam into the engine when the speed decreased and
less steam when the speed increased, thus achieving a speed that tends to
be insensitive to load variations. It was soon realized that this adjustment
should be done cautiously, since by overreacting (called overcompensation),
an all too enthusiastic governor could bring the steam engine into oscil-
latory motion. Because of the characteristic sound that accompanied it,
this phenomenon was called hunting. Nowadays, we recognize this as an
instability due to high gain control. The problem of tuning centrifugal gov-
ernors that achieved fast regulation but avoided hunting was propounded
to James Clerk Maxwell (1831–1870) (the discoverer of the equations for
electromagnetic fields) who reduced the question to one about the stability
of differential equations. His paper “On Governors,” published in 1868 in
the Proceedings of the Royal Society of London, can be viewed as the first
mathematical paper on control theory viewed from the perspective of reg-
ulation. Maxwell’s problem and its solution are discussed in Chapter 7 of
this book, under the heading of the Routh-Hurwitz problem.

The field of control viewed as regulation remained mainly technology driven
during the first half of the twentieth century. There were two very important
developments in this period, both of which had a lasting influence on the
field. First, there was the invention of the Proportional–Integral–Differential
(PID) controller. The PID controller produces a control signal that consists
of the weighted sum of three terms (a PID controller is therefore often called
a three-term controller). The P-term produces a signal that is proportional
to the error between the actual and the desired value of the to-be-controlled
variable. It achieves the basic feedback compensation control, leading to a
control input whose purpose is to make the to-be-controlled variable in-
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crease when it is too low and decrease when it is too high. The I-term feeds
back the integral of the error. This term results in a very large correction
signal whenever this error does not converge to zero. For the error there
hence holds, Go to zero or bust! When properly tuned, this term achieves
robustness, good performance not only for the nominal plant but also for
plants that are close to it, since the I-term tends to force the error to zero
for a wide range of the plant parameters. The D-term acts on the derivative
of the error. It results in a control correction signal as soon as the error
starts increasing or decreasing, and it can thus be expected that this antic-
ipatory action results in a fast response. The PID controller had, and still
has, a very large technological impact, particularly in the area of chemical
process control. A second important event that stimulated the development

ground

ampli-

fier
V
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Vout

µVout
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R1+R2

R1

R2

FIGURE P.2. Feedback amplifier.

of regulation in the first half of the twentieth century was the invention in
the 1930s of the feedback amplifier by Black. The feedback amplifier (see
Figure P.2) was an impressive technological development: it permitted sig-
nals to be amplified in a reliable way, insensitive to the parameter changes
inherent in vacuum-tube (and also solid-state) amplifiers. (See also Exer-
cise 9.3.) The key idea of Black’s negative feedback amplifier is subtle but
simple. Assume that we have an electronic amplifier that amplifies its input
voltage V to Vout = KV . Now use a voltage divider and feed back µVout
to the amplifier input, so that when subtracted (whence the term negative
feedback amplifier) from the input voltage Vin to the feedback amplifier,
the input voltage to the amplifier itself equals V = Vin−µVout. Combining
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these two relations yields the crucial formula

Vout =
1

µ+ 1
K

Vin.

This equation, simple as it may seem, carries an important message, see
Exercise 9.3. What’s the big deal with this formula? Well, the value of the
gain K of an electronic amplifier is typically large, but also very unstable,
as a consequence of sensitivity to aging, temperature, loading, etc. The
voltage divider, on the other hand, can be implemented by means of pas-
sive resistors, which results in a very stable value for µ. Now, for large
(although uncertain) Ks, there holds 1

µ+ 1
K

≈ 1
µ , and so somehow Black’s

magic circuitry results in an amplifier with a stable amplification gain 1
µ

based on an amplifier that has an inherent uncertain gain K.

The invention of the negative feedback amplifier had far-reaching appli-
cations to telephone technology and other areas of communication, since
long-distance communication was very hampered by the annoying drift-
ing of the gains of the amplifiers used in repeater stations. Pursuing the
above analysis in more detail shows also that the larger the amplifier gain
K, the more insensitive the overall gain 1

µ+ 1
K

of the feedback amplifier

becomes. However, at high gains, the above circuit could become dynam-
ically unstable because of dynamic effects in the amplifier. For amplifiers,
this phenomenon is called singing, again because of the characteristic noise
produced by the resistors that accompanies this instability. Nyquist, a col-
league of Black at Bell Laboratories, analyzed this stability issue and came
up with the celebrated Nyquist stability criterion. By pursuing these ideas
further, various techniques were developed for setting the gains of feed-
back controllers. The sum total of these design methods was termed classi-
cal control theory and comprised such things as the Nyquist stability test,
Bode plots, gain and phase margins, techniques for tuning PID regulators,
lead–lag compensation, and root–locus methods.

This account of the history of control brings us to the 1950s. We will now
backtrack and follow the other historical root of control, trajectory opti-
mization. The problem of trajectory transfer is the question of determining
the paths of a dynamical system that transfer the system from a given
initial to a prescribed terminal state. Often paths are sought that are op-
timal in some sense. A beautiful example of such a problem is the brachys-
tochrone problem that was posed by Johann Bernoulli in 1696, very soon
after the discovery of differential calculus. At that time he was professor
at the University of Groningen, where he taught from 1695 to 1705. The
brachystochrone problem consists in finding the path between two given
points A and B along which a body falling under its own weight moves in
the shortest possible time. In 1696 Johann Bernoulli posed this problem as
a public challenge to his contemporaries. Six eminent mathematicians (and
not just any six!) solved the problem: Johann himself, his elder brother
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B

A

FIGURE P.3. Brachystochrone.

B

A

FIGURE P.4. Cycloid.

Jakob, Leibniz, de l’Hôpital, Tschirnhaus, and Newton. Newton submit-
ted his solution anonymously, but Johann Bernoulli recognized the culprit,
since, as he put it, ex ungue leonem: you can tell the lion by its claws. The
brachystochrone turned out to be the cycloid traced by a point on the cir-
cle that rolls without slipping on the horizontal line through A and passes
through A and B. It is easy to see that this defines the cycloid uniquely
(see Figures P.3 and P.4).

The brachystochrone problem led to the development of the Calculus of
Variations, of crucial importance in a number of areas of applied mathe-
matics, above all in the attempts to express the laws of mechanics in terms
of variational principles. Indeed, to the amazement of its discoverers, it was
observed that the possible trajectories of a mechanical system are precisely
those that minimize a suitable action integral. In the words of Legendre,
Ours is the best of all possible worlds. Thus the calculus of variations had
far-reaching applications beyond that of finding optimal paths: in certain
applications, it could also tell us what paths are physically possible. Out
of these developments came the Euler–Lagrange and Hamilton equations
as conditions for the vanishing of the first variation. Later, Legendre and
Weierstrass added conditions for the nonpositivity of the second variation,
thus obtaining conditions for trajectories to be local minima.

The problem of finding optimal trajectories in the above sense, while ex-
tremely important for the development of mathematics and mathematical
physics, was not viewed as a control problem until the second half of the
twentieth century. However, this changed in 1956 with the publication of
Pontryagin’s maximum principle. The maximum principle consists of a very
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general set of necessary conditions that a control input that generates an
optimal path has to satisfy. This result is an important generalization of
the classical problems in the calculus of variations. Not only does it allow
a much larger class of problems to be tackled, but importantly, it brought
forward the problem of optimal input selection (in contrast to optimal path
selection) as the central issue of trajectory optimization.

Around the same time that the maximum principle appeared, it was realized
that the (optimal) input could also be implemented as a function of the
state. That is, rather than looking for a control input as a function of time,
it is possible to choose the (optimal) input as a feedback function of the
state. This idea is the basis for dynamic programming, which was formulated
by Bellman in the late 1950s and which was promptly published in many of
the applied mathematics journals in existence. With the insight obtained by
dynamic programming, the distinction between (feedback based) regulation
and the (input selection based) trajectory optimization became blurred. Of
course, the distinction is more subtle than the above suggests, particularly
because it may not be possible to measure the whole state accurately; but
we do not enter into this issue here. Out of all these developments, both in

PLANT

CONTROLLER
FEEDBACK

SensorsActuators

exogenous inputs to-be-controlled outputs

outputs
measured

inputs
control

FIGURE P.5. Intelligent control.

the areas of regulation and of trajectory planning, the picture of Figure P.5
emerged as the central one in control theory. The basic aim of control as it is
generally perceived is the design of the feedback processor in Figure P.5. It
emphasizes feedback as the basic principle of control: the controller accepts
the measured outputs of the plant as its own inputs, and from there, it
computes the desired control inputs to the plant. In this setup, we consider
the plant as a black box that is driven by inputs and that produces outputs.
The controller functions as follows. From the sensor outputs, information
is obtained about the disturbances, about the actual dynamics of the plant
if these are poorly understood, of unknown parameters, and of the internal
state of the plant. Based on these sensor observations, and on the control
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objectives, the feedback processor computes what control input to apply.
Via the actuators, appropriate influence is thus exerted on the plant.

Often, the aim of the control action is to steer the to-be-controlled outputs
back to their desired equilibria. This is called stabilization, and will be
studied in Chapters 9 and 10 of this book. However, the goal of the controller
may also be disturbance attenuation: making sure that the disturbance
inputs have limited effect on the to-be-controlled outputs; or it may be
tracking: making sure that the plant can follow exogenous inputs. Or the
design question may be robustness: the controller should be so designed that
the controlled system should meet its specs (that is, that it should achieve
the design specifications, as stability, tracking, or a degree of disturbance
attenuation) for a wide range of plant parameters.

The mathematical techniques used to model the plant, to analyze it, and
to synthesize controllers took a major shift in the late 1950s and early
1960s with the introduction of state space ideas. The classical way of view-
ing a system is in terms of the transfer function from inputs to outputs.
By specifying the way in which exponential inputs transform into expo-
nential outputs, one obtains (at least for linear time-invariant systems) an
insightful specification of a dynamical system. The mathematics underly-
ing these ideas are Fourier and Laplace transforms, and these very much
dominated control theory until the early 1960s. In the early sixties, the
prevalent models used shifted from transfer function to state space models.
Instead of viewing a system simply as a relation between inputs and out-
puts, state space models consider this transformation as taking place via
the transformation of the internal state of the system. When state models
came into vogue, differential equations became the dominant mathemati-
cal framework needed. State space models have many advantages indeed.
They are more akin to the classical mathematical models used in physics,
chemistry, and economics. They provide a more versatile language, espe-
cially because it is much easier to incorporate nonlinear effects. They are
also more adapted to computations. Under the impetus of this new way of
looking at systems, the field expanded enormously. Important new concepts
were introduced, notably (among many others) those of controllability and
observability, which became of central importance in control theory. These
concepts are discussed in Chapter 5.

Three important theoretical developments in control, all using state space
models, characterized the late 1950s: the maximum principle, dynamic pro-
gramming, and the Linear–Quadratic–Gaussian (LQG) problem . As al-
ready mentioned, the maximum principle can be seen as the culmination
of a long, 300-year historical development related to trajectory optimiza-
tion. Dynamic programming provided algorithms for computing optimal
trajectories in feedback form, and it merged the feedback control picture
of Figure P.5 with the optimal path selection problems of the calculus of
variations. The LQG problem, finally, was a true feedback control result:
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it showed how to compute the feedback control processor of Figure P.5 in
order to achieve optimal disturbance attenuation. In this result the plant
is assumed to be linear, the optimality criterion involves an integral of
a quadratic expression in the system variables, and the disturbances are
modeled as Gaussian stochastic processes. Whence the terminology LQG
problem. The LQG problem, unfortunately, falls beyond the scope of this
introductory book. In addition to being impressive theoretical results in
their own right, these developments had a deep and lasting influence on the
mathematical outlook taken in control theory. In order to emphasize this,
it is customary to refer to the state space theory as modern control theory
to distinguish it from the classical control theory described earlier.

Unfortunately, this paradigm shift had its downsides as well. Rather than
aiming for a good balance between mathematics and engineering, the field
of systems and control became mainly mathematics driven. In particular,
mathematical modeling was not given the central place in systems theory
that it deserves. Robustness, i.e., the integrity of the control action against
plant variations, was not given the central place in control theory that it
deserved. Fortunately, this situation changed with the recent formulation
and the solution of what is called theH∞ problem. TheH∞ problem gives a
method for designing a feedback processor as in Figure P.5 that is optimally
robust in some well-defined sense. Unfortunately, the H∞ problem also falls
beyond the scope of this introductory book.

A short description of the contents of this book

Both the transfer function and the state space approaches view a system as
a signal processor that accepts inputs and transforms them into outputs. In
the transfer function approach, this processor is described through the way
in which exponential inputs are transformed into exponential outputs. In
the state space approach, this processor involves the state as intermediate
variable, but the ultimate aim remains to describe how inputs lead to out-
puts. This input/output point of view plays an important role in this book,
particularly in the later chapters. However, our starting point is different,
more general, and, we claim, more adapted to modeling and more suitable
for applications.

As a paradigm for control, input/output or input/state/output models are
often very suitable. Many control problems can be viewed in terms of plants
that are driven by control inputs through actuators and feedback mecha-
nisms that compute the control action on the basis of the outputs of sen-
sors, as depicted in Figure P.5. However, as a tool for modeling dynamical
systems, the input/output point of view is unnecessarily restrictive. Most
physical systems do not have a preferred signal flow direction, and it is im-
portant to let the mathematical structures reflect this. This is the approach
taken in this book: we view systems as defined by any relation among dy-
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namic variables, and it is only when turning to control in Chapters 9 and
10, that we adopt the input/state/output point of view. The general model
structures that we develop in the first half of the book are referred to as
the behavioral approach. We now briefly explain the main underlying ideas.

We view a mathematical model as a subset of a universum of possibili-
ties. Before we accept a mathematical model as a description of reality, all
outcomes in the universum are in principle possible. After we accept the
mathematical model as a convenient description of reality, we declare that
only outcomes in a certain subset are possible. Thus a mathematical model
is an exclusion law: it excludes all outcomes except those in a given subset.
This subset is called the behavior of the mathematical model. Proceeding
from this perspective, we arrive at the notion of a dynamical system as
simply a subset of time-trajectories, as a family of time signals taking on
values in a suitable signal space. This will be the starting point taken in
this book. Thus the input/output signal flow graph emerges in general as a
construct, sometimes a purely mathematical one, not necessarily implying
a physical structure.

We take the description of a dynamical system in terms of its behavior,
thus in terms of the time trajectories that it permits, as the vantage point
from which the concepts put forward in this book unfolds. We are especially
interested in linear time-invariant differential systems: “linearity” means
that these systems obey the superposition principle, “time-invariance” that
the laws of the system do not depend explicitly on time, and “differential”
that they can be described by differential equations. Specific examples of
such systems abound: linear electrical circuits, linear (or linearized) me-
chanical systems, linearized chemical reactions, the majority of the models
used in econometrics, many examples from biology, etc.

Understanding linear time-invariant differential systems requires first of all
an accurate mathematical description of the behavior, i.e., of the solution
set of a system of differential equations. This issue—how one wants to
define a solution of a system of differential equations—turns out to be more
subtle than it may at first appear and is discussed in detail in Chapter 2.
Linear time-invariant differential systems have a very nice structure. When
we have a set of variables that can be described by such a system, then
there is a transparent way of describing how trajectories in the behavior are
generated. Some of the variables, it turns out, are free, unconstrained. They
can thus be viewed as unexplained by the model and imposed on the system
by the environment. These variables are called inputs. However, once these
free variables are chosen, the remaining variables (called the outputs) are
not yet completely specified. Indeed, the internal dynamics of the system
generates many possible trajectories depending on the past history of the
system, i.e., on the initial conditions inside the system. The formalization
of these initial conditions is done by the concept of state. Discovering this



Preface xix

structure of the behavior with free inputs, bound outputs, and the memory,
the state variables, is the program of Chapters 3, 4, and 5.

When one models an (interconnected) physical system from first principles,
then unavoidably auxiliary variables, in addition to the variables modeled,
will appear in the model. Those auxiliary variables are called latent vari-
ables, in order to distinguish them from the manifest variables, which are
the variables whose behavior the model aims at describing. The interaction
between manifest and latent variables is one of the recurring themes in this
book.

We use this behavioral definition in order to study some important features
of dynamical systems. Two important properties that play a central role
are controllability and observability. Controllability refers to the question of
whether or not one trajectory of a dynamical system can be steered towards
another one. Observability refers to the question of what one can deduce
from the observation of one set of system variables about the behavior
of another set. Controllability and observability are classical concepts in
control theory. The novel feature of the approach taken in this book is to
cast these properties in the context of behaviors.

The book uses the behavioral approach in order to present a systematic
view for constructing and analyzing mathematical models. The book also
aims at explaining some synthesis problems, notably the design of control
algorithms. We treat control from a classical, input/output point of view.
It is also possible to approach control problems from a behavioral point of
view. But, while this offers some important advantages, it is still a rela-
tively undeveloped area of research, and it is not ready for exposition in an
introductory text. We will touch on these developments briefly in Section
10.8.

We now proceed to give a chapter-by-chapter overview of the topics covered
in this book.

In the first chapter we discuss the mathematical definition of a dynamical
system that we use and the rationale underlying this concept. The basic
ingredients of this definition are the behavior of a dynamical system as the
central object of study and the notions of manifest and latent variables. The
manifest variables are what the model aims at describing. Latent variables
are introduced as auxiliary variables in the modeling process but are often
also introduced for mathematical reasons, for purposes of analysis, or in
order to exhibit a special property.

In the second chapter, we introduce linear time-invariant differential sys-
tems. It is this model class that we shall be mainly concerned with in this
book. The crucial concept discussed is the notion of a solution - more specif-
ically, of a weak solution of a system of differential equations. As we shall
see, systems of linear time-invariant differential equations are parametrized
by polynomial matrices. An important part of this chapter is devoted to
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the study of properties of polynomial matrices and their interplay with
differential equations.

In the third chapter we study the behavior of linear differential systems in
detail. We prove that the variables in such systems may be divided into two
sets: one set contains the variables that are free (we call them inputs), the
other set contains the variables that are bound (we call them outputs). We
also study how the relation between inputs and outputs can be expressed
as a convolution integral.

The fourth chapter is devoted to state models. The state of a dynamical
system parametrizes its memory, the extent to which the past influences the
future. State equations, that is, the equations linking the manifest variables
to the state, turn out to be first-order differential equations. The output of
a system is determined only after the input and the initial conditions have
been specified.

Chapter 5 deals with controllability and observability. A controllable system
is one in which an arbitrary past trajectory can be steered so as to be
concatenated with an arbitrary future trajectory. An observable system is
one in which the latent variables can be deduced from the manifest variables.
These properties play a central role in control theory.

In the sixth chapter we take another look at latent variable and state space
systems. In particular, we show how to eliminate latent variables and how
to introduce state variables. Thus a system of linear differential equations
containing latent variables can be transformed in an equivalent system in
which these latent variables have been eliminated.

Stability is the topic of Chapter 7. We give the classical stability conditions
of systems of differential equations in terms of the roots of the associated
polynomial or of the eigenvalue locations of the system matrix. We also
discuss the Routh–Hurwitz tests, which provide conditions for polynomials
to have only roots with negative real part.

Up to Chapter 7, we have treated systems in their natural, time-domain
setting. However, linear time-invariant systems can also be described by the
way in which they process sinusoidal or, more generally, exponential sig-
nals. The resulting frequency domain description of systems is explained in
Chapter 8. In addition, we discuss some characteristic features and nomen-
clature for system responses related to the step response and the frequency
domain properties.

The remainder of the book is concerned with control theory. Chapter 9
starts with an explanation of the difference between open-loop and feedback
control. We subsequently prove the pole placement theorem. This theorem
states that for a controllable system, there exists, for any desired monic
polynomial, a state feedback gain matrix such that the eigenvalues of the
closed loop system are the roots of the desired polynomial. This result,
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called the pole placement theorem, is one of the central achievements of
modern control theory.

The tenth chapter is devoted to observers: algorithms for deducing the sys-
tem state from measured inputs and outputs. The design of observers is very
similar to the stabilization and pole placement procedures. Observers are
subsequently used in the construction of output feedback compensators.
Three important cybernetic principles underpin our construction of ob-
servers and feedback compensators. The first principle is error feedback:
The estimate of the state is updated through the error between the actual
and the expected observations. The second is certainty equivalence. This
principle suggest that when one needs the value of an unobserved variable,
for example for determining the suitable control action, it is reasonable to
use the estimated value of that variable, as if it were the exact value. The
third cybernetic principle used is the separation principle. This implies that
we will separate the design of the observer and the controller. Thus the ob-
server is not designed with its use for control in mind, and the controller
is not adapted to the fact that the observer produces only estimates of the
state.

Notes and references

There are a number of books on the history of control. The origins of control,
going back all the way to the Babylonians, are described in [40]. Two other his-
tory books on the subject, spanning the period from the industrial revolution to
the postwar era, are [10, 11]. The second of these books has a detailed account of
the invention of the PID regulator and the negative feedback amplifier. A collec-
tion of historically important papers, including original articles by Maxwell, Hur-
witz, Black, Nyquist, Bode, Pontryagin, and Bellman, among others, have been
reprinted in [9]. The history of the brachystochrone problem has been recounted
in most books on the history of mathematics. Its relation to the maximum prin-
ciple is described in [53]. The book [19] contains the history of the calculus of
variations.

There are numerous books that explain classical control. Take any textbook on

control written before 1960. The state space approach to systems, and the de-

velopment of the LQG problem happened very much under the impetus of the

work of Kalman. An inspiring early book that explains some of the main ideas is

[15]. The special issue [5] of the IEEE Transactions on Automatic Control con-

tains a collection of papers devoted to the Linear–Quadratic–Gaussian problem,

up-to-date at the time of publication. Texts devoted to this problem are, for

example, [33, 3, 4]. Classical control theory emphasizes simple, but nevertheless

often very effective and robust, controllers. Optimal control à la Pontryagin and

LQ control aims at trajectory transfer and at shaping the transient response;

LQG techniques center on disturbance attenuation; while H∞ control empha-

sizes regulation against both disturbances and plant uncertainties. The latter,

H∞ control, is an important recent development that originated with the ideas

of Zames [66]. This theory culminated in the remarkable double-Riccati-equation
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paper [16]. The behavioral approach originated in [55] and was further developed,

for example, in [56, 57, 58, 59, 60] and in this book. In [61] some control synthesis

ideas are put forward from this vantage point.
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Dynamical Systems

1.1 Introduction

We start this book at the very beginning, by asking ourselves the question,
What is a dynamical system?

Disregarding for a moment the dynamical aspects—forgetting about time—
we are immediately led to ponder the more basic issue, What is a math-
ematical model? What does it tell us? What is its mathematical nature?
Mind you, we are not asking a philosophical question: we will not engage
in an erudite discourse about the relation between reality and its math-
ematical description. Neither are we going to elucidate the methodology
involved in actually deriving, setting up, postulating mathematical models.
What we are asking is the simple question, When we accept a mathematical
expression, a formula, as an adequate description of a phenomenon, what
mathematical structure have we obtained?

We view a mathematical model as an exclusion law. A mathematical model
expresses the opinion that some things can happen, are possible, while oth-
ers cannot, are declared impossible. Thus Kepler claims that planetary or-
bits that do not satisfy his three famous laws are impossible. In particular,
he judges nonelliptical orbits as unphysical. The second law of thermo-
dynamics limits the transformation of heat into mechanical work. Certain
combinations of heat, work, and temperature histories are declared to be
impossible. Economic production functions tell us that certain amounts
of raw materials, capital, and labor are needed in order to manufacture a
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finished product: it prohibits the creation of finished products unless the
required resources are available.

We formalize these ideas by stating that a mathematical model selects a
certain subset from a universum of possibilities. This subset consists of the
occurrences that the model allows, that it declares possible. We call the
subset in question the behavior of the mathematical model.

True, we have been trained to think of mathematical models in terms of
equations. How do equations enter this picture? Simply, an equation can be
viewed as a law excluding the occurrence of certain outcomes, namely, those
combinations of variables for which the equations are not satisfied. This
way, equations define a behavior. We therefore speak of behavioral equa-
tions when mathematical equations are intended to model a phenomenon.
It is important to emphasize already at this point that behavioral equations
provide an effective, but at the same time highly nonunique, way of spec-
ifying a behavior. Different equations can define the same mathematical
model. One should therefore not exaggerate the intrinsic significance of a
specific set of behavioral equations.

In addition to behavioral equations and the behavior of a mathematical
model, there is a third concept that enters our modeling language ab initio:
latent variables. We think of the variables that we try to model as manifest
variables: they are the attributes on which the modeler in principle focuses
attention. However, in order to come up with a mathematical model for a
phenomenon, one invariably has to consider other, auxiliary, variables. We
call them latent variables. These may be introduced for no other reason
than in order to express in a convenient way the laws governing a model.
For example, when modeling the behavior of a complex system, it may be
convenient to view it as an interconnection of component subsystems. Of
course, the variables describing these subsystems are, in general, different
from those describing the original system. When modeling the external ter-
minal behavior of an electrical circuit, we usually need to introduce the
currents and voltages in the internal branches as auxiliary variables. When
expressing the first and second laws of thermodynamics, it has been proven
convenient to introduce the internal energy and entropy as latent variables.
When discussing the synthesis of feedback control laws, it is often impera-
tive to consider models that display their internal state explicitly. We think
of these internal variables as latent variables. Thus in first principles mod-
eling, we distinguish two types of variables. The terminology first principles
modeling refers to the fact that the physical laws that play a role in the
system at hand are the elementary laws from physics, mechanics, electrical
circuits, etc.

This triptych—behavior/behavioral equations/manifest and latent vari-
ables—is the essential structure of our modeling language. The fact that we
take the behavior, and not the behavioral equations, as the central object
specifying a mathematical model has the consequence that basic system
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properties (such as time-invariance, linearity, stability, controllability, ob-
servability) will also refer to the behavior. The subsequent problem then
always arises how to deduce these properties from the behavioral equations.

1.2 Models

1.2.1 The universum and the behavior

Assume that we have a phenomenon that we want to model. To start with,
we cast the situation in the language of mathematics by assuming that the
phenomenon produces outcomes in a set U, which we call the universum.
Often U consists of a product space, for example a finite dimensional vector
space. Now, a (deterministic) mathematical model for the phenomenon
(viewed purely from the black-box point of view, that is, by looking at the
phenomenon only from its terminals, by looking at the model as descriptive
but not explanatory) claims that certain outcomes are possible, while others
are not. Hence a model recognizes a certain subset B of U. This subset is
called the behavior (of the model). Formally:

Definition 1.2.1 A mathematical model is a pair (U,B) with U a set,
called the universum—its elements are called outcomes—and B a subset
of U, called the behavior. �

Example 1.2.2 During the ice age, shortly after Prometheus stole fire
from the gods, man realized that H2O could appear, depending on the
temperature, as liquid water, steam, or ice. It took a while longer before this
situation was captured in a mathematical model. The generally accepted
model, with the temperature in degrees Celsius, is U ={ice, water, steam}×
[−273,∞) and B = (({ice}× [−273, 0])∪ ({water }× [0, 100])∪ ({steam}×
[100,∞)). �

Example 1.2.3 Economists believe that there exists a relation between
the amount P produced of a particular economic resource, the capital K
invested in the necessary infrastructure, and the labor L expended towards
its production. A typical model looks like U = R3

+ and B = {(P,K,L) ∈
R3

+ | P = F (K,L)}, where F : R2
+ → R+ is the production function.

Typically, F : (K,L) 7→ αKβLγ , with α, β, γ ∈ R+, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1,
constant parameters depending on the production process, for example the
type of technology used. Before we modeled the situation, we were ready to
believe that every triple (P,K,L) ∈ R3

+ could occur. After introduction of
the production function, we limit these possibilities to the triples satisfying
P = αKβLγ . The subset of R3

+ obtained this way is the behavior in the
example under consideration.
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�

1.2.2 Behavioral equations

In applications, models are often described by equations (see Example
1.2.3). Thus the behavior consists of those elements in the universum for
which “balance” equations are satisfied.

Definition 1.2.4 Let U be a universum, E a set, and f1, f2 : U→ E. The
mathematical model (U,B) with B = {u ∈ U | f1(u) = f2(u)} is said to
be described by behavioral equations and is denoted by (U,E, f1, f2). The
set E is called the equating space. We also call (U,E, f1, f2) a behavioral
equation representation of (U,B). �

Often, an appropriate way of looking at f1(u) = f2(u) is as equilibrium
conditions: the behavior B consists of those outcomes for which two (sets
of) quantities are in balance.

Example 1.2.5 Consider an electrical resistor. We may view this as im-
posing a relation between the voltage V across the resistor and the current
I through it. Ohm recognized more than a century ago that (for metal
wires) the voltage is proportional to the current: V = RI, with the propor-
tionality factor R called the resistance. This yields a mathematical model
with universum U = R2 and behavior B, induced by the behavioral equa-
tion V = RI. Here E = R, f1 : (V, I) 7→ V , and f2(V, I) : I 7→ RI. Thus
B = {(I, V ) ∈ R2 | V = RI}.
Of course, nowadays we know many devices imposing much more com-
plicated relations between V and I, which we nevertheless choose to call
(non-Ohmic) resistors. An example is an (ideal) diode, given by the (I, V )
characteristic B = {(I, V ) ∈ R2 | (V ≥ 0 and I = 0) or (V = 0 and
I ≤ 0)}. Other resistors may exhibit even more complex behavior, due to
hysteresis, for example.

�

Example 1.2.6 Three hundred years ago, Sir Isaac Newton discovered
(better: deduced from Kepler’s laws since, as he put it, Hypotheses non
fingo) that masses attract each other according to the inverse square law.
Let us formalize what this says about the relation between the force F and
the position vector q of the mass m. We assume that the other mass M
is located at the origin of R3. The universum U consists of all conceivable
force/position vectors, yielding U =R3 × R3. After Newton told us the

behavioral equations F = −kmMq
‖q‖3 , we knew more: B = {(F, q) ∈ R3 ×
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R3 | F = −kmMq
‖q‖3 }, with k the gravitational constant, k = 6.67 × 10−8

cm3/g.sec2. Note that B has three degrees of freedom–down three from the
six degrees of freedom in U. �

In many applications models are described by behavioral inequalities . It
is easy to accommodate this situation in our setup. Simply take in the
above definition E to be an ordered space and consider the behavioral
inequality f1(u) ≤ f2(u). Many models in operations research (e.g., in
linear programming) and in economics are of this nature. In this book we
will not pursue models described by inequalities.

Note further that whereas behavioral equations specify the behavior
uniquely, the converse is obviously not true. Clearly, if f1(u) = f2(u) is
a set of behavioral equations for a certain phenomenon and if f : E→ E′ is
any bijection, then the set of behavioral equations (f ◦ f1)(u) = (f ◦ f2)(u)
form another set of behavioral equations yielding the same mathematical
model. Since we have a tendency to think of mathematical models in terms
of behavioral equations, most models being presented in this form, it is
important to emphasize their ancillary role: it is the behavior, the solution
set of the behavioral equations, not the behavioral equations themselves, that
is the essential result of a modeling procedure.

1.2.3 Latent variables

Our view of a mathematical model as expressed in Definition 1.2.1 is as
follows: identify the outcomes of the phenomenon that we want to model
(specify the universum U) and identify the behavior (specify B ⊆ U).
However, in most modeling exercises we need to introduce other variables
in addition to the attributes in U that we try to model. We call these other,
auxiliary, variables latent variables. In a bit, we will give a series of instances
where latent variables appear. Let us start with two concrete examples.

Example 1.2.7 Consider a one-port resistive electrical circuit. This con-
sists of a graph with nodes and branches. Each of the branches contains
a resistor, except one, which is an external port. An example is shown in
Figure 1.1. Assume that we want to model the port behavior, the rela-
tion between the voltage drop across and the current through the external
port. Introduce as auxiliary variables the voltages (V1, . . . , V5) across and
the currents (I1, . . . , I5) through the internal branches, numbered in the
obvious way as indicated in Figure 1.1. The following relations must be
satisfied:

• Kirchhoff’s current law: the sum of the currents entering each node
must be zero;
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• Kirchhoff’s voltage law: the sum of the voltage drops across the
branches of any loop must be zero;

• The constitutive laws of the resistors in the branches.

I

port
external

−
V

R4

R1

R3

R2

R5

+

FIGURE 1.1. Electrical circuit with resistors only.

These yield:

Constitution laws Kirchhoff’s current laws Kirchhoff’s voltage laws

R1I1 = V1, I = I1 + I2, V1 + V4 = V,
R2I2 = V2, I1 = I3 + I4, V2 + V5 = V,
R3I3 = V3, I5 = I2 + I3, V1 + V4 = V2 + V5,
R4I4 = V4, I = I4 + I5, V1 + V3 = V2,
R5I5 = V5, V3 + V5 = V4.

Our basic purpose is to express the relation between the voltage across and
current into the external port. In the above example, this is a relation of
the form V = RI (where R can be calculated from R1, R2, R3, R4, and R5),
obtained by eliminating (V1, . . . , V5, I1, . . . , I5) from the above equations.
However, the basic model, the one obtained from first principles, involves
the variables (V1, . . . , V5, I1, . . . , I5) in addition to the variables (V, I) whose
behavior we are trying to describe. The node voltages and the currents
through the internal branches (the variables (V1, . . . , V5, I1, . . . , I5) in the
above example) are thus latent variables. The port variables (V, I) are the
manifest variables. The relation between I and V is obtained by eliminating
the latent variables. How to do that in a systematic way is explained in
Chapter 6. See also Exercise 6.1. �

Example 1.2.8 An economist is trying to figure out how much of a pack-
age of n economic goods will be produced. As a firm believer in equilib-
rium theory, our economist assumes that the production volumes consist
of those points where, product for product, the supply equals the demand.
This equilibrium set is a subset of Rn

+. It is the behavior that we are look-
ing for. In order to specify this set, we can proceed as follows. Introduce
as latent variables the price, the supply, and the demand of each of the
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n products. Next determine, using economic theory or experimentation,
the supply and demand functions Si : Rn

+ → R+ and Di : Rn
+ → R+.

Thus Si(p1, p2, . . . , pn) and Di(p1, p2, . . . , pn) are equal to the amount of
product i that is bought and produced when the going market prices are
p1, p2, . . . , pn. This yields the behavioral equations

si = Si(p1, p2, . . . , pn),
di = Di(p1, p2, . . . , pn),
si = di = Pi, i = 1, 2, . . . , n.

These behavioral equations describe the relation between the prices pi, the
supplies si, the demands di, and the production volumes Pi. The Pis for
which these equations are solvable yield the desired behavior. Clearly, this
behavior is most conveniently specified in terms of the above equations, that
is, in terms of the behavior of the variables pi, si, di, and Pi(i = 1, 2, . . . , n)
jointly. The manifest behavioral equations would consist of an equation
involving P1, P2, . . . , Pn only. �

These examples illustrate the following definition.

Definition 1.2.9 A mathematical model with latent variables is defined as
a triple (U,Uℓ,Bf) with U the universum of manifest variables, Uℓ the uni-
versum of latent variables, and Bf ⊆ U×Uℓ the full behavior. It defines the
manifest mathematical model (U,B) with B := {u ∈ U | ∃ℓ ∈ Uℓ such that
(u, ℓ) ∈ Bf}; B is called the manifest behavior (or the external behavior)
or simply the behavior. We call (U,Uℓ,Bf) a latent variable representation
of (U,B). �

Note that in our framework we view the attributes in U as those variables
that the model aims at describing. We think of these variables as mani-
fest , as external . We think of the latent variables as auxiliary variables,
as internal . In pondering about the difference between manifest variables
and latent variables it is helpful in the first instance to think of the sig-
nal variables being directly measurable; they are explicit, while the latent
variables are not: they are implicit, unobservable, or—better—only indi-
rectly observable through the manifest variables. Examples: in pedagogy,
scores of tests can be viewed as manifest, and native or emotional intelli-
gence can be viewed as a latent variable aimed at explaining these scores.
In thermodynamics, pressure, temperature, and volume can be viewed as
manifest variables, while the internal energy and entropy can be viewed
as latent variables. In economics, sales can be viewed as manifest, while
consumer demand could be considered as a latent variable. We emphasize,
however, that which variables are observed and measured through sensors,
and which are not, is something that is really part of the instrumentation
and the technological setup of a system. Particularly, in control applications
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one should not be nonchalant about declaring certain variables measurable
and observed. Therefore, we will not further encourage the point of view
that identifies manifest with observable, and latent with unobservable.

Situations in which basic models use latent variables either for mathematical
reasons or in order to express the basic laws occur very frequently. Let us
mention a few: internal voltages and currents in electrical circuits in order to
express the external port behavior;momentum in Hamiltonian mechanics in
order to describe the evolution of the position; internal energy and entropy
in thermodynamics in order to formulate laws restricting the evolution of
the temperature and the exchange of heat and mechanical work; prices in
economics in order to explain the production and exchange of economic
goods; state variables in system theory in order to express the memory of
a dynamical system; the wave function in quantum mechanics underlying
observables; and finally, the basic probability space Ω in probability theory:
the big latent variable space in the sky, our example of a latent variable
space par excellence.

Latent variables invariably appear whenever we model a system by the
method of tearing and zooming. The system is viewed as an interconnection
of subsystems, and the modeling process is carried out by zooming in on the
individual subsystems. The overall model is then obtained by combining
the models of the subsystems with the interconnection constraints. This
ultimate model invariably contains latent variables: the auxiliary variables
introduced in order to express the interconnections play this role.

Of course, equations can also be used to express the full behavior Bf of a
latent variable model (see Examples 1.2.7 and 1.2.8). We then speak of full
behavioral equations.

1.3 Dynamical Systems

We now apply the ideas of Section 1.2 in order to set up a language for
dynamical systems. The adjective dynamical refers to phenomena with a
delayed reaction, phenomena with an aftereffect, with transients, oscilla-
tions, and, perhaps, an approach to equilibrium. In short, phenomena in
which the time evolution is one of the crucial features. We view a dynami-
cal system in the logical context of Definition 1.2.1 simply as a mathemat-
ical model, but a mathematical model in which the objects of interest are
functions of time: the universum is a function space. We take the point of
view that a dynamical system constrains the time signals that the system
can conceivably produce. The collection of all the signals compatible with
these laws defines what we call the behavior of the dynamical system. This
yields the following definition.
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1.3.1 The basic concept

Definition 1.3.1 A dynamical system Σ is defined as a triple

Σ = (T,W,B),

with T a subset of R, called the time axis, W a set called the signal space,
and B a subset of WT called the behavior (WT is standard mathematical
notation for the collection of all maps from T to W). �

The above definition will be used as a leitmotiv throughout this book. The
set T specifies the set of time instances relevant to our problem. Usually
T equals R or R+ (in continuous-time systems), Z or Z+ (in discrete-time
systems), or, more generally, an interval in R or Z.

The set W specifies the way in which the outcomes of the signals pro-
duced by the dynamical system are formalized as elements of a set. These
outcomes are the variables whose evolution in time we are describing. In
what are called lumped systems, systems with a few well-defined simple
components each with a finite number of degrees of freedom, W is usually
a finite-dimensional vector space. Typical examples are electrical circuits
and mass–spring–damper mechanical systems. In this book we consider al-
most exclusively lumped systems. They are of paramount importance in
engineering, physics, and economics. In distributed systems, W is often an
infinite-dimensional vector space. For example, the deformation of flexible
bodies or the evolution of heat in media are typically described by partial
differential equations that lead to an infinite-dimensional function space W.
In areas such as digital communication and computer science, signal spaces
W that are finite sets play an important role. When W is a finite set, the
term discrete-event systems is often used.

In Definition 1.3.1 the behavior B is simply a family of time trajectories
taking their values in the signal space. Thus elements of B constitute pre-
cisely the trajectories compatible with the laws that govern the system: B
consists of all time signals which—according to the model—can conceiv-
ably occur, are compatible with the laws governing Σ, while those outside
B cannot occur, are prohibited. The behavior is hence the essential feature
of a dynamical system.

Example 1.3.2 According to Kepler, the motion of planets in the solar
system obeys three laws:

(K.1) planets move in elliptical orbits with the sun at one of the foci;

(K.2) the radius vector from the sun to the planet sweeps out equal areas
in equal times;

(K.3) the square of the period of revolution is proportional to the third
power of the major axis of the ellipse.
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If a definition is to show proper respect and do justice to history, Kepler’s
laws should provide the very first example of a dynamical system. They do.
Take T = R (disregarding biblical considerations and modern cosmology:
we assume that the planets have always been there, rotating, and will
always rotate), W = R3 (the position space of the planets), and B = {w :
R→ R3 | Kepler’s laws are satisfied}. Thus the behaviorB in this example
consists of the planetary motions that, according to Kepler, are possible, all
trajectories mapping the time-axis R into R3 that satisfy his three famous
laws. Since for a given trajectory w : R→ R3 one can unambiguously decide
whether or not it satisfies Kepler’s laws, B is indeed well-defined. Kepler’s
laws form a beautiful example of a dynamical system in the sense of our
definition, since it is one of the few instances in which B can be described
explicitly, and not indirectly through differential equations. It took no lesser
man than Newton to think up appropriate behavioral differential equations
for this dynamical system. �

Example 1.3.3 Let us consider the motion of a particle in a potential
field subject to an external force. The purpose of the model is to relate the
position q of the particle in R3 to the external force F . Thus W, the signal
space, equals R3 × R3: three components for the position q, three for the
force F . Let V : R3 → R denote the potential field. Then the trajectories
(q, F ), which, according to the laws of mechanics, are possible, are those
that satisfy the differential equation

m
d2q

dt2
+ V ′(q) = F,

where m denotes the mass of the particle and V ′ the gradient of V . For-
malizing this model as a dynamical system yields T = R, W =R3×R3, and

B = {(q, F ) | R→ R3 × R3 | md2q
dt2 + V ′(q) = F}. �

1.3.2 Latent variables in dynamical systems

The definition of a latent variable model is easily generalized to dynamical
systems.

Definition 1.3.4 A dynamical system with latent variables is defined as
ΣL = (T,W,L,Bf) with T ⊆ R the time-axis, W the (manifest) signal
space, L the latent variable space, and Bf ⊆ (W× L)T the full behavior. It
defines a latent variable representation of the manifest dynamical system
Σ = (T,W,B) with (manifest) behavior B := {w : T → W | ∃ ℓ : T →
L such that (w, ℓ) ∈ Bf}. �

Sometimes we will refer to the full behavior as the internal behavior and to
the manifest behavior as the external behavior. Note that in a dynamical
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system with latent variables each trajectory in the full behavior Bf consists
of a pair (w, ℓ) with w : T → W and ℓ : T → L. The manifest signal w is
the one that we are really interested in. The latent variable signal ℓ in a
sense “supports” w. If (w, ℓ) ∈ Bf , then w is a possible manifest variable
trajectory since ℓ can occur simultaneously with w.

Let us now look at two typical examples of how dynamical models are
constructed from first principles. We will see that latent variables are un-
avoidably introduced in the process. Thus, whereas Definition 1.3.1 is a
good concept as a basic notion of a dynamical system, typical models will
involve additional variables to those whose behavior we wish to model.

Example 1.3.5 Our first example considers the port behavior of the elec-
trical circuit shown in Figure 1.2. We assume that the elements RC , RL, L,

IRC

IC

−
V

L

V

VRC

VC VRL

VL

−
+

environment

system

RL

I

+

−

RC

C

I

IRL

IL

−

+

−

+

+

− +

FIGURE 1.2. Electrical circuit.

and C all have positive values. The circuit interacts with its environment
through the external port. The variables that describe this interaction are
the current I into the circuit and the voltage V across its external termi-
nals. These are the manifest variables. Hence W = R2. As time- axis in
this example we take T = R. In order to specify the port behavior, we in-
troduce as auxiliary variables the currents through and the voltages across
the internal branches of the circuit, as shown in Figure 1.2. These are the
latent variables. Hence L = R8.

The following equations specify the laws governing the dynamics of this
circuit. They define the relations between the manifest variables (the port
current and voltage) and the latent variables (the branch voltages and
currents). These equations constitute the full behavioral equations.

Constitutive equations:

VRC
= RCIRC

, VRL
= RLIRL

, C
dVC
dt

= IC , L
dIL
dt

= VL;

(1.1)
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Kirchhoff’s current laws:

I = IRC
+ IL, IRC

= IC , IL = IRL
, IC + IRL

= I; (1.2)

Kirchhoff’s voltage laws:

V = VRC
+ VC , V = VL + VRL

, VRC
+ VC = VL + VRL

. (1.3)

In what sense do these equations specify a manifest behavior? In principle
this is clear from Definition 1.3.4. But is there a more explicit way of
describing the manifest behavior other than through (1.1, 1.2, 1.3)? Let
us attempt to eliminate the latent variables in order to come up with an
explicit relation involving V and I only. In the example at hand we will do
this elimination in an ad hoc fashion. In Chapter 6, we will learn how to
do it in a systematic way.

Note first that the constitutive equations (1.1) allow us to eliminate VRC
,

VRL
, IC , and VL from equations (1.2, 1.3). These may hence be replaced

by

I = IRC
+ IL, IRC

= C
dVC
dt

, IL = IRL
, (1.4)

V = RCIRC
+ VC , V = L

dIL
dt

+RLIRL
. (1.5)

Note that we have also dropped the equations IC + IRL
= I and VRC

+
VC = VL + VRL

, since these are obviously redundant. Next, use IRL
= IL

and IRC
= V−VC

RC
to eliminate IRL

and IRC
from (1.4) and (1.5) to obtain

RLIL + L
dIL
dt

= V, (1.6)

VC + CRC
dVC
dt

= V, (1.7)

I =
V − VC
RC

+ IL. (1.8)

We should still eliminate IL and VC from equations (1.6, 1.7, 1.8) in order
to come up with an equation that contains only the variables V and I. Use
equation (1.8) in (1.6) to obtain

VC +
L

RL

dVC
dt

= (1 +
RC

RL
)V +

L

RL

dV

dt
−RcI −

LRC

RL

dI

dt
, (1.9)

VC + CRC
dVC
dt

= V. (1.10)

Next, divide (1.9) by L
RL

and (1.10) by CRC , and subtract. This yields

(
RL

L
− 1

CRC
)VC = (

RC

L
+
RL

L
− 1

CRC
)V +

dV

dt
− RCRL

L
I−RC

dI

dt
. (1.11)
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Now it becomes necessary to consider two cases:

Case 1: CRC 6= L
RL

. Solve (1.11) for VC and substitute into (1.10). This
yields, after some rearranging,

(
RC

RL
+(1+

RC

RL
)CRC

d

dt
+CRC

L

RL

d2

dt2
)V = (1+CRC

d

dt
)(1+

L

RL

d

dt
)RCI

(1.12)
as the relation between V and I.

Case 2: CRC = L
RL

. Then (1.11) immediately yields

(
RC

RL
+ CRC

d

dt
)V = (1 + CRC

d

dt
)RCI (1.13)

as the relation between V and I. We claim that equations (1.12, 1.13)
specify the manifest behavior defined by the full behavioral equations (1.1,
1.2, 1.3). Indeed, our derivation shows that (1.1, 1.2, 1.3) imply (1.12, 1.13).
But we should also show the converse. We do not enter into the details here,
although in the case at hand it is easy to prove that (1.12, 1.13) imply (1.1,
1.2, 1.3). This issue will be discussed in full generality in Chapter 6.

This example illustrates a number of issues that are important in the sequel.
In particular:

1. The full behavioral equations (1.1, 1.2, 1.3) are all linear differential
equations. (Note: we consider algebraic relations as differential equations
of order zero). The manifest behavior, it turns out, is also described by a
linear differential equation, (1.12) or (1.13). A coincidence? Not really: in
Chapter 6 we will learn that this is the case in general.

2. The differential equation describing the manifest behavior is (1.12) when
CRC 6= L

RL
. This is an equation of order two. When CRC = L

RL
, however,

it is given by (1.13), which is of order one. Thus the order of the differen-
tial equation describing the manifest behavior turns out to be a sensitive
function of the values of the circuit elements.

3. We need to give an interpretation to the anomalous case CRC = L
RL

, in
the sense that for these values a discontinuity appears in the manifest be-
havioral equations. This interpretation, it turns out, is observability, which
will be discussed in Chapter 5. �

Example 1.3.6 As a second example for the occurrence of latent variables,
let us consider a Leontieff model for an economy in which several economic
goods are transformed by means of a number of production processes. We
are interested in describing the evolution in time of the total utility of the
goods in the economy. Assume that there are N production processes in
which n economic goods are transformed into goods of the same kind, and
that in order to produce one unit of good j by means of the k th production
process, we need at least akij units of good i. The real numbers akij , k ∈ N :=
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{1, 2, . . . , N}, i, j ∈ n := {1, 2, . . . , n}, are called the technology coefficients.
We assume that in each time unit one production cycle takes place.

Denote by

qi(t) the quantity of product i available at time t
uki (t) the quantity of product i assigned to the production process k

at time t,
yki (t) the quantity of product i acquired from the production process

k at time t.

Then the following hold:

n∑

k=1

uki (t) ≤ qi(t) ∀i ∈ n,

n∑

i=1

akiju
k
i (t) ≥ ykj (t+ 1) ∀k ∈ N, i ∈ n,

qi(t) ≤
n∑

k=1

yki (t) ∀i ∈ n.

(1.14)

The underlying structure of the economy is shown in Figure 1.3. The differ-
ences between the right-hand and left-hand sides of the above inequalities
are due to such things as inefficient production, imbalance of the available
products, consumption, and other forms of waste. Now assume that the to-

system

u1
i (t); i ∈ n

process

process

1

k

N

yki (t+ 1); i ∈ n qi(t+ 1); i ∈ n

y1i (t+ 1); i ∈ n

uN
i (t); i ∈ n

qi(t); i ∈ n uk
i (t); i ∈ n

production yNi (t+ 1); i ∈ n

production

process
production

environment

FIGURE 1.3. Leontieff economy.
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tal utility of the goods in the economy is a function of the available amount
of goods q1, q2, . . . , qn; i.e., J : Z→ R+ is given by

J(t) = η(q1(t), . . . , qn(t)),

with η : Rn
+ → R+ a given function, the utility. For example, if we identify

utility with resale value (in dollars, say), then η(q1, q2, . . . , qn) is equal to
∑n

k=1 piqi with pi the per unit selling price of good i.

How does this example fit in our modeling philosophy?

The first question to ask is, What is the time-set? It is reasonable to take
T = Z. This does not mean that we believe that the products have always
existed and that the factories in question are blessed with life eternal. What
instead it says is that for the purposes of our analysis it is reasonable to
assume that the production cycles have already taken place very many
times before and that we expect very many more production cycles to
come.

The second question is, What are we trying to model? What is our signal
space? As die-hard utilitarians we decide that all we care about is the total
utility J , whence W =R+.

The third question is, How is the behavior defined? This is done by in-
equalities (1.14). Observe that these inequalities involve, in addition to
the manifest variable J , as latent variables the us, qs, and ys. Hence
L = Rn

+ × Rn×m
+ × Rn×p

+ .

The full behavior is now defined as consisting of those trajectories satisfy-
ing the behavioral difference inequalities (1.14). These relations define the
intrinsic dynamical system with T = Z, W =R+, and the manifest behav-
ior B = {J : Z → R+ | ∃ qi : Z → R+, u

k
i : Z → R+, y

k
i : Z → R+,

i ∈ n, k ∈ N , such that the inequalities (1.14) are satisfied for all t ∈ Z}.
Note that in contrast to the previous example, where it was reasonably easy
to obtain behavioral equations (1.12) or (1.13) explicitly in terms of the
external attributes V and I, it appears impossible in the present example
to eliminate the qs, us, and ys and obtain an explicit behavioral equation
(or, more likely, inequality) describing B entirely in terms of the J , the
variables of interest in this example. �

1.4 Linearity and Time-Invariance

Until now we have discussed dynamical systems purely on a set-theoretic
level. In order to obtain a workable theory it is necessary to impose more
structure. Of particular importance in applications are linearity and time-
invariance. These notions are now introduced.
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Definition 1.4.1 A dynamical system Σ = (T,W,B) is said to be linear
if W is a vector space (over a field F: for the purposes of this book, think
of it as R or C), and B is a linear subspace of WT (which is a vector space
in the obvious way by pointwise addition and multiplication by a scalar).

�

Thus linear systems obey the superposition principle in its ultimate and
very simplest form: {w1(·), w2(·) ∈ B;α, β ∈ F} ⇒ {αw1(·) + βw2(·) ∈ B}.
Time-invariance is a property of dynamical systems governed by laws that
do not explicitly depend on time: if one trajectory is legal (that is, in the
behavior), then the shifted trajectory is also legal .

Definition 1.4.2 A dynamical system Σ = (T,W,B) with T = Z or R is
said to be time-invariant if σtB = B for all t ∈ T (σt denotes the backward
t-shift: (σtf)(t′) := f(t′ + t)). If T = Z, then this condition is equivalent
to σB = B. If T = Z+ or R+, then time-invariance requires σtB ⊆ B for
all t ∈ T. In this book we will almost exclusively deal with T = R or Z,
and therefore we may as well think of time-invariance as σtB = B. The
condition σtB = B is called shift-invariance of B. �

Essentially all the examples that we have seen up to now are examples of
time-invariant systems.

Example 1.4.3 As an example of a time-varying system, consider the
motion of a point-mass with a time-varying mass m(·), for example, a
burning rocket. The differential equation describing this motion is given by

d

dt
(m(t)

d

dt
q) = F.

If we view this as a model for the manifest variables (q, F ) ∈ R3×R3, then
the resulting dynamical system is linear but time-varying. If we view this
as a model for the manifest variables (q, F,m) ∈ R3 × R3 × R+, then the
resulting dynamical system is time-invariant but nonlinear (see Exercise
1.5). �

The notion of linearity and time-invariance can in an obvious way be ex-
tended to latent variable dynamical systems. We will not explicitly write
down these formal definitions.

1.5 Dynamical Behavioral Equations

In most models encountered in applications, the behavior is described
through equations. The behavior, a subset of a universum, is then simply
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defined as those elements of this universum satisfying a set of equations,
called behavioral equations. In dynamical systems these behavioral equa-
tions often take the form of differential equations or of integral equations.
All of our examples have been of this type. Correction: all except Kepler’s
laws, Example 1.3.2, where the behavior was described explicitly, although
even there one could associate equations to K.1, K.2, and K.3.

We now formalize this. We describe first the ideas in terms of difference
equations, since they involve the fewest difficulties of a technical mathemati-
cal nature. A behavioral difference equation representation of a discrete-time
dynamical system with time-axis T = Z and signal space W is defined by
a nonnegative integer L (called the lag, or the order of the difference equa-
tion), a set E (called the equating space), and two maps f1, f2 : WL+1 → E,
yielding the difference equations

f1(w, σw, . . . , σ
L−1w, σLw) = f2(w, σw, . . . , σ

L−1w, σLw).

Note that this is nothing more than a compact way of writing the difference
equation

f1(w(t), w(t+ 1), . . . , w(t+ L)) = f2(w(t), w(t+ 1), . . . , w(t+ L)).

These equations define the behavior by

B={w : Z→W | f1(w, σw, . . . , σL−1w, σLw)=f2(w, σw, . . . , σ
L−1w, σLw)}.

In many applications it is logical to consider difference equations that have
both positive and negative lags, yielding the behavioral equations

f1(σ
Lminw, σLmin+1w, . . . , σLmaxw) = f2(σ

Lminw, σLmin+1w, . . . , σLmaxw).
(1.15)

We call Lmax−Lmin the lag of this difference equation. We assume Lmax ≥
Lmin, but either or both of them could be negative. Whether forward lags
(powers of σ) or backward lags (powers of σ−1) are used is much a matter of
tradition. In control theory, forward lags are common, but econometricians
like backward lags. The behavior defined by (1.15) is

B = {w : Z→W | f1(σLminw, . . . , σLmaxw) = f2(σ
Lminw, . . . , σLmaxw)}.

It is clear that the system obtained this way defines a time-invariant dy-
namical system.

Example 1.5.1 As a simple example, consider the following algorithm for
computing the moving average of a time-series:

a(t) =
T∑

k=−T

αks(t+ k),
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where the αks are nonnegative weighting coefficients that sum to 1. In the
above equation a(t) denotes the (real-valued) moving average at time t,
and s denotes the time-series of which the moving average is taken. This
equation can easily be cast in the form (1.15) by taking Lmin = −T,Lmax =
T , and defining f1 and f2 in the obvious way. This example shows that it
is often convenient to use both negative and positive lags. �

The continuous-time analogue of a behavioral difference equation is a be-
havioral differential equation. Let T = R, and assume that the signal space
W is Rq. Let L be a nonnegative integer (called the order of the differential
equation), E a set (called the equating space), and f1, f2 : (Rq)L+1 → E
two maps. Consider the differential equation

f1(w,
dw

dt
, . . . ,

dL−1w

dtL−1
,
dLw

dtL
) = f2(w,

dw

dt
, . . . ,

dL−1

dtL−1
,
dLw

dtL
). (1.16)

This differential equation intuitively describes the dynamical system Σ =
(T,Rq,B) with T = R and B the collection of all time-functions w(·) :
T → Rq such that this differential equation is satisfied. Intuitively, it is
clear what this means. But what is the precise mathematical significance?
What does it mean that w(·) satisfies this differential equation? It turns
out that we must let the precise meaning depend to some extent on the
context, and hence we will not enter into details now. We will belabor this
point in Chapter 2 in the context of linear differential equations.

If one looks around at the mathematical models used in areas such as
physics, engineering, economics, and biology, then one is struck by the
prevalence of models that use the language of differential (and difference)
equations. Indeed, all the examples of continuous-time dynamical systems
that we have seen up to now were in the form of behavioral differential
equations, and as Newton showed, even Kepler’s laws can be cast as the
solution set of an appropriate second-order differential equation involving
the inverse square law of gravitation. So we are led to ponder the question,
What is so special about differential equation models? Why are they so
common? It is not easy to give a brief and convincing answer to this. An
important property is that the behavior defined by differential equations is
locally specified. This means the following. Let Σ = (R,W,B) be a time-
invariant dynamical system. Define, from B, the behavior restricted to a
small time interval (−ǫ, ǫ) as follows:

Bǫ := {w̃ : (−ǫ, ǫ)→W | ∃w ∈ B such that w̃(t) = w(t)for− ǫ < t < ǫ}.

We call Σ locally specified if for all ǫ > 0,

(w ∈ B)⇔ ((σtw) |(−ǫ,ǫ)∈ Bǫ for all t ∈ R).

It is easy to see that a system described by behavioral differential equations
is locally specified. In other words, w is legal if and only if all its restrictions
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to any arbitrarily small time interval look legal . This is a crucial property
of behaviors described by differential equations. In our context, it holds
for systems described by ordinary differential equations with time as the
independent variable, but more generally, a similar property of “locally
specified” holds for partial differential equation models. The fact that the
behavior of models described by differential equations has this property of
being locally specified explains their prevalence: in time, there is no action at
a distance. In order to verify that the trajectory w belongs to the behavior,
it suffices to examine what the trajectory looks like in the immediate neigh-
borhood of each point. Of course, many useful models do not exhibit this
property: witness systems described by differential-delay equations. As an
example of a nonlocally-specified behavior, consider the simplistic growth
model described by the following equation:

dw

dt
= ασ−∆w (i.e.,

dw

dt
(t) = αw(t−∆))

expressing that the growth of a population is proportional to the size of
the population ∆ time units ago.

Of course, latent variable models are also often described by differential
or difference equations. In the case of differential equations this leads to
behavioral equations of the form

f1(w, . . . ,
dLw

dtL
, ℓ, . . . ,

dLℓ

dtL
) = f2(w, . . . ,

dLw

dtL
, ℓ, . . . ,

dLℓ

dtL
). (1.17)

In the next chapters we will study linear systems described by differen-
tial equations such as (1.16) and (1.17) in much detail. One of the first
issues that need to be considered, of course, is, What exactly is meant by a
solution?

1.6 Recapitulation

In this chapter we have introduced some basic mathematical language and con-
cepts that are used throughout this book. We started by discussing completely
general models, but soon specialized to dynamical systems, that is, to phenomena
in which the time evolution is of central importance.

The basic notions introduced were the following:

• A mathematical model, which we viewed as being defined by a subset B,
called the behavior, of a universum U (Definition 1.2.1).

• Behavioral equations, which serve to specify B as the set of solutions of a
system of equations (Definition 1.2.4).

• Manifest and latent variables. The manifest variables are those whose be-
havior the model aims at describing. The latent variables are auxiliary
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variables introduced in the modeling process. First principle models are
typically given by equations involving both manifest and latent variables.
We call these equations full behavioral equations (Definition 1.2.9).

• A dynamical system is a mathematical model for a phenomenon that
evolves over time. A dynamical system is defined by three sets: the time-
axis T, a subset of R consisting of the relevant time instances; the signal
space W, the set in which the time trajectories take on their values; and
the behavior B, a subset of WT consisting of all trajectories W : T → W
that according to the model can occur. Thus a dynamical system is defined
as a triple Σ = (T,W,B) (Definition 1.3.1).

• Just as was the case for general models, first principle dynamical models
typically involve latent, in addition to manifest, variables (Definition 1.3.4).

• Important properties of dynamical systems are linearity and time-
invariance. A linear dynamical system is one for which the superposi-
tion principle holds. In a time-invariant dynamical system the laws do not
depend explicitly on time. Its behavior is shift-invariant (Section 1.4).

• Dynamical systems are often described by behavioral equations that are
differential or difference equations. The behavior consists of the solution set
of these equations. Systems described by differential equations are locally
specified (Section 1.5).

1.7 Notes and References

The modeling language described in this chapter has been developed in [56, 57,

55, 58, 59, 60]. There are numerous books on mathematical modeling, but none of

them seem to have come to the elegant mathematical formalization and notions

that we put forward here. However, models have been and will be used very effec-

tively without a formalized mathematical setting, and most books on modeling

use a learn-while-you-do philosophy. A book with nice examples of mathematical

models from a variety of disciplines is [38].

1.8 Exercises

As simulation exercises illustrating the material covered in this chapter we
suggest A.1 and A.2.

1.1 Model the external port behavior of the resistive circuit shown in Figure
1.4 using latent variables and Kirchhoff’s laws. Eliminate the latent vari-
ables and obtain a behavioral equation for the manifest behavior. Call two
resistive circuits equivalent if they have the same manifest behavior. For
what values of R1, R2, and R3 are the circuits (1), (2), and (3) shown in
Figure 1.4 equivalent?
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FIGURE 1.4. Resistive circuits.

1.2 Consider a linear mathematical model (Rq,B). Let p := q−dim B. Prove
that B is the behavior of a linear model if and only if there exists a full
row rank matrix R ∈ Rp×q such that B is described by the behavioral
equations

Rw = 0. (1.18)

Similarly, prove that B is a linear model if and only if there exists a full
column rank matrix M ∈ Rq×(q−p) such that B is the manifest behavior
of the latent variable model

w =Mℓ (1.19)

with ℓ ∈ Rq−p latent variables. It is natural to call (1.18) a kernel repre-
sentation of the mathematical model (Rn,B) and (1.19) an image repre-
sentation. Why?

1.3 Consider the pinned elastic beam shown below in Figure 1.5. We want to

x
−L/2 L/20

F

H h

FIGURE 1.5. Elastic beam.

describe the static relation between the force F applied at the center of
the beam and its displacement H. We expect this relationship to be like
that of a spring H = αF . How do we demonstrate that, and how do we
determine α?

Elasticity theory yields the following relations describing the deflection h
of the beam:

d2

dx2

(
EI(x)

d2h

dx2
(x)

)
= 0, 0 < |x| ≤ L

2
, (1.20)
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with the boundary conditions

h(−L
2
) = h(

L

2
) = 0,

d2h

dx2
(−L

2
) =

d2h

dx2
(
L

2
) = 0 (1.21)

and the loading conditions

h,
dh

dx
,
d2h

dx2
continuous at x = 0, (1.22)

d3h

dx3
(0+) =

d3h

dx3
(0−) +

F

EI(0)
, (1.23)

where E denotes the modulus of elasticity of the material of the beam—it
is a parameter depending on the material—and I(x) is the area moment
of the cross section of the beam at x. This is a function of the geometry,
in particular of the thickness of the beam at x. It is not essential for our
purposes to understand how these equations are arrived at.

How can we view equations (1.20–1.23) as defining a mathematical model
for the relation between F and H? The universum is R2: a priori all pairs
(F,H) are conceivable. In order to specify the behavior, introduce as latent
variables the deflection h(x) for −L

2
≤ x ≤ L

2
. Now define the full behavior

Bf = {(F,H, h) | (F,H) ∈ R2, h ∈ C2(
[
−L

2
, L

2

]
, R),

(1.20–1.23) are satisfied and H = h(0)},

from which we can derive the manifest behavior

B = {(F,H) ∈ R2 | ∃ h :

[
−L

2
,
L

2

]
→ R such that (F,H, h) ∈ Bf}.

For many purposes the model (W,B) in this implicit form (with h(·) not
eliminated from the equations) is an adequate one. In fact, when the area
moment I depends on x, this implicit model may be the most explicit
expression for the relation between F and H that we can hope to derive.
Hence elimination of the latent variables may be next to impossible to
achieve. It is possible to prove that B is given by B = {(F,H) ∈ R | H =
αF} for some suitable constant α ∈ R.

Prove that this defines a linear latent variable model. Prove that there
exists an α ∈ R such that B = {(F,H) ∈ R2 | H = αF}. Assume that

I(x) is independent of x. Prove that α = L3

48EI
.

1.4 Consider a continuous-time dynamical system with T = R, signal space
W = R, and behavior consisting of all sinusoidal signals with period 2π.
In other words, w : R → R is assumed to belong to B if and only if there
exist A ∈ R+ and ϕ ∈ [0, 2π) such that w(t) = A sin (t+ ϕ).

(i) Is this dynamical system linear?

(ii) Time-invariant?

(iii) Is the differential equation w+ d2w
dt2

= 0 a behavioral equation for it?
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1.5 Consider the dynamical system relating the position q ∈ R3 of a burning
rocket with mass m : R → R+ under the influence of an external force
F ∈ R3. The equation of motion is given by

d

dt
(m(t)

dq

dt
) = F. (1.24)

Prove that this system, viewed as relating q and F (with m(.) as a ”param-
eter”) is linear but time-varying, whereas if you view it as relating q, F ,
and m, then it is time-invariant but nonlinear. Complete this model with
an equation explaining the relation between F, q, and m, for example,

dm

dt
= αF

dq

dt
. (1.25)

Here α ∈ R+ is a parameter. Give a reasonable physical explanation of
(1.25) in terms of power and energy. View (1.24,1.25) as a model in the
variables q, F, and m. Is it time-invariant? Linear?

1.6 Consider the pendulum shown in Figure 1.6. Assume that we want to model
the relationship between the position w1 of the mass and the position w2

of the tip of the pendulum (say with the ultimate goal of designing a
controller that stabilizes w1 at a fixed value by using w2 as control, as we
do when we balance an inverted broom on our hand). In order to obtain
such a model, introduce as auxiliary variables the force F in the bar and
the real-valued proportionality factor α of F and w1 − w2. We obtain the

F

1x

L

w2

m
w1

FIGURE 1.6. A pendulum.

behavioral equations

md2w1

dt2
= mgwz + F,

‖w1 − w2‖ = L,
F = α(w1 − w2).

Here m denotes the mass of the pendulum, L its length, g the gravitational
constant, and ~1z the unit vector in the z-direction.

Define formally the full and the manifest behavior.
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1.7 Let ΣL = (Z,W,L,Bf) be a latent variable dynamical system and Σ =
(Z,W,B) the manifest dynamical system induced by it. Prove that Σ is
linear if ΣL is. Prove that Σ is time-invariant if ΣL is.

1.8 Consider the time-invariant dynamical system Σ = (T,W,B). How would
you define an equilibrium, that is, a static motion? Formalize the family of
static motions as a dynamical system Σstat. Assume that B is described by
a difference or a differential equation. Give the equations describing B

stat.

1.9 Consider the electrical circuit shown in Figure 1.7. Assume that the values

C2

V
+

−

L1

C1

L2

I

system

environment

FIGURE 1.7. Electrical circuit.

of the elements L1, L2, C1, and C2 are all positive. The circuit interacts
with its environment through the external port. The variables that describe
this interaction are the current I into the circuit and the voltage V across
its external terminals. These are the manifest variables. In order to specify
the terminal behavior, introduce as auxiliary variables the currents through
and the voltages across the internal branches of the circuit. These are the
latent variables. Follow the ideas set forth in Example 1.3.5 in order to
come up with a differential equation describing the manifest behavior.

1.10 Consider the electrical circuit shown in Figure 1.8 Assume that we want to
model the relation between the switch position and the voltage across the
capacitor C. The voltage source gives a constant voltage V . Assume that
the switch position is modeled as follows:

s(t) =

{
1 if the switch is closed,
0 if the switch is open.

Formalize this as a mathematical model. Specify clearly the sets T,W,B
and, if needed, L and Bf .

1.11 Consider the mechanical system shown in Figure 1.9.

A spring exerts a force that is a function of its extension. A damper exerts
a force that is a function of the velocity of the piston. Assume that the
spring and the damper are both linear. We want to describe the relation
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capacitor

FIGURE 1.8. Electrical circuit with nonlinear elements.

between the external force F and the position q of the mass. Give the
differential equation relating F and q. Define this carefully as a dynamical
system. Assume instead that you want to study the relation between the
force and the internal energy of this mechanical system. How would you
now formalize this as a dynamical system? Repeat this for the relation
between the force and the heat produced in the damper. Are these latter
two dynamical systems linear? Time-invariant?

damper

external

F

spring

mass

force

equilibrium
position

FIGURE 1.9. Mass–spring–damper system.

1.12 Consider the linear mechanical system shown in Figure 1.10. Use the equa-
tions derived in the previous exercise to model the relation between F1

and q1, and F2 and q2. Now hook the two masses together. Argue that this
comes down to imposing the additional equations F1 = F2 and q1+q2 = ∆,
with ∆ > 0 a fixed constant. Define a new equilibrium position for the first
mass. Write a differential equation describing the behavior of q′1, the posi-
tion of the first mass measured from this new equilibrium.

1.13 Consider the time-invariant dynamical system Σ = (R,R,B). Define it to
be time-reversible if (w ∈ B) ⇔ (rev(w) ∈ B) with the map rev defined by
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F2F1

∆

q1 q2

FIGURE 1.10. Mass–spring–damper system.

(rev(w))(t) := w(−t). Which is of the following scalar differential equations
defines a time-reversible system?

(i) d2w
dt2

+ w = 0.

(ii) dw
dt

+ αw = 0 (the answer may depend on the parameter α).

(iii) d2w
dt2

− w = 0.

(iv) dnw
dtn

= 0 (the answer may depend on the parameter n).



2

Systems Defined by Linear Differential
Equations

2.1 Introduction

In this chapter we discuss a very common class of dynamical systems. It
consists of the systems that are:

• linear

• time-invariant

• described by differential (or, in discrete time, difference) equations.

The importance of such dynamical systems stems from at least two as-
pects. Firstly, their prevalence in applications. Indeed, many models used
in science and (electrical, mechanical, chemical) engineering are by their
very nature linear and time-invariant. Secondly, the small signal behavior
of a nonlinear time-invariant dynamical system in the neighborhood of an
equilibrium point is time-invariant and approximately linear. The process
of substituting the nonlinear model by the linear one is called linearization
and is discussed in Chapter 4.

Linear systems lend themselves much better to analysis and synthesis tech-
niques than nonlinear systems do. Much more is known about them. As
such, the theory of linear systems not only plays an exemplary role for the
nonlinear case, but has also reached a much higher degree of perfection.

The organization of this chapter is as follows. Some of the notational con-
ventions are discussed in Section 2.2. The systems under consideration are
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those described by linear constant-coefficient differential equations . What
do we mean by a solution to such an equation? The seemingly natural
answer to this question, demanding sufficient differentiability, is not quite
adequate for our purposes. In particular, we want to be able to talk about
solutions that are not differentiable. Therefore, in Section 2.3, the concept
of weak solution is introduced. It is an extension of the classical notion,
in which solutions are required to be sufficiently differentiable functions.
The behavior is then defined as the set of weak solutions of the particular
system of differential equations. In Section 2.4 some topological properties
of the behavior are derived, and it is proved that the resulting dynamical
system is linear and time-invariant.

A dynamical system is determined by its behavior, as introduced in Chapter
1. The behaviors studied in this chapter are described by systems of behav-
ioral differential equations. Obviously, different behaviors are described by
different equations. However, different equations do not necessarily describe
different behaviors. In Section 2.5 it is explained that systems of differential
equations that can be transformed into each other by premultiplication by a
unimodular matrix represent the same behavior. Conversely, we will investi-
gate the relation between representations that define the same behavior. It
turns out that under a certain condition such differential equation represen-
tations can be transformed into each other by means of premultiplication
by a suitable unimodular matrix.

Some of the mathematical background is provided in Appendix B. Appro-
priate references to this appendix are given whenever needed.

2.2 Notation

The class of dynamical systems that are studied in this chapter consists of
those that can be described by the following type of behavioral differential
equation:

R(
d

dt
)w = 0, (2.1)

or more explicitly,

R0w +R1
d

dt
w + · · ·+RL

dL

dtL
w = 0, (2.2)

with R0, R1, . . . , RL ∈ Rg×q given coefficient matrices. Written in terms of
the polynomial matrix (we will discuss the notation in more detail soon),

R(ξ) = R0 +R1ξ + · · ·+RLξ
L ∈ Rg×q[ξ],

this leads to (2.1). Thus R(ξ) is a matrix of polynomials, d
dt is the differ-

entiation operator, and w : R→ Rq is the signal that is being modeled by
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the behavioral equation (2.1). We shall see that this defines a dynamical
system with time axis T = R, with signal space Rq, and with behavior
B consisting of those ws for which equation (2.1) is satisfied. However, in
order to make this precise, we have more explaining to do; in particular,
we should clarify the notation and specify what it means that w satisfies
the differential equation (2.1).

Let us first backtrack in order to explain the notation in detail. Consider
the following system of g linear constant-coefficient differential equations
in the q real-valued signals w1, w2, . . . , wq:

r110w1 + · · ·+ r11n11

dn11

dtn11
w1 + · · ·+ r1q0wq + · · ·+ r1qn1q

dn1q

dtn1q
wq = 0,

...
...

...
...

...
...

rg10w1 + · · ·+ rg1ng1

dng1

dtng1
w1 + · · ·+ rgq0wq + · · ·+ rgqngq

dngq

dtngq
wq = 0.

(2.3)
There are g scalar differential equations in (2.3). Each of these differen-
tial equations involves the scalar signals w1, w2, . . . , wq (to save space we
have only written how the first variable w1 and the last variable wq en-
ter in the differential equations). Further, every one of these differential
equations involves a certain number of derivatives of each of the variables
w1, w2, · · · , wq. It is a linear constant-coefficient differential equation, mean-
ing that the coefficients, the rkℓjs, multiplying these derivatives are real
numbers. In the notation used in equation (2.3), the kth of these differen-
tial equations involves up to the nkℓth derivative of the variable wℓ, and

the coefficient of the j-th derivative of wℓ,
dj

dtjwℓ, in the kth equation is
rkℓj . Of course, in a concrete example sparsity will always be on our side,
meaning that the great majority of coefficients rkℓj turns out to be zero.

Nobody would wish to proceed to set up a general theory with the above
cumbersome notation. Polynomial matrices are the appropriate tool to
achieve the desired compactification of the notation of (2.3). Polynomial
matrices play a very important role in this book. The notation and some
salient facts are explained in Section 2.5 and in Appendix B. In particular,
R[ξ] denotes the real polynomials in ξ. The symbol ξ in a polynomial is usu-
ally called the indeterminate. Rn1×n2 [ξ] denotes the set of real polynomial
matrices with n1 rows and n2 columns, and R•×n[ξ] the real polynomial
matrices with n columns and any (finite) number of rows. Let r(ξ) ∈ R[ξ]
be a polynomial with real coefficients. Thus r(ξ) is an expression of the
form

r(ξ) = α0 + α1ξ + · · ·+ αn−1ξ
n−1 + αnξ

n,

with α0, α1, . . . , αn ∈ R and where ξ is the indeterminate. Now replace in
this polynomial the indeterminate by the differentiation operator d

dt . This
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yields the differential operator

r(
d

dt
) = α0 + α1

d

dt
+ · · ·+ αn−1

dn−1

dtn−1
+ αn

dn

dtn
.

We can let this differential operator act on an n-times differentiable function
f : R→ R, yielding

r(
d

dt
)f = α0f + α1

d

dt
f + · · ·+ αn−1

dn−1

dtn−1
f + αn

dn

dtn
f.

Let us now generalize this to the multivariable case. Construct from (2.3)
the polynomials

rkℓ(ξ) = rkℓ0+rkℓ1ξ+ · · ·+rkℓnkℓ
ξnkℓ , k = 1, 2, · · · , g, ℓ = 1, 2, · · · , q

and organize them into the g × q polynomial matrix

R(ξ) :=






r11(ξ) · · · r1q(ξ)
...

...
rg1(ξ) · · · rgq(ξ)




 .

Note that we may as well write

R(ξ) = R0 +R1ξ + · · ·+RL−1ξ
L−1 +RLξ

L (2.4)

with L the maximum of the orders nkℓ and with Rj ∈ Rg×q the matrix

Rj :=






r11j · · · rgqj
...

...
rg1j · · · rgqj






(assume that rkℓj is defined to be zero if j > nkℓ). Now replace ξ in (2.4),
as in the scalar case, by d

dt . This yields the differential operator

R(
d

dt
) = R0 +R1

d

dt
+ · · ·+RL−1

dL−1

dtL−1
+RL

dL

dtL
.

Acting on a sufficiently differentiable, in this case at least L times differen-
tiable, time function w : R→ Rq, this yields the time function e : R→ Rg

defined by

e = R(
d

dt
)w.

Next organize in (2.2) the time functions w1, w2, . . . , wq into the column
vector w = col[w1, w2, . . . , wq], w : R→ Rq, and verify that (2.1) R( d

dt )w =
0, is nothing more than a mercifully compact version of the unwieldy system
of differential equations (2.3). The discussion above is illustrated in the
following example.
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Example 2.2.1 Let R(ξ) ∈ R2×3[ξ] be given by

R(ξ) =

[
ξ3 −2 + ξ 3

−1 + ξ2 1 + ξ + ξ2 ξ

]

.

The multivariable differential equation R( d
dt )w = 0 is

d3

dt3
w1 − 2w2 +

d

dt
w2 + 3w3 = 0,

−w1 +
d2

dt2
w1 + w2 +

d

dt
w2 +

d2

dt2
w2 +

d

dt
w3 = 0.

�

2.3 Constant-Coefficient Differential Equations

In this section we study linear constant-coefficient ordinary differential
equations as behavioral equations. Our aim in this section is to formal-
ize (2.1) as a representation of a dynamical system Σ = (T,W,B). As the
time axis T we take R, and the signal space W is Rq. In order to explain
what the behavior is, we need to discuss the notions of strong and weak
solutions to (2.1).

2.3.1 Linear constant-coefficient differential equations

The main object of study in this chapter, and to a certain extent of this
book, is the behavior defined by the system of differential equations

R(
d

dt
)w = 0, R(ξ) ∈ Rg×q[ξ]. (2.5)

Equation (2.5) represents a system of g linear differential equations in the q
scalar variables w1, . . . , wq. In order to let (2.5) define a behavior, we have
to specify the space of time functions of which the behavior is a subspace,
and also we have to be precise about when we want to consider a function
w to be a solution of this system of differential equations. A first attempt
could be to restrict the attention to functions that are sufficiently smooth so
that all derivatives appearing in (2.5) exist. This would have the advantage
that the notion of solution is quite clear. However, from a system-theoretic
point of view this choice is not satisfactory. For typically, the vector-valued
function w contains components, called inputs, that can be freely manip-
ulated, and one wants to be able to instantaneously change the value of
these input variables, as in the case of a step input. As an example, think
of instantaneously switching on a voltage source in an electrical network,
or suddenly applying a force in a mechanical system.
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Example 2.3.1 Consider the electrical circuit shown in Figure 2.1. The
variable VC is the voltage across the capacitor. From Kirchhoff’s laws we

V

−

+
↑ I

R0

C
R1

FIGURE 2.1. Electrical circuit.

obtain

I =
1

R1
VC + C d

dtVC ,

V = R0I + VC .

After eliminating VC by substituting the second equation in the first, we
obtain

V + CR1
d

dt
V = (R0 +R1)I + CR0R1

d

dt
I (2.6)

as the differential equation relating the port voltage V to the port current
I.

Now assume that for t < 0 this circuit was shorted (V = 0), and that
at t = 0 a 1 volt battery is attached to it, see Figure 2.2. What is the

R1

1 volt

battery

t ≥ 0

t < 0

R0

C

FIGURE 2.2. A voltage source attached to the circuit.

behavior of the terminal variables V and I? For V this is clear, it is the
step function shown in Figure 2.3. In Chapter 3 we will see how to compute
the corresponding current I. No doubt many readers see that I has the
exponential-type response shown in Figure 2.4. From the above graphs
and from physical considerations it appears that the differential equation
(2.6) has this pair (V, I) as a solution. Note, however, that both V and
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FIGURE 2.3. The voltage can be a step function.

t0

1

−5 5 10−10

FIGURE 2.4. The response of the current.

I are discontinuous and hence not differentiable at t = 0. So, in order to
interpret this voltage/current pair as a solution of (2.6) we have to extend,
for good physical and engineering reasons, the notion of a solution beyond
that which would require both V and I to be differentiable functions of
time. �

Example 2.3.1 shows that confining the solution of a differential equation
to the class of functions that are sufficiently smooth is too restrictive, and
that we should look for a meaningful notion of solution that includes solu-
tions that are discontinuous. We will therefore allow a much larger class of
admissible trajectories, namely the set of locally integrable functions (see
Definition 2.3.4). The advantage of this choice is the flexibility of the tra-
jectories, which is attractive for applications. A drawback is that now it is
not clear anymore when we want to consider a function w : R→ Rq to be
a solution of the equation (2.5). We therefore explain first what it means
for a locally integrable function to be a solution of (2.5).

2.3.2 Weak solutions of differential equations

For a sufficiently smooth function it is obvious whether or not it is a solution
of (2.5). For convenience we devote a definition to this.

Definition 2.3.2 (Strong solution) A function w : R → Rq is called a
strong solution of (2.5) if the components of w are as often differentiable as
required by the equation (2.5), and if it is a solution in the ordinary sense,
that is, if (R( d

dt )w)(t) = 0 for all t ∈ R. �
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In order to avoid having to specify how many times a function is differen-
tiable, we frequently use the set of infinitely differentiable functions.

Definition 2.3.3 (Infinitely differentiable function) A function w :
R → Rq is called infinitely differentiable if w is k times differentiable for
all k ∈ N. The space of infinitely differentiable functions w : R → Rq is
denoted by C∞(R,Rq). �

Definition 2.3.4 (Locally integrable function) A function w : R →
Rq is called locally integrable if for all a, b ∈ R,

b∫

a

‖w(t)‖dt <∞.

Here ‖ · ‖ denotes the Euclidean norm on Rq: if v ∈ Rq, then ‖v‖ =
√∑q

i=1 v
2
i . The space of locally integrable functions w : R → Rq is de-

noted by Lloc
1 (R,Rq). �

If a function w is only locally integrable, then plugging w into equation (2.5)
makes, in general, no sense, since it may be that not all the required deriva-
tives exist. Therefore the concept of weak solution is introduced. It extends
the notion of solution to Lloc

1 (R,Rq). Before we explain this generally, we
present an illustrative example.

Example 2.3.5 Consider the simple differential equation

w1 +
d2

dt2
w1 + w2 −

d

dt
w2 = 0. (2.7)

If we integrate (2.7) twice, we obtain

w1(t)+

t∫

0

τ∫

0

w1(s)dsdτ −
t∫

0

w2(τ)dτ +

t∫

0

τ∫

0

w2(s)dsdτ = c0+ c1t, c1, c0 ∈ R.

(2.8)
It should be clear that for every strong solution of (2.7), there exist con-
stants c1, c0 such that (2.8) is satisfied. Conversely, if (w1, w2) satisfies (2.8)
for some c0, c1, and if (w1, w2) is sufficiently smooth, then (w1, w2) satisfies
(2.7). The interesting feature of (2.8) is that this equation does not im-
pose any smoothness conditions on the pair of locally integrable functions
(w1, w2), whereas (2.7) has no meaning in the classical sense if we want to
consider functions that are not twice differentiable. This observation sug-
gests that we could call w a weak solution of (2.7) if it satisfies (2.8) for
some constants c0, c1. Although appealing, calling (w1, w2) a weak solution
if (2.8) is satisfied for all t is not quite natural. For if, for example, we
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were to change the value of w2 at an arbitrary time instant, (2.8) remains
true. Of course, w1 could not be changed without making (2.8) false, but
it seems reasonable to treat all components of w equally. Therefore we call
(w1, w2) a weak solution of (2.7) if (2.8) is satisfied for almost all t, that is,
except for t in a “small set”, for example a finite set. To turn this informal
discussion into a rigorous definition, we have to explain what exactly we
mean by a “small set”. �

Definition 2.3.6 (Set of zero measure) A set N ⊂ R is said to have
measure zero, if

∫

N
dt = 0. Equivalently, N has measure zero if for every

ǫ > 0, there exist intervals Ik such that N ⊂
∞
∪

k=0
Ik and the sum of the

lengths of the intervals does not exceed ǫ. �

Typical examples of sets of measure zero are finite sets and countable sets,
for example the set of rational numbers. Two functions f, g ∈ Lloc

1 (R,Rq)
are equal except on a set of measure zero if for all a, b ∈ R there holds
∫ b

a
‖f(t)− g(t)‖dt = 0. To streamline the terminology and the notation, we

write f = g almost everywhere (f = g a.e.), or f(t) = g(t) for almost all t.

Definition 2.3.7 (Weak solution) Let R(ξ) ∈ Rg×q[ξ] and consider

R(
d

dt
)w = 0. (2.9)

Define the integral operator acting on Lloc
1 (R,Rq) by

(
∫
w)(t) :=

t∫

0

w(τ)dτ, (
∫ k+1

w)(t) :=
t∫

0

(
∫ k

w)(τ)dτ, k ≥ 1. (2.10)

Let R(ξ) ∈ Rg×q[ξ] be given. To R(ξ) we associate the polynomial matrix
R∗(ξ) defined as follows. Let L be the maximal power of ξ occurring in
R(ξ), say

R(ξ) = R0 +R1ξ + · · ·+RLξ
L, RL 6= 0. (2.11)

Define

R∗(ξ) := ξLR(
1

ξ
) = RL +RL−1ξ + · · ·+R1ξ

L−1 +R0ξ
L.

Now, consider the integral equation

((R0(
∫
)L+R1(

∫
)L−1+ · · ·+RL−1

∫
+RL)w)(t) = c0+c1t+ · · ·+cL−1t

L−1,

with ci ∈ Rg, or, in compact notation

(R∗(
∫
)w)(t) = c0 + c1t+ · · ·+ cL−1t

L−1, ci ∈ Rg. (2.12)

We call w ∈ Lloc
1 (R,Rq) a weak solution of (2.9) if there exist constant

vectors ci ∈ Rg such that (2.12) is satisfied for almost all t ∈ R. �
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Remark 2.3.8 The lower limit in (2.10), which we took to be zero, is
immaterial for the definition of weak solution: any other choice for the lower
limit leads to an equivalent notion of weak solution. In fact, even within
expressions of the form (

∫
)k, the lower limits in the multiple integral need

not be identical. This is shown in the following lemma. �

Lemma 2.3.9 Let w ∈ Lloc
1 (R,Rq). For any ti ∈ R, i = 0, . . . , n− 1, there

exist ci ∈ Rq, i = 0, . . . , n− 1 such that for all t ∈ R

t∫

t0

τ1∫

t1

· · ·
τn−1∫

tn−1

w(τn)dτn · · · dτ1 =
t∫

0

τ1∫

0

· · ·
τn−1∫

0

w(τn)dτn · · · dτ1

+c0 + c1t+ · · ·+ cn−1t
n−1.

Proof The proof is not difficult, and the reader is referred to Exercise
2.12. �

Example 2.3.10 Let g = 1, q = 2. Consider the differential equation

d

dt
w2 = w2 + w1. (2.13)

A strong solution of ( 2.13) is obtained by taking

w2(t) =

t∫

0

e(t−τ)w1(τ)dτ, (2.14)

where w1 is any continuous function. This follows by a simple calculation.
In Chapter 3 we explain how to find solutions of the form (2.14) is in a
systematic way. An example of a weak solution that is not a strong solution
is

(w1(t), w2(t)) =

{
(0, 0) t < 0,
(1, et − 1) t ≥ 0.

(2.15)

For the proof the reader is referred to Exercise 2.1. �

The following result shows that the definition of weak solution indeed pro-
vides an extension of the notion of strong solution.

Theorem 2.3.11 Consider the behavior defined by

R(
d

dt
)w = 0. (2.16)

1. Every strong solution of (2.16) is also a weak solution.
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2. Every weak solution that is sufficiently smooth (in the notation of
(2.11) L times differentiable) is also a strong solution.

Proof See Exercise 2.21. �

Remark 2.3.12 We have introduced the concept of weak solution only to
give a mathematically sound basis to nondifferentiable solutions of differ-
ential equations. We will not use it to actually solve differential equations
via the “weak approach”. However, we will sometimes check that proposed
functions are indeed weak solutions. For instance, in Chapter 3 we will
verify that the pair (w1, w2) related by

w2(t) =

t∫

0

(t− τ)k−1

(k − 1)!
eλ(t−τ)w1(τ)dτ

satisfies the differential equation

(
d

dt
− λ)kw2 = w1

strongly if w1 is continuous and weakly for every locally integrable, possibly
discontinuous w1. This is proven in Section 3.3.

Another, perhaps more elegant, way of choosing the set of admissible tra-
jectories is to include generalized functions, or distributions. Distribution
theory is beyond the scope of this book. However, it should be remarked
that the approach that is chosen here is quite close to what distribution
theory would give. �

2.4 Behaviors Defined by Differential Equations

In this section we formally define behaviors represented by R( d
dt )w = 0. We

prove two fundamental structural properties, linearity and time invariance.
Furthermore, we consider some topological properties of the behavior.

With the aid of the notion of weak solution, we are now able to define the
behavior corresponding to the behavioral equation (2.5).

Definition 2.4.1 Equation (2.5) defines the dynamical system Σ =
(R,Rq,B), where B is defined as

B :=
{
w ∈ L

loc
1 (R,Rq) | w is a weak solution of R( d

dt )w = 0.
}

�
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2.4.1 Topological properties of the behavior

In this subsection we discuss some important topological properties of the
behavior. Topological properties are related to such notions as open and
closed , as well as dense and convergence. Before we can make any statements
concerning these matters, we need to define convergence in Lloc

1 (R,Rq). It
turns out that the behavior defined by R( d

dt )w = 0 is closed with respect
to that notion of convergence. That is, if a sequence of trajectories in the
behavior converges to some trajectory w, then this trajectory w also belongs
to the behavior. A second, equally important, result is that every weak
solution may be obtained as the limit of a sequence of strong solutions. In
other words the subbehavior of strong solutions is a dense subset of the
behavior.

Definition 2.4.2 (Convergence in the sense of Lloc
1 (R,Rq)) A se-

quence {wk} in Lloc
1 (R,Rq) converges to w ∈ Lloc

1 (R,Rq) in the sense
of Lloc

1 (R,Rq) if for all a, b ∈ R,

lim
k→∞

b∫

a

‖w(t)− wk(t)‖dt = 0.

Here, ‖.‖ denotes the Euclidean norm in Rq. �

Example 2.4.3 Consider the sequence of functions {wk} with wk(t) de-
fined by:

wk(t) =







0 for |t| > 1

k
,

1 for |t| ≤ 1

k
.

It is not difficult to check that wk converges (in the sense of Lloc
1 (R,Rq))

to the zero function, even though wk(0) = 1 for all k. On the other hand,
if we define wk(t) = k for |t| < 1

k and zero otherwise, then wk does not
converge in the sense of Lloc

1 (R,R) at all, let alone to zero, although wk(t)
converges pointwise to zero for all t 6= 0. �

Theorem 2.4.4 Let R(ξ) ∈ Rg×q[ξ] be given and let B be the behavior
defined by R( d

dt )w = 0. If wk ∈ B converges to w ∈ Lloc
1 (R,Rq) in the

sense of Lloc
1 (R,Rq), then w ∈ B.

Proof Since wk ∈ B, there exist vectors c0,k, . . . , cL−1,k, such that

R∗(
∫
)wk = c0,k + · · ·+ cL−1,kt

L−1, k = 0, 1, 2, . . . . (2.17)
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Since wk → w as k → ∞, and since integration is a continuous operation
on Lloc

1 (R,Rq) (limk→∞
∫ t

0
wk(τ)dτ =

∫ t

0
limk→∞ wk(τ)dτ , in the sense of

Lloc
1 (R,Rq)), see Exercise 2.19, it follows that

lim
k→∞

R∗(
∫
)wk = R∗(

∫
)w in the sense of Lloc

1 (R,Rq).

In other words, the right-hand side of (2.17) converges, to some function, in
the sense of Lloc

1 (R,Rq). It is not difficult to check (see Exercise 2.20) that
this can be the case only if the coefficients ci,k converge, say limk→∞ ci,k =:
ci. This implies that the sequence of polynomials on the right-hand side of
(2.17) converges to the polynomial c0 + · · ·+ cL−1t

L−1. As a consequence

R∗(
∫
)w = c0 + . . .+ cL−1t

L−1 for almost all t,

and hence w ∈ B. �

We now prove that every trajectory in the behavior can be seen as a limit
of smooth trajectories in the behavior, i.e., as a limit of strong solutions of
R( d

dt )w = 0, see Theorem 2.3.11, Part 2. For the construction of the limiting
sequence we use a very special function, namely a bell-shaped function
that is zero outside the interval [−1, 1], nonzero inside this interval, but
nevertheless infinitely differentiable.

Definition 2.4.5 The function φ is defined by

φ(t) =

{

0 if |t| ≥ 1,

e
− 1

1−t2 for |t| < 1.
(2.18)

�

Remark 2.4.6 Notice that φ is indeed infinitely differentiable; see Figure
2.5 and Exercise 2.17. Functions that are infinitely differentiable and have
compact support are called flat functions. �

−1

0.2
0.3

t
−2

0.1

1 2

FIGURE 2.5. The graph of the function φ defined in (2.18).

We will use the following:



40 2. Systems Defined by Linear Differential Equations

Lemma 2.4.7 Let w ∈ Lloc
1 (R,Rq) and let φ be given by (2.18). Define

the function v by

v(t) :=

∞∫

−∞

φ(τ)w(t− τ)dτ. (2.19)

Then v is infinitely differentiable.

Proof Verify that

(
dn

dtn
v)(t) =

∞∫

−∞

φ(n)(τ)w(t− τ)dτ.

�

Remark 2.4.8 The function v defined by (2.19) is known as the convolu-
tion product of φ and w, and is usually denoted by

φ ∗ w.

�

Lemma 2.4.9 Let R(ξ) ∈ Rg×q[ξ] and let B be the behavior defined by
R( d

dt )w = 0. Let φ be the function defined in Definition 2.4.5. Then for
every w ∈ B we have that φ ∗ w ∈ B.

Proof Let w ∈ Lloc
1 (R,Rq). By interchanging the order of integration (see

Exercise 2.18), it follows that

∫
(φ ∗ w) = φ ∗ (

∫
w). (2.20)

Repeated application of (2.20) yields

R∗(
∫
)(φ ∗ w) = φ ∗ (R∗(

∫
)w). (2.21)

From (2.21) we conclude that since w ∈ B:

R∗(
∫
)(φ ∗ w) = φ ∗ (R∗(

∫
)w)

= φ ∗ (c0 + · · ·+ cL−1t
L−1).

(2.22)

It remains to show that the convolution product of a polynomial with φ is
again a polynomial of at most the same degree. To that end, observe that
by L-fold differentiation, we obtain zero:

dL

dtL
[φ ∗ (c0 + · · ·+ cL−1t

L−1)] = φ ∗ [ d
L

dtL
(c0 + · · ·+ cL−1t

L−1)] = 0.
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Combining (2.21) and (2.22) yields

R∗(
∫
)(w ∗ φ) = e0 + · · ·+ eL−1t

L−1,

so that indeed w ∗ φ ∈ B. �

The following theorem shows that every locally integrable function can
be approximated arbitrarily well by C∞ functions, or otherwise stated,
C∞(R,Rq) is dense in Lloc

1 (R,Rq).

Theorem 2.4.10 Let w ∈ Lloc
1 (R,Rq). There exists a sequence {wk} in

C∞(R,Rq) that converges to w in the sense of Lloc
1 (R,Rq).

Proof [sketch, g = q = 1] Define ψ as the normalized version of φ (defined
by (2.18)),

ψ(t) :=
φ(t)

∞∫

−∞
φ(τ)dτ

,

and define ψk by
ψk(t) := kψ(kt).

Define the functions wk by

wk(t) := w ∗ ψk. (2.23)

From Lemma 2.4.7 we know that wk is in C∞(R,R). We claim that wk

converges to w in the sense of Lloc
1 (R,R). The proof of this claim is worked

out in Exercise 2.15.

�

Remark 2.4.11 In Figure 2.6 we have depicted the functions ψk. The
sequence {ψk} does not converge in Lloc

1 (R,R), for the zero function, ob-
viously the only reasonable candidate limit, is not the limit, yet w ∗ ψk

converges for every w ∈ Lloc
1 (R,R). In that sense one could say that ψk

converges to the unity element with respect to ∗. Readers familiar with
distribution theory recognize the Dirac delta as the limit of the the ψks. As
an illustration, Figure 2.7 shows the first four approximations of the step
function.

�

Theorem 2.4.10 and Lemma 2.4.9 are interesting in their own right. For us,
the importance is reflected by the following consequences.

Corollary 2.4.12 Let R(ξ) ∈ Rg×q[ξ] and let B be the behavior defined by
R( d

dt )w = 0. For every w ∈ B there exists a sequence wk ∈ B∩ C∞(R,Rq)
such that wk converges to w in the sense of Lloc

1 (R,Rq).
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FIGURE 2.6. The graph of the functions ψ1, . . . , ψ4.
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FIGURE 2.7. Approximation of the step function.

Proof Define wk ∈ C∞(R,Rq) as in (2.23). By Lemma 2.4.9, wk ∈ B, and
by Theorem 2.4.10, wk converges to w in the sense of Lloc

1 (R,Rq). �

Corollary 2.4.12 implies in particular that every weak solution can be ap-
proximated arbitrarily closely by a strong one.

The last theorem in this section is of crucial importance in the remainder
of the book. It states that the behavior corresponding to R( d

dt )w = 0 is
completely determined by its C∞ part and hence by the strong solutions.

Theorem 2.4.13 Let R1(ξ) ∈ Rg1×q[ξ] and R2(ξ) ∈ Rg2×q[ξ]. Denote
the corresponding behaviors by B1 and B2. If B1 ∩ C∞(R,Rq) = B2 ∩
C∞(R,Rq), then B1 = B2.

Proof Choose w ∈ B1. By Corollary 2.4.12 there exists a sequence wk ∈
B1 ∩ C∞(R,Rq) = B2 ∩ C∞(R,Rq) converging to w. By Theorem 2.4.4 it
follows that w ∈ B2. This shows that B1 ⊂ B2. In the same way one proves
that B2 ⊂ B1. �

Remark 2.4.14 The results derived in this section play an important role
in the sequel. At several places in the theory, properties of the behavior will
first be derived for the C∞ part of the behavior and will then be proved
for the whole behavior using a denseness argument and/or the fact that
the behavior is completely determined by its C∞ part. To illustrate this we
now show how the time-invariance could be proven along these lines. �
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2.4.2 Linearity and time-invariance

In the previous subsection we derived some topological properties of the
behavior. Next we study two structural properties of the behavior: linearity
and time-invariance. The proof of linearity is straightforward; the proof of
time-invariance relies on the property that the set of strong solutions is
dense in the behavior. We refer the reader to Section 1.4 for the definitions
of linearity and time-invariance.

Theorem 2.4.15 The behavior B as defined in Definition 2.4.1 is linear
and time-invariant.

Proof Linearity. Let w1, w2 ∈ B and let λ ∈ C. Define w := w1+λw2. We
have to prove that w ∈ B. Since w1, w2 ∈ B, there exist vectors c′0, . . . , c

′
L−1

and c′′0 , . . . , c
′′
L−1 such that

R∗(
∫
)w1 = c′0 + · · ·+ c′L−1t

L−1 and R∗(
∫
)w2 = c′′0 + · · ·+ c′′L−1t

L−1.

Define ci := c′i + λc′′i . Then

R∗(
∫
)w = R∗(

∫
)(w1 + λw2)

= R∗(
∫
)w1 + λR∗(

∫
)w2

= c′0 + · · ·+ c′L−1t
L−1 + λ(c′′0 + · · ·+ c′′L−1t

L−1)
= c0 + · · ·+ cL−1t

L−1.

This shows the linearity of B.

Time-invariance. Let w ∈ B and let w̃ be defined as w̃(t) := w(t− t1). By
Theorem 2.4.10 there exists a sequence wk ∈ B ∩ C∞(R,Rq) such that wk

converges to w in the sense of Lloc
1 (R,Rq). Since wk is smooth, R( d

dt )wk = 0
strongly, i.e., in the classical sense. Define the time-shifted versions of wk

as w̃k(t) := wk(t− t1). Since d
dt (w(t− t1)) = ( d

dtw)(t− t1), in other words
the differentiation operator commutes with the shift operator, it is clear
that also R( d

dt )w̃k = 0 in the classical sense. Since wk converges to w, w̃k

converges to w̃. By Theorem 2.4.4 we conclude that w̃ ∈ B. �

Remark 2.4.16 With the aid of Lemma 2.3.9 it is possible to give a direct
proof of time-invariance without using the results from Section 2.4.1. The
present proof, however, is nicer, since it avoids cumbersome calculations
and shows how properties of the strong part of the behavior carry over to
the whole behavior. �
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2.5 The Calculus of Equations

2.5.1 Polynomial rings and polynomial matrices

The main objects of study in this book are linear time-invariant behaviors
that can be described by

R(
d

dt
)w = 0, (2.24)

where R(ξ) ∈ Rg×q[ξ] is a polynomial matrix . As was explained in Sec-
tion 2.2, (2.24) provides a convenient and compact notation. However, it
is not just for notational convenience that we have introduced this. We
will see that we can develop a calculus of representations based on the
structure of the set R[ξ]. By this we mean that certain algebraic proper-
ties of polynomials and polynomial matrices are relevant to the study of
behavioral representations of the form (2.24). To take full advantage of
these properties, we briefly introduce some elements from abstract algebra.
Undoubtedly the most important fact that we use is that the set of polyno-
mials with real or complex coefficients forms a ring. A ring is a nonempty
set on which two binary operations addition, +, and multiplication, •, are
defined1. Addition and multiplication in rings are, in general, different in
nature from what we are used to in R. However, they are required to satisfy
the usual properties such as, for example, associativity and distributivity,
except that multiplication is not required to be commutative. Addition of
two polynomials a(ξ) = a0 + a1ξ+ · · ·+ anξ

n, b(ξ) = b0 + b1ξ+ · · ·+ bmξ
m

is defined as a(ξ) + b(ξ) := (a0 + b0) + (a1 + b1)ξ + · · · , multiplication as
a(ξ) • b(ξ) := a0b0 + (a1b0 + a0b1)ξ + (a0b2 + a1b1 + a2b0)ξ

2 + · · · . Usually,
the multiplication symbol • is dropped, and we will henceforth follow this
convention. With these definitions of addition and multiplication, the set
of polynomials with coefficients in R or C, denoted by R[ξ] or C[ξ], forms
a ring. The polynomial rings R[ξ] and C[ξ] have the property that division
with remainder is possible, i.e., for every two elements a(ξ) and b(ξ), with
a(ξ) nonzero, there exist polynomials q(ξ), r(ξ) in the ring such that

b(ξ) = q(ξ)a(ξ) + r(ξ) with deg r(ξ) < deg a(ξ). (2.25)

Notice that (2.25) is the polynomial analogue of a similar property of the
integers: for every a, b ∈ Z, a 6= 0, there exist q, r ∈ Z such that b =
q a+ r and |r| < |a|. Just as for the integer case, the polynomials q(ξ) (the
quotient of b(ξ) and a(ξ)) and r(ξ) (the remainder), can be computed by
long division.

1A binary operation on a set A is a map from A × A to A. For example, addition
is a binary operation on R. It assigns to every pair of real numbers their sum. Another
binary operation on R is multiplication.
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Example 2.5.1 Take a(ξ) = 2− ξ+ ξ2 and b(ξ) = 4− 2ξ+3ξ2+3ξ3+ ξ4.
Then b(ξ) = (5 + 4ξ + ξ2)a(ξ) − 6 − 5ξ. Thus, q(ξ) = 5 + 4ξ + ξ2 and
r(ξ) = −6− 5ξ. �

Rings in which division with remainder is possible are called Euclidean
rings. The reader is referred to any introductory algebra textbook, e.g.,
[34], for more details on rings and for a precise definition of Euclidean
rings. All the details that we use are provided in the text.

The definitions of addition and multiplication of polynomials induce in a
natural way addition and multiplication of polynomial matrices , provided,
of course, that these matrices are of compatible sizes. Also, we can speak
about the determinant of a square polynomial matrix. Notice that this de-
terminant is a scalar polynomial. Finally, if R(ξ) is a square matrix with
detR(ξ) 6= 0 (by that we mean that the determinant is not the zero poly-
nomial), then we can speak about the inverse, R−1(ξ), which is a matrix of
rational functions, i.e., a matrix whose entries are fractions of polynomials.

2.5.2 Equivalent representations

In Section 2.3 we have introduced dynamical systems described by systems
of differential equations R( d

dt )w = 0. We have seen in particular what it
means that a map w : R → Rq belongs to the behavior of the resulting
dynamical system Σ = (R,Rq,B). This system is said to be represented ,
or parametrized , by the polynomial matrix R(ξ) ∈ Rg×q[ξ]. Note that R(ξ)
obviously defines Σ. However, there are many polynomial matrices that
represent the same dynamical system. This leads to the following definition.

Definition 2.5.2 (Equivalent differential equations) Let Ri(ξ) ∈
Rgi×q[ξ], i = 1, 2. The differential equations

R1(
d

dt
)w = 0 and R2(

d

dt
)w = 0

are said to be equivalent if they define the same dynamical system. In other

words, equivalence means that w is a weak solution of R1(
d

dt
)w = 0 if and

only if it is also a weak solution of R2(
d

dt
)w = 0. �

Example 2.5.3 Consider the system of differential equations

w1 +
d2

dt2
w1 = 0,

−w2 +
d2

dt2
w2 = 0

(2.26)
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and the seemingly different one:

w1 +
d2

dt2
w1 = 0,

d2

dt2
w1 +

d4

dt4
w1 − w2 +

d2

dt2
w2 = 0.

(2.27)

These systems of equations define the same dynamical system. To see this,
observe that the first differential equation implies that

d2

dt2
w1 +

d4

dt4
w1 = 0.

Adding this to the second differential equation in (2.26) or subtracting it
from the second in (2.27) demonstrates the equivalence. In fact, in this case
the solutions can be displayed explicitly. The solution set of both (2.26) and
(2.27) consists of the functions of the form

w1(t) = A1 cos t+A2 sin t,
w2(t) = B1e

t +B2e
−t,

(2.28)

where A1, A2, B1, B2 range over the set of real numbers. Why this is pre-
cisely the solution set is explained in Section 3.2. Anyway, it shows that
(2.26) and (2.27) are equivalent.

Let us now see how we can reformulate the operations above in an alge-
braic fashion. In polynomial notation, equations (2.26) and (2.27) read as
R1(

d
dt )w = 0 and R2(

d
dt )w = 0 with R1(ξ) and R2(ξ) given by

R1(ξ) =

[
1 + ξ2 0

0 −1 + ξ2

]

, R2(ξ) =

[
1 + ξ2 0
ξ2 + ξ4 −1 + ξ2

]

.

In algebraic terms, these operations that transformed the representation
(2.26) into (2.27) are: multiply the first row of R1(ξ) by ξ2 and add it to
the second. In polynomial notation,

U(ξ)R1(ξ) = R2(ξ) with U(ξ) =

[
1 0
ξ2 1

]

.

If we restrict attention to C∞(R,Rq) solutions, then it is clear that
R1(

d
dt )w = 0 implies that U( d

dt )R1(
d
dt )w = 0 and hence R2(

d
dt )w = 0.

In this simple example it also clear how to prove the converse, since

V (ξ)R2(ξ) = R1(ξ) with V (ξ) =

[
1 0
−ξ2 1

]

. (2.29)

The operation (2.29) is nothing but replacing the second row of R2(ξ)
by the difference of the second row and ξ2 times the first row. Notice
that V (ξ)U(ξ) = I. The polynomial matrices U(ξ) and V (ξ) appear to be
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each other’s inverses. The matrix U(ξ), transforming R1(ξ) into R2(ξ) by
R2(ξ) = U(ξ)R1(ξ), thus has the special property that its inverse is also a
polynomial matrix (rather than merely a matrix of rational functions, which
one would have expected). This special property, called unimodularity of
U(ξ), turns out to be the key in classifying equivalent representations. �

The first thing that we learn from Example 2.5.3 is that for any polynomial
matrix U(ξ) ∈ Rg×g[ξ] and R(ξ) ∈ Rg×q[ξ], we have that R( d

dt )w = 0

implies that U( d
dt )R(

d
dt )w = 0. How about the converse implication?

It is very tempting to conjecture that U( d
dt )R(

d
dt )w = 0 implies that

U−1( d
dt )U( d

dt )R(
d
dt )w = 0 and therefore R( d

dt )w = 0. This would, how-
ever, be an abuse of analogy. For U−1(ξ) may have a proper meaning as
a matrix of rational functions , but it need not be polynomial, and there-
fore U−1( d

dt ) does have no meaning in general. (What is the meaning of
1+ d

dt

2+( d
dt

)2
?) On the other hand, if there happens to exist a polynomial matrix

V (ξ) ∈ Rg×g[ξ] such that V (ξ)U(ξ) = I, in other words, if the inverse of
U(ξ) is again a polynomial matrix, then the converse is true: R( d

dt )w = 0

and U( d
dt )R(

d
dt )w = 0 define the same behavior. This observation leads us

to the following result.

Theorem 2.5.4 Let R(ξ) ∈ Rg×q[ξ] and U(ξ) ∈ Rg×g[ξ]. Define R′(ξ) :=
U(ξ)R(ξ). Denote the behaviors corresponding to R(ξ) and R′(ξ) by B and
B

′ respectively. Then:

1. B ⊂ B
′.

2. If in addition, U−1(ξ) exists and if U−1(ξ) ∈ Rg×g[ξ], then B = B
′.

Proof 1. Choose w ∈ B. By Corollary 2.4.12, there exists a sequence
{wk} ∈ B ∩ C∞(R,Rq) converging to w. Since R( d

dt )wk = 0 in the usual

sense, i.e., strongly, U( d
dt )R(

d
dt )wk = 0, implying that wk ∈ B

′. By Theorem
2.4.4, it follows that then also w ∈ B

′.

2. By 1, it suffices to prove that B
′ ⊂ B. Since U−1(ξ) is a well-defined

polynomial matrix, this follows by just applying Part 1 to U−1(ξ)R(ξ) and
R(ξ). �

Polynomial matrices with a polynomial inverse play a very important role.
Hence the following definition.

Definition 2.5.5 (Unimodular matrix) Let U(ξ) ∈ Rg×g[ξ]. Then
U(ξ) is said to be a unimodular polynomial matrix if there exists a poly-
nomial matrix V (ξ) ∈ Rg×g[ξ] such that V (ξ)U(ξ) = I. Equivalently, if
detU(ξ) is equal to a nonzero constant (see Exercise 2.7). �
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Remark 2.5.6 Theorem 2.5.4 is a first example of the power of the poly-
nomial approach. It raises some interesting questions:

1. Can we characterize all unimodular matrices in some simple construc-
tive way?

2. How can we use Theorem 2.5.4?

3. What about the converse of Theorem 2.5.4: Is it true that if two
polynomial matrices R1(ξ) and R2(ξ) define the same behavior, then
there exists a unimodular matrix U(ξ) such that U(ξ)R1(ξ) = R2(ξ)?

As for the answers to these questions, we will see that unimodular matri-
ces can be characterized in that they can all be factorized as products of
matrices of a very simple form.

The usefulness of Theorem 2.5.4 is that since premultiplication of R(ξ) by
a matrix U(ξ) of which the inverse is again polynomial does not change the
behavior, this property can be used to bring R(ξ) into a convenient form,
such as a triangular form.

The last question is more involved. The answer is affirmative, provided that
the matrices R1(ξ) and R2(ξ) have the same number of rows. The proof
of this statement involves elements that will be treated only in Chapter 3
and is therefore postponed until the end of that chapter. �

It is worthwhile to pause a bit on the idea of unimodularity. Consider
the polynomial matrix U(ξ) ∈ Rg×g[ξ]. Its determinant is defined by the
same formula as the determinant of an ordinary matrix, so that detU(ξ)
is a scalar polynomial. Of course, detU(ξ) may be the zero polynomial
However, if detU(ξ) is not equal to the zero polynomial, we can define the
inverse of U(ξ) as

U−1(ξ) =
1

detU(ξ)
Ũ(ξ),

where Ũ(ξ) denotes the matrix of cofactors of U(ξ), i.e., the (i, j)th element
of Ũ(ξ) is equal to (−1)i+j times the determinant of the matrix obtained by
deleting the jth row and the ith column in U(ξ) (this is Cramer’s rule). Note
that U−1(ξ) is a matrix of rational functions : each element is the ratio of two
polynomials. However, in some special cases U−1(ξ) is itself a polynomial
matrix. This occurs if and only if detU(ξ) is a nonzero constant: a nonzero
polynomial of degree zero. This special class of polynomial matrices is the
class of the unimodular matrices.

Examples of unimodular matrices are:

1. Nonsingular square matrices with constant coefficients.

2. Upper triangular square polynomial matrices with nonzero constants
on the diagonal.
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3. Lower triangular square polynomial matrices with nonzero constants
on the diagonal.

Observe further that:

1. I is unimodular.

2. If U1(ξ) and U2(ξ) are unimodular, so is U1(ξ)U2(ξ).

3. If U(ξ) is unimodular, so is U−1(ξ).

This gives the set of unimodular matrices the structure of a group (see
Exercise 2.25).

2.5.3 Elementary row operations and unimodular polynomial
matrices

It follows from Theorem 2.5.4 that if B is represented by a matrix R(ξ),
and if U(ξ) is unimodular, then B is also represented by U(ξ)R(ξ). This is a
rather abstract result that seems to rely very much on algebraic properties
of polynomial matrices. We now give an interpretation in terms of simple
operations on the differential equation R( d

dt )w = 0 itself.

There are a number of elementary operations on the equations R( d
dt )w = 0

by means of which equivalent representations may be generated.

Denote the rows of R(ξ) by r1(ξ), r2(ξ), . . . , rg(ξ). Hence ri(ξ) ∈ R1×q[ξ]
for i = 1, 2, . . . , g. Now consider the following elementary row operations
on R(ξ), and, accordingly, on the differential equation R( d

dt )w = 0. There
are three types of elementary row operations:

1. Interchange row i and row j

R̃(ξ) =
























r1(ξ)
...

ri−1(ξ)
rj(ξ)
ri+1(ξ)

...
rj−1(ξ)
ri(ξ)
rj+1(ξ)

...
rg(ξ)
























.



50 2. Systems Defined by Linear Differential Equations

2. Multiply a row by a nonzero constant. Let 0 6= α ∈ R, 1 ≤ i ≤ g, and
define

R̃(ξ) =















r1(ξ)
...

ri−1(ξ)
αri(ξ)
ri+1(ξ)

...
rg(ξ)















←− ith row.

3. Replace a row by the sum of that row and the product of ξd and
another row. In terms of the equations, this means differentiate the
jth equation d times and add the result to the ith equation. Let
d ∈ Z+, 1 ≤ i ≤ g, 1 ≤ j ≤ g, i 6= j, and define

R̃(ξ) =















r1(ξ)
...

ri−1(ξ)
ri(ξ) + ξdrj(ξ)

ri+1(ξ)
...

rg(ξ)















←− ith row.

For all of these three types of elementary row operations it is clear that

R(
d

dt
)w = 0 and R̃(

d

dt
)w = 0

have the same strong solutions, and therefore, by Corollary 2.4.12, they
define the same behavior.

Each of the three elementary operations corresponds to premultiplication
by a unimodular matrix. The first operation, interchange of two rows, cor-
responds to premultiplication by the matrix M that is obtained by inter-
changing the ith and jth columns in the identity matrix. Such a matrix is
called a permutation matrix. The second elementary operation corresponds
to replacing R(ξ) by DR(ξ) , where D is the diagonal matrix

D = diag (1, . . . , 1, α, 1, . . . , 1) ,
↑

ith place

(2.27)
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while the third elementary operation corresponds to replacing R(ξ) by
N(ξ)R(ξ), where N(ξ) is the polynomial matrix

N(ξ) =
























1 0 . . . 0 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

0 0 . . . 1 0 . . . 0 0 . . . 0 0
0 0 . . . 0 1 . . . 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

0 0 . . . 0 0 . . . 1 0 . . . 0 0
0 0 . . . ξd 0 . . . 0 1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 . . . 0 0 . . . 1 0
0 0 . . . 0 0 . . . 0 0 . . . 0 1
























←− ith row.

↑
jth column

(2.28)
The matrices M,D,N(ξ) are called elementary unimodular matrices. Of
course, applying a finite sequence of elementary row operations to R(ξ)
also generates equivalent representations. Now, by combining elementary
row operations (that is, premultiplying R(ξ) by a finite product of matrices
like M,D, and N(ξ)), we obtain a very rich and flexible way of obtaining
equivalent differential equations.

The question now arises of how general the class of unimodular matrices
is that can be written as a finite product of elementary ones. It turns out
that every unimodular matrix may be written as a product of elementary
unimodular matrices.

Theorem 2.5.7 U(ξ) ∈ Rg×g[ξ] is unimodular if and only if it is a finite
product of elementary unimodular matrices.

Proof The proof is not difficult, and the reader is encouraged to check it;
see Appendix B, Theorem B.1.3. �

Remark 2.5.8 Combining Theorem 2.5.4 and 2.5.7 we conclude that two
polynomial matrices R(ξ) and R′(ξ) represent the same behavior if R′(ξ)
can be obtained from R(ξ) by a sequence of elementary row operations on
R(ξ). There are two other operations by means of which we obtain equiv-
alent representations, namely adding and deleting zero-rows. Indeed, since
rows in R(ξ) that consist of zeros only do not contribute to the specifi-
cation of the behavior we might as well delete or add such rows. Notice
that adding and deleting zero-rows differ from elementary row operations
in that elementary row operations leave the number of rows unchanged.
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If R(ξ) does not contain zero-rows, then we may be able to create a zero-row
by applying elementary row operations. Subsequently we can then delete
this zero-row. You may wonder if we can always create zero-rows or if we can
check beforehand whether or not R(ξ) contains ”hidden” zero-rows. These
questions lead to the notions of full row rank and minimal representation.
We come back to this issue in Sections 2.5.6 and 3.6. See also Corollary
3.6.3. �

2.5.4 The Bezout identity

Unimodular matrices play a crucial role in the characterization of equiv-
alent representations. We have seen that every unimodular matrix can be
written as the product of elementary unimodular matrices. In terms of
manipulations of equations, this means that R1(

d
dt )w = 0 is equivalent to

R2(
d
dt )w = 0 if R1(ξ) can be transformed into R2(ξ) by means of elementary

row operations. In practice, carrying out a whole sequence of elementary
row operations can be quite cumbersome (and boring), and therefore we
would like to know whether or not an arbitrary row operation can be re-
placed by a succession of elementary row operations. Let us illustrate this
with an example.

Example 2.5.9 Consider the square matrix R(ξ) given by

R(ξ) =

[
−1 + ξ2 1 + ξ3

2 + ξ3 −4 + ξ3

]

.

Suppose we want to transform this matrix into upper triangular form by
elementary row operations. To see that this can be done, first subtract
ξ times the first row from the second: in more abstract notation, r2(ξ) :=
r2(ξ)−ξr1(ξ). Then, replace in the resulting matrix r1(ξ) by r1(ξ)−ξr2(ξ),
subsequently r1(ξ) := r1(ξ) + 2r2(ξ), then r2(ξ) := r2(ξ) − 1

3ξr1(ξ), and
finally r2(ξ) := r2(ξ) − 2

3r1(ξ). The result is that the first column of R(ξ)
has been transformed into [

3
0

]

.

By applying these elementary row operations to the second column, the
desired triangular form is obtained.

A much faster way to obtain an upper triangular form works as follows.
Just replace r2(ξ) by 2+ ξ3 times the first row plus 1− ξ2 times the second
row. It is obvious that this row operation creates the desired zero at the
lower left corner. However, it is not at all clear that the latter row operation
corresponds to a sequence of elementary row operations. How can we check
that this is the case? Recall that a row operation corresponds to premulti-
plication by a polynomial matrix. If this polynomial matrix is unimodular,
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then this row operation is equivalent to a sequence of elementary ones. The
row operation that we just described corresponds to premultiplication by
a polynomial matrix of the form

U(ξ) =

[
∗ ∗

2 + ξ3 1− ξ2
]

. (2.29)

We have used the notation ∗ for entries that for the moment are left un-
specified. If we assume that the row operation did not change the first row,
then the first row of U(ξ) has to be [1 0], which definitely does not yield a
unimodular matrix. The question now is, Can we find polynomial entries
for the ∗s in U(ξ) such that the resulting matrix is unimodular? The answer
to this question is yes, as shown by the following choice:

U(ξ) =

[
−1 + 2ξ − ξ2 −2 + ξ

2 + ξ3 1− ξ2
]

. (2.30)

It is readily verified that U(ξ) in (2.30) is unimodular.

From this we may conclude that replacing r2(ξ) by 2 + ξ3 times the first
row plus 1 − ξ2 times the second row is indeed the result of a sequence
of elementary row operations. Two new questions arise. Firstly, is there
a criterion purely in terms of the second row of (2.29) that allows us to
conclude that there exist ∗s such that (2.29) is unimodular? Secondly, how
can the ∗s be determined from the second row?

The answer to the first question is that since 2 + ξ3 and 1 − ξ2 have no
nonconstant common factors, there exists a unimodular matrix of the form
(2.29). This is shown in Theorem 2.5.10. Once it has been established that
the desired unimodular matrix indeed exists, it remains to determine the
entries explicitly. One way to do this is by means of elementary column
operations: perform elementary column operations on the last row of (2.29)
to obtain the vector [0 1]. The sequence of elementary column operations
that achieves this is postmultiplication by a unimodular matrix V (ξ) such
that

[
2 + ξ3 1− ξ2

]
V (ξ) =

[
0 1

]
.

So take U(ξ) = V −1(ξ).

A second way of finding the ∗s is by substituting polynomials with unknown
coefficients in the first row of (2.29) and determining the coefficients such
that the determinant is a nonzero constant. For the particular case of a
two-by-two matrix this can readily be done, since it yields linear equations
in the unknown coefficients.

The determination of the unspecified entries in the unimodular matrix by
means of elementary column operations is not very effective. For what is
the advantage of elementary column operations applied to U(ξ) as opposed
to elementary row operations applied to R(ξ) itself?
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The answer to the second question, how to determine the ∗s, is that it
suffices to know that a unimodular matrix U(ξ) exists. But we don’t have
to calculate the ∗s to guarantee their existence. This is the content of the
next result. �

Theorem 2.5.10 Let r1(ξ), . . . , rk(ξ) ∈ R[ξ] and assume that r1(ξ), . . . , rk(ξ)
have no common2 factor. Then there exists a unimodular matrix U(ξ) ∈
Rk×k[ξ] such that the last row of U(ξ) equals [r1(ξ), . . . , rk(ξ)].

Proof See Appendix B, Theorem B.1.6. �

Remark 2.5.11 As already indicated in Example 2.5.9, Theorem 2.5.10
shows that there exists a unimodular matrix of the form (2.29). This implies
that there exist polynomials a(ξ), b(ξ) such that when plugged into the first
row of U(ξ), detU(ξ) = 1. In other words

a(ξ)(2 + ξ3) + b(ξ)(1− ξ2) = 1. (2.31)

Equation (2.31) is known as the Bezout identity or the Bezout equation. It
plays an important role in algebra, and it is also very useful in our context.
The more general Bezout identity for more than two polynomials follows
easily from the proof of Theorem 2.5.10. �

A polynomial with real coefficients is called monic if the coefficient of its
leading term is unity. The greatest common divisor of a set of polynomials
a1(ξ), . . . , ak(ξ) is defined as the unique monic polynomial g(ξ) that divides
all the aj(ξ)s and is such that any other polynomial with that property
divides g(ξ).

Corollary 2.5.12 (Bezout) Let r1(ξ), . . . , rk(ξ) ∈ R[ξ]. Assume that the
greatest common divisor of r1(ξ), . . . , rk(ξ) is 1, i.e., the k polynomials have
no common factor, i.e., they are coprime. Then there exist polynomials
a1(ξ), . . . , ak(ξ) ∈ R[ξ] such that

r1(ξ)a1(ξ) + · · ·+ rk(ξ)ak(ξ) = 1.

Proof See Appendix B, Corollary B.1.7. �

2.5.5 Left and right unimodular transformations

We have seen that by multiplying a polynomial matrix from the left by a
unimodular matrix, we transform given behavioral equations into equiva-

2By ”no common factor” we always mean ”no nonconstant common factor”.
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lent equations. We refer to these transformations as left unimodular trans-
formations. If the behavior is represented by the matrix R(ξ), then the
transformed equations are represented by U(ξ)R(ξ).

It is sometimes convenient to use right unimodular transformations , that
is, to multiply R(ξ) by a unimodular matrix from the right. Left trans-
formations do not change the behavior. Right transformations, however,
do change the behavior. The usefulness of applying right transformations
lies in the fact that the behavior, although altered, remains structurally the
same, since right transformations represent isomorphisms3 of vector spaces.

Before we can apply right transformations, there is a technical difficulty to
overcome. Consider the behavior B defined by R( d

dt )w = 0, where R(ξ) ∈
Rg×q[ξ]. Let V (ξ) ∈ Rq×q[ξ] be unimodular. We can postmultiply R(ξ) by
V (ξ), resulting in R(ξ)V (ξ). Of course, in general, the behavior B′ defined
by R( d

dt )V ( d
dt )w = 0 differs from the original behavior B. However, there

is an obvious candidate for an isomorphism between B and B
′. To see

this, choose w ∈ B
′. Then R( d

dt )V ( d
dt )w = 0, and this implies that V ( d

dt )w

belongs to B. Conversely, if w ∈ B, then V −1( d
dt )w ∈ B

′. Notice that
since V (ξ) is unimodular, V −1(ξ) is again a polynomial matrix. It seems
that V ( d

dt ) indeed defines an isomorphism between B and B
′. But there

is a snag in this reasoning. Indeed, the operator V ( d
dt ) is only defined for

those elements of B that are sufficiently smooth. Since by Theorem 2.4.10
a behavior is completely determined by its C∞ part, on which V ( d

dt ) is
perfectly well defined, there is a way out: we just restrict our attention to
the C∞ parts of B and B

′.

For future reference we formulate these observations in a theorem.

Theorem 2.5.13 Let R(ξ) ∈ Rg×q[ξ] and V (ξ) ∈ Rq×q[ξ]. Denote the
behaviors defined by R( d

dt )w = 0 and R( d
dt )V ( d

dt )w = 0 by B and B
′

respectively. If V (ξ) is unimodular, then B∩C∞(R,Rq) and B
′∩C∞(R,Rq)

are isomorphic as vector spaces.

There exists a subclass of right unimodular transformations for which we do
not have to restrict the isomorphism to the C∞ part of the behavior, namely
those that correspond to unimodular matrices that do not depend on ξ, in
other words, matrices that are invertible in Rq×q. These transformations
replace the variable w by V w, where V is a nonsingular matrix in Rq×q,
and they are called static right unimodular transformations , since they
do not involve differentiations of the trajectories in the behavior. Static
right unimodular transformations are useful in the context of input/output
systems, as will be shown in Theorem 3.3.24.

3An isomorphism of two vector spaces is a bijective linear map from the first to the
second.
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Left unimodular transformations can be used to bring the polynomial ma-
trix in a more suitable form, like the upper triangular form.

Theorem 2.5.14 (Upper triangular form) Let R(ξ) ∈ Rg×q[ξ]. There
exists a unimodular matrix U(ξ) ∈ Rg×g[ξ] such that U(ξ)R(ξ) = T (ξ) and
Tij(ξ) = 0 for i = 1, . . . , g, j < i.

Proof See Appendix B, Theorem B.1.1. �

By applying both left and right unimodular transformations we can bring
a polynomial matrix into an even more convenient form, called the Smith
form.

Theorem 2.5.15 (Smith form, square case) Let R(ξ) ∈ Rg×g[ξ].
There exist unimodular matrices U(ξ), V (ξ) ∈ Rg×g such that

1. U(ξ)R(ξ)V (ξ) = diag(d1(ξ), . . . , dg(ξ)).

2. There exist (scalar) polynomials qi(ξ) such that di+1(ξ) = qi(ξ)di(ξ),
i = 1, . . . , g − 1.

Proof See Appendix B, Theorem B.1.4. �

Remark 2.5.16 The first part of Theorem 2.5.15 states that every square
polynomial matrix may be transformed into a diagonal matrix by means of
pre- and postmultiplication by suitable unimodular matrices. The second
part claims that in addition, the elements down the diagonal divide each
other. In fact, the diagonal form, i.e., without the division property, suffices
for the applications that we will encounter. The main reasons why we also
give the full result are convenience of reference, that the proof is not more
difficult, and that it is useful in the analysis in Chapter 3; see Remark
3.2.19.

It is not difficult to see that if we require the nonzero diagonal elements
to be monic, then the Smith form is unique: that is, for a given matrix
R(ξ) there exists exactly one matrix that satisfies the properties 1 and 2
in Theorem 2.5.15. �

Remark 2.5.17 If R(ξ) is nonsquare, then the Smith form is also defined
and is obtained via the same algorithm. If R(ξ) is wide (g < q) or tall
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(g > q), the Smith forms are given by






d1(ξ) 0 · · · 0
. . .

...
...

dg(ξ) 0 · · · 0




 ,













d1(ξ)
. . .

dq(ξ)
0 · · · 0
...

...
0 · · · 0













respectively. �

2.5.6 Minimal and full row rank representations

We have seen that different sets of equations may define the same behavior.
Given this fact, it is natural to look for representations that are in some
sense as simple as possible. In this section we concentrate on one partic-
ular feature of a representation, namely the parameter g, the number of
equations needed to describe a given behavior. The first step is to start
from a representation R(ξ) and try to reduce the number of equations by
creating zero-rows by means of left unimodular transformations. This leads
to the notion of full row rank representation. Loosely speaking, this is a
representation in which the number of rows cannot be reduced any further.
The precise definition follows shortly.

A representation is called minimal if the number of rows is minimal among
all possible equivalent representations. At this stage it is not clear whether
the reduction of a representation to a full row rank representation leads to
a minimal one. Yet this turns out to be true. Before we discuss the notions
that we use in the development, we present a simple example.

Example 2.5.18 Let R(ξ) be given by

R(ξ) =

[
−1 + ξ 1 + ξ

−2 + ξ + ξ2 2 + 3ξ + ξ2

]

.

Let B denote the behavior represented by R( d
dt )w = 0. Subtracting ξ + 2

times the first row from the second yields

[
−1 + ξ 1 + ξ

0 0

]

. (2.32)

B is thus also represented by (2.32). Because a zero-row does not impose
any restriction on w, we could as well delete it. Therefore, B is also repre-
sented by

[
−1 + ξ 1 + ξ

]
.
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Intuitively, it is clear that no further reduction is possible. In more com-
plicated situations, we would like to have a precise criterion on the basis
of which we can conclude that we are dealing with the minimal number of
equations. �

Definition 2.5.19 (Independence) The polynomial vectors r1(ξ), . . . , rk(ξ)
are said to be independent over R[ξ] if

k∑

j=1

aj(ξ)rj(ξ) = 0 ⇔ a1(ξ) = · · · = ak(ξ) = 0.

Here a1(ξ), . . . , ak(ξ) are scalar polynomials. �

Remark 2.5.20 Notice the analogy of Definition 2.5.19 with the notion
of independence of vectors over a field. See, however, Exercise 2.26. �

Definition 2.5.21 (Row rank and column rank) Let R(ξ) ∈ Rg×q[ξ].
The row rank (column rank) of R(ξ) is defined as the maximal number
of independent rows (columns). We say that R(ξ) has full row rank (full
column rank) if the row rank (column rank) equals the number of rows
(columns) in R(ξ). �

Theorem 2.5.22 Let R(ξ) ∈ Rg×q[ξ]. Denote the row rank and the column
rank of R(ξ) by kr and kc respectively.

1. The integers kr, kc are invariant with respect to pre- and postmulti-
plication by unimodular matrices.

2. kr = kc, and hence we can speak about the rank of R(ξ).

3. There exists a kr × kr submatrix of R(ξ) with nonzero determinant.

Proof (1) The statements are easily verified for pre- and postmultiplication
by elementary unimodular matrices, see Exercise 2.25. Since every unimod-
ular matrix is the product of elementary unimodular matrices (Theorem
2.5.7), the result follows.

(2) Choose unimodular matrices U(ξ), V (ξ) such that U(ξ)R(ξ)V (ξ) is in
Smith form. By part 1, we know that the row and column ranks of R(ξ)
and U(ξ)R(ξ)V (ξ) agree. Obviously, both the row and column ranks of
U(ξ)R(ξ)V (ξ) equal the size of the nonzero diagonal part of that matrix.
This implies that kr = kc.

(3) Choose kr independent rows to form the matrix Rr(ξ). The row rank,
and hence the column rank, of Rr(ξ) is equal to kr, and hence we can select
kr independent columns of Rr(ξ). From these columns we form the square
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matrix Rrc(ξ). Since Rrc(ξ) has full row rank, it follows from its Smith
form that its determinant is not the zero polynomial. �

Theorem 2.5.23 Every behavior B defined by R( d
dt )w = 0, R(ξ) ∈

Rg×q[ξ] admits an equivalent full row rank representation, that is, there
exists a representation R̃( d

dt )w = 0 of B with R̃(ξ) ∈ Rg̃×q of full row
rank.

Proof If R(ξ) has full row rank, there is nothing to prove. Suppose
that R(ξ) does not have full row rank. Denote the rows of R(ξ) by
r1(ξ), . . . , rg(ξ). By definition of dependence there exist nonzero scalar poly-
nomials a1(ξ), . . . , ag(ξ) such that

g
∑

j=1

aj(ξ)rj(ξ) = 0. (2.33)

We may assume that a1(ξ), . . . , ag(ξ) have no common nonconstant fac-
tor (otherwise we could divide the aj(ξ)s by this factor without changing
(2.33)). By Theorem 2.5.10 there exists a unimodular matrix U(ξ) with last
row [a1(ξ), . . . , ag(ξ)]. From (2.33) it follows that the last row of U(ξ)R(ξ)
is the zero-row. So as long as a matrix does not consist of zero-rows and
independent rows, we can create at least one more zero-row by premulti-
plication by a suitable unimodular matrix. This implies that there exists a
unimodular matrix U(ξ) ∈ Rg×g[ξ] such that

U(ξ)R(ξ) =

[

R̃(ξ)
0

]

with R̃(ξ) ∈ Rg̃×q[ξ] of full row rank. Of course, the behavior defined by
R( d

dt )w = 0 equals the behavior defined by R̃( d
dt )w = 0, since deletion of

zero-rows does not change the behavior. This completes the proof. �

Definition 2.5.24 (Minimality) Let the behavior B be defined by
R( d

dt )w = 0, R(ξ) ∈ Rg×q[ξ]. The representation R( d
dt )w = 0 is called

minimal if every other representation has at least g rows, that is, if w ∈ B

if and only if R′( d
dt )w = 0 for some R′(ξ) ∈ Rg′×q[ξ] implies g′ ≥ g. �

The following result is almost immediate.

Theorem 2.5.25 If R(ξ) is a minimal representation of B, then R(ξ) has
full row rank.

Proof Suppose that R(ξ) does not have full row rank. Then there exists
a unimodular matrix U(ξ) such that

U(ξ)R(ξ) =

[
R′(ξ)
0

]

. (2.34)
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Of course, B is also represented by (2.34) and hence by R′( d
dt )w = 0. Since

the number of rows of R′(ξ) is strictly smaller than the number of rows of
R(ξ), the latter cannot be minimal. �

As stated in Theorem 2.5.25, minimality implies full row rank, but the
converse is also true: full row rank implies minimality. Moreover all mini-
mal representations may be transformed into each other by means of left
unimodular multiplication. This implies in particular that all minimal rep-
resentations have the same number of rows. The proofs of these statements
have to be postponed until the end of Chapter 3, Theorem 3.6.4, because
we need to develop some other ingredients of the theory of linear dynamical
systems first.

2.6 Recapitulation

In this chapter we introduced the main class of dynamical systems that we will
deal with in this book: systems described by linear constant-coefficient differential
equations of the form R( d

dt
)w = 0, with R(ξ) a polynomial matrix. We explained

why the classical notion of a solution is inadequate for (engineering) applications.
In order to accommodate this difficulty, the notion of a weak solution, defined
in terms of an integral equation associated with the differential equation, was
introduced.

The main points of Chapter 2 are:

• Every strong solution is a weak solution, and every weak solution that is
sufficiently smooth is a strong solution (Theorem 2.3.11).

• Every weak solution can be approximated by a sequence of infinitely dif-
ferentiable ones. In other words, the C∞ part of the behavior is dense in
the behavior (Corollary 2.4.12).

• The systems under consideration, i.e., those described by behavioral dif-
ferential equations of the form R( d

dt
)w = 0, are linear and time-invariant

(Theorem 2.4.15).

• If there exists a unimodular polynomial matrix U(ξ) such that R2(ξ) =
U(ξ)R1(ξ), then R1(

d
dt
)w = 0 and R2(

d
dt
)w = 0 represent the same behav-

ior (Theorem 2.5.4). Such representations are called equivalent. In Chapter
3 we will show that the converse is also true: if R1(ξ) and R2(ξ) represent
the same behavior and if they have the same number of rows, then there
exists a unimodular matrix U(ξ) such that U(ξ)R2(ξ) = R1(ξ).

• We introduced the concept of minimal and full row rank representation.
Each system of differential equations R( d

dt
)w = 0 is equivalent to one in

which the corresponding polynomial matrix has a minimal number of rows
among all possible equivalent representations. Such a minimal representa-
tion is also of full row rank. Thus “minimal” implies “full row rank”. The
converse is also true. This will be proved in Chapter 3.
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2.7 Notes and References

The material of this chapter requires a mathematical background that goes beyond

what is offered in standard calculus courses. Introductory books that may serve

as background are [51] for the analysis part and [34] for the algebra part. A more

advanced book on matrices with entries in a Euclidean domain is [43]. Pioneering

books for the use of polynomial matrices in system theory are [8, 48, 63]. The

results on equivalent and minimal representations were first brought forward in

[60].

2.8 Exercises

2.1 Consider Example 2.3.10. Prove that the function (w1, w2) given by (2.15)
is a weak solution of (2.13).

2.2 Assume that a mass M at rest is hit by a unit force F at t = 0:

F (t) =

{
0 t < 0,
1 t ≥ 0.

Assume that the motion of the mass obeys Newton’s law:

M
d2

dt2
q = F. (2.35)

Compute the resulting displacement q as a function of time. Do you obtain
a weak or a strong solution of (2.35)? Repeat the question for

F (t) =

{
0 t < 0,
t t ≥ 0.

2.3 Consider the RC-circuit of Example 2.3.1. Assume for ease of calculation
that R0 = R1 = 1, C = 1. Prove that with the port voltage

V (t) =

{
0 t < 0,
1 t ≥ 0

the current

I(t) =

{
0 t < 0,
1
2
+ 1

2
e−2t t ≥ 0

yields a weak solution of (2.6).

Assume instead that a current source

I(t) =

{
0 t < 0,
1 t ≥ 0

is switched on at t = 0. Compute, analogously to the previous situation, a
corresponding weak solution of (2.6).
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2.4 A permutation matrix is a matrix in which each row and each column
contains exactly one entry that is equal to one and in which all other
entries are equal to zero. Consider the permutation matrix

[
0 1
1 0

]
.

(a) Show that it is a unimodular matrix.

(b) Write it as the product of elementary factors.

(c) Prove that every permutation matrix can be written as the product
of matrices of the type (2.27) and (2.28).

2.5 Let the polynomial matrix U(ξ) be given by
[
−1 + ξ2 + ξ3 ξ

ξ + ξ2 1

]

Is U(ξ) unimodular? Write it as a product of elementary matrices.

2.6 Let r1(ξ) = 2− 3ξ + ξ2, r2(ξ) = 6− 5ξ + ξ2, and r3(ξ) = 12− 7ξ + ξ2.

(a) Find a unimodular matrix U(ξ) ∈ R3×3[ξ] such that the last row of
U(ξ) equals [r1(ξ), r2(ξ), r3(ξ)].

(b) Find polynomials a1(ξ), a2(ξ), a3(ξ) such that

r1(ξ)a1(ξ) + r2(ξ)a2(ξ) + r3(ξ)a3(ξ) = 1.

2.7 In the definition of unimodular matrix, Definition 2.5.5, it is stated that a
polynomial matrix U(ξ) ∈ Rg×g[ξ] has a polynomial inverse V (ξ) ∈ Rg×g[ξ]
if and only if detU(ξ) equals a nonzero constant. Prove this statement.
Hint: for the sufficiency part use the discussion just below Definition 2.5.5.

2.8 Consider the differential system

−w1 +
d2

dt2
w1 + w2 +

d

dt
w2 = 0,

− d

dt
w1 +

d2

dt2
w1 +

d

dt
w2 = 0.

Is it a full row rank representation? If not, construct an equivalent full row
rank representation.

2.9 Consider the electrical circuit studied in Example 1.3.5. Write the equations
(1.1, 1.2, 1.3) in Section 1.3 in polynomial matrix form

R(
d

dt
)w = 0

with w = col(V, I, VRC
, IRC

, VRL
, IRL

, VC , IC , VL, IL).

2.10 Consider the polynomial matrix obtained in Exercise 2.9. Is the result-
ing system minimal in the sense of Definition 2.5.24? Prove that in this
case you can obtain an equivalent minimal system by simply dropping two
equations. (We have seen in Example 2.5.18 that in general, reduction to
minimal form requires more involved manipulations than simply dropping
redundant equations.)
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2.11 Assume that R(ξ) ∈ Rg×q[ξ] and that

R(
d

dt
)w = 0

is a minimal representation. Prove that g ≤ q. Conclude that every system
can hence be represented by a number of equations that is less than or
equal to the number of components of w.

2.12 Prove Lemma 2.3.9.

2.8.1 Analytical problems

Below we have listed some exercises that fill in the gaps that were left in the proofs
of some of the analytical results. As they do not really have any system-theoretic
significance, we list these exercises separately.

2.13 Define the functions wn ∈ L
loc
1 (R,R) as

wn(t) =

{
0 |t| < n,
n |t| ≥ n.

Prove that wn converges to the zero function in the sense of Lloc
1 (R,R).

2.14 (a) Does pointwise convergence (limk→∞ wk(t) = w(t) for all t) imply
convergence in the sense of Lloc

1 (R,Rq)? Provide a counterexample.

(b) The sequence of functions {wk} is said to converge to w uniformly in
t if for all ǫ > 0 there exists an N such that for all t and for all k ≥ N ,
‖wk(t)−w(t)‖ < ǫ. The difference with pointwise convergence is that
N is not allowed to depend on t. Equivalently, limk→∞(supt ‖wk(t)−
w(t)‖) = 0. Does uniform convergence imply convergence in the sense
of Lloc

1 (R,Rq)?

2.15 Complete the proof of Theorem 2.4.10.

2.16 Let w ∈ L
loc
1 (R,Rq) be a weak solution of R( d

dt
)w = 0, where R(ξ) ∈

Rg×q[ξ].

(a) Let ψi ∈ R and τi ∈ R, i = 1, . . . , N . Prove that
∑N

i=1 ψiw(t− τi) is
a weak solution of R( d

dt
)w = 0.

(b) Assume that ψ ∈ L
loc
1 (R,R) is such that

(ψ ∗ w)(t) :=
∫ ∞

−∞
ψ(τ)w(t− τ)dτ (2.36)

is a well-defined integral with ψ ∗ w ∈ L
loc
1 (R,Rq). Prove that ψ ∗ w

is also a weak solution of R( d
dt
)w = 0.

Note: In Section 2.4.1, Lemma 2.4.9, we showed that the integral
(2.36) is always well-defined and belongs to the behavior for a special
choice of ψ. In particular, ψ had compact support. Other conditions
under which (2.36) is obviously well-defined are, for example, that
there exists t′ ∈ R such that ψ(t) = 0 for t > t′ and w(t) = 0 for
t < t′, or if w ∈ L1(R,R

q) and ψ ∈ L1(R,R).
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2.17 Show that the function φ defined in (2.18) is infinitely differentiable.

2.18 Let ψ ∈ C∞(R,R) and w ∈ L
loc
1 (R,R). Define v by

v(t) :=

t∫

0

w(s)ds.

Show that
t∫

0

(ψ ∗ w)(τ)dτ = (ψ ∗ v)(t).

2.19 Prove that integration is a continuous operation on L
loc
1 (R,Rq); i.e., show

that if limk→∞ wk = w in the sense of L
loc
1 (R,Rq), see Definition 2.4.2,

then

lim
k→∞

b∫

a

wk(t)dt =

b∫

a

w(t)dt.

This fact is used in the proof of Theorem 2.4.4.

2.20 Let wk(t) = c0,k + · · ·+ cn,kt
n, ci,k ∈ Rq. Prove that if the sequence {wk}

converges in the sense of Lloc
1 (R,Rq), then the sequences ci,k converge in Rq

for all i. For simplicity you may confine yourself to the case q = 1, n = 1.

2.21 Prove Theorem 2.3.11.

2.8.2 Algebraic problems

Below we have listed some exercises that fill in the gaps that were left in the proofs
of some of the algebraic results. As they do not really have any system-theoretic
significance, we have listed them separately.

2.22 Prove Theorem 2.5.22, part 1, for elementary unimodular matrices.

2.23 Let a(ξ), b(ξ) ∈ R[ξ] be polynomials. Prove that a(ξ) and b(ξ) are coprime
if and only if there exist polynomials p(ξ) and q(ξ) such that a(ξ)p(ξ) +
b(ξ)q(ξ) = 1.

2.24 Let a(ξ), b(ξ) ∈ R[ξ] be polynomials of degree n andm respectively. Assume
that a(ξ) and b(ξ) are coprime, i.e., they have no nonconstant common
factors.

(a) Use Corollary 2.5.12 to conclude that for every polynomial c(ξ) ∈ R[ξ]
there exist polynomials p(ξ) and q(ξ) such that

a(ξ)p(ξ) + b(ξ)q(ξ) = c(ξ). (2.37)

(b) Suppose that deg c(ξ) < n + m. Prove that the previous statement
remains true if we require that deg p(ξ) < m and deg q(ξ) < n. Hint:
Assume that deg p(ξ) ≥ m. Apply division with remainder of p(ξ) by
b(ξ) (p(ξ) = f(ξ)b(ξ) + p̃(ξ)) to obtain a polynomial p̃(ξ) of degree
strictly smaller than m. Rewrite (2.37) as a(ξ)p̃(ξ) + b(ξ)q̃(ξ) = c(ξ)
for a suitable choice of q̃(ξ) and argue by checking the degrees of the
left- and right-hand sides that deg q̃(ξ) < n.
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(c) Assume that deg c(ξ) < n + m. Prove that p(ξ) with deg p(ξ) < m
and q(ξ) with deg q(ξ) < n such that (2.37) is satisfied are unique.
Hint: In the previous part you have just proved that the linear map L
that assigns to the pair (p(ξ), q(ξ)) the polynomial a(ξ)p(ξ)+b(ξ)q(ξ)
is surjective. Use the fact that a linear map between vector spaces of
the same (finite) dimension is injective if and only if it is surjective
to conclude that L is also injective.

(d) Now suppose that a(ξ) and b(ξ) are not coprime. Prove that there ex-
ist polynomials c(ξ) such that (2.37) has no solution p(ξ), q(ξ). Under
what condition on c(ξ) is (2.37) solvable?

2.25 Consider Rg×g[ξ]. Obviously, addition, +, and multiplication, •, each define
binary operations on Rg×g[ξ]. Prove that (R[ξ], •,+) defines a ring. Let
U = {U(ξ) ∈ Rg×g[ξ] | U(ξ) is unimodular}. Prove that (U, •) forms a
group.

2.26 If the real vectors v1, . . . , vk ∈ Rn are linearly dependent over R, then at
least one of these vectors can be written as a linear combination (over
R) of the others. Show by means of an example that this is not true for
polynomial vectors. See Definition 2.5.19 for independence of polynomials.
Hint: Consider v1(ξ) := [ξ ξ2]T , v2 := [1 + ξ ξ + ξ2]T .
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3

Time Domain Description of Linear
Systems

3.1 Introduction

In Chapter 2 we studied behaviors described by equations of the form
R( d

dt )w = 0. We obtained fundamental properties such as linearity, time-
invariance, and the like, as well as the relation between the behavior and
its representations. What we did not do, however, is pay attention to what
the trajectories in the behavior, the weak solutions of R( d

dt )w = 0, actually
look like.

The first goal of this chapter is to give a complete and explicit character-
ization of all weak solutions of R( d

dt )w = 0. This is done in two steps. In
the first step we treat autonomous systems, that is, the case where R(ξ) is
a square polynomial matrix with nonzero determinant. In the second step
the general case is covered. This leads to the notion of input/output repre-
sentation. Loosely speaking, this means that we can split the trajectories w
into two components, w1 and w2, one component that can be chosen freely,
called the input , and the other, called the output , the future of which is
completely determined by its past and the choice of the input.

The second goal of this chapter is to study an alternative representation of
input/output systems, namely through convolution.

As an application of these results, we prove the claim made in Chapter 2 that
two matrices R1(ξ) and R2(ξ) with the same number of rows represent the
same behavior if and only if R2(ξ) = U(ξ)R1(ξ) for some unimodular matrix
U(ξ). From that it follows that all minimal representations, equivalently all
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full row rank representations, of a given behavior may be transformed into
each other by multiplication from the left by a unimodular polynomial
matrix.

The outline of the chapter is as follows. In Section 3.2 we consider the case
whereR(ξ) is square and has nonzero determinant. The scalar case is treated
first. The results obtained there are used to analyze the multivariable case.
In Section 3.3 we define and study systems in input/output form. Also in
this section the scalar case is treated first. By scalar we now mean that
both the input and output variables are scalar. These systems are referred
to as single-input/single-output (SISO) systems. Subsequently, we obtain
the important result, valid for multivariable systems (i.e., q ≥ 2), that
every behavior can be written in input/output form. In Section 3.4 we
study convolution systems, and in Section 3.5 we relate convolution systems
to input/output systems described by differential equations. Section 3.6
contains the counterpart of Theorem 2.5.4. By their nature, the results of
Section 3.6 belong to Chapter 2. Unfortunately, the results of Section 3.6
could not be given earlier, since they rely on elements of previous sections
of the present chapter. In that respect, they also form nice applications of
some of the results obtained in this chapter.

3.2 Autonomous Systems

In Chapter 2 we have defined behaviors described by systems of differential
equations R( d

dt )w = 0, where R(ξ) ∈ Rg×q[ξ]. The q×q case is of special
interest. For notational reasons that will become clear later, we prefer to
denote R(ξ) by P (ξ) in this case. The corresponding system of differential
equations that we study in this section is

P (
d

dt
)w = 0 (3.1)

with P (ξ) ∈ Rq×q[ξ] and detP (ξ) 6= 0. With detP (ξ) 6= 0, we mean that
detP (ξ) is not equal to the zero polynomial. Of course, if deg detP (ξ) is not
zero, then detP (ξ) has roots. It turns out that in this case the behavior can
be described quite explicitly. In fact, the roots of detP (ξ) play a leading role
in this description. Thus the problem at hand is to describe the solution
set of the system of differential equations (3.1), that is, the behavior of
the dynamical system represented by it. The expression for the behavior
becomes (notationally) much simpler if we consider differential equations
with complex coefficients rather than with real coefficients. The reason
for this is that in C every polynomial can be written as the product of
first-order factors. In large parts of this chapter we hence assume that
P (ξ) ∈ Cq×q[ξ], detP (ξ) 6= 0, and of course we obtain an expression for all
solutions w ∈ Lloc

1 (R,Cq) of the differential equation P ( d
dt )w = 0. It is easy
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to treat the real case from there. If P (ξ) happens to have real coefficients,
then it simply suffices to take the real part of the complex solutions w.

We will first determine the set of strong solutions of P ( d
dt )w = 0. Subse-

quently, we show that every weak solution is equivalent to a strong one, or
stated otherwise, that for every weak solution there exists a strong solu-
tion such that they agree everywhere except on a set of measure zero (see
Definition 2.3.6).

The main result of this section is that solutions of (3.1) are completely
determined by their past. That is, if two solutions of P ( d

dt )w = 0 agree
on the time interval (−∞, 0], then they agree on the whole time axis R.
Behaviors with this property are called autonomous.

Definition 3.2.1 A behavior B is called autonomous if for all w1, w2 ∈ B

w1(t) = w2(t) for t ≤ 0 ⇒ w1(t) = w2(t) for almost all t.

In words: the future of every trajectory is completely determined by its
past. �

The idea of Definition 3.2.1 is best illustrated by means of an example.

Example 3.2.2 Consider the mass–damper–spring system of Figure 3.1.
The equation that describes the behavior of the displacement of the mass

d

M

w

k2k1

FIGURE 3.1. Autonomous mass–damper–spring system.

with respect to its equilibrium is

(k1 + k2)w + d
d

dt
w +M(

d

dt
)2w = 0. (3.2)

Mathematically speaking, it is clear that (3.2) defines an autonomous sys-
tem. For suppose that we have two solutions w1 and w2 of (3.1) such
that w1(t) = w2(t) for t ≤ 0. Since we are dealing with a linear system,
w := w1 − w2 also belongs to the corresponding behavior. It follows from
the theory of ordinary differential equations that since w(t) = 0 for t ≤ 0,
and w satisfies (3.2), w is identically zero. This implies that w1 = w2. In
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fact, the solution of (3.2) for t > 0 is completely determined by w(0) and
( d
dtw)(0). In turn, these initial conditions are obviously determined by w(t)

for t ≤ 0. This provides a somewhat different, though related, explanation
for the fact that (3.2) defines an autonomous behavior. Notice, however,
that we have used arguments borrowed from theory that we did not pro-
vide in this book. In the sequel we derive that (3.2) defines an autonomous
system by different means. Physically, the autonomous nature of the sys-
tem is explained by the observation that once the mass has been in its
equilibrium position in the past, it remains there forever. The only way to
move the mass from its equilibrium position is to act on it with an external
force. Such an action involves a corresponding external variable, which is
not modeled by (3.2). In the next example we see that if we incorporate an
external force in the model, then the system is no longer autonomous. �

Example 3.2.3 As an example of a non autonomous system, consider the
mass–spring system in Figure 3.2. The difference with Example 3.2.2 is

w

M

k1 k2

F

FIGURE 3.2. Non autonomous mass–spring system.

that now an external force can act on the mass. Denote this force by F .
The equation describing the behavior becomes

(k1 + k2)w +M(
d

dt
)2w = F. (3.3)

To see that the behavior defined by (3.3) is not autonomous, it suffices to
show that there exists a nonzero solution (w,F ) of (3.3) that is zero on
(−∞, 0]. For convenience, assume that M = 1 and k1 = k2 = 1

2 . Take

w(t) =

{
0 t < 0
1− cos(t) t ≥ 0

, F (t) =

{
0 t < 0
1 t ≥ 0

. (3.4)

It is not difficult to check that the pair (w,F ) defined by (3.4) is a (weak)
solution of (3.3). Because (w,F ) = (0, 0) is also a solution of (3.3), it
follows that trajectories in the behavior are not completely determined by
their past. Therefore, (3.4) viewed as a dynamical system in the variable
(w,F ) defines a non autonomous system. �
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3.2.1 The scalar case

In order to get going, let us consider first the case q = 1. Let n denote the
degree of P (ξ), say P (ξ) = P0+P1ξ+ · · ·+Pn−1ξ

n−1 +Pnξ
n with Pn 6= 0.

The problem at hand is to describe the solution set of the scalar differential
equation

P0w + P1
d

dt
w + · · ·+ Pn−1

dn−1

dtn−1
w + Pn

dn

dtn
w = 0, (3.5)

where P0, P1, . . . , Pn−1, Pn ∈ C. Note that (3.5) is indeed the scalar version
of (3.1).

Before we characterize the behavior defined by (3.5), we derive that every
weak solution of (3.5) is equal to an infinitely differentiable solution almost
everywhere and therefore also to a strong solution almost everywhere. As
a pleasant consequence, we may subsequently confine ourselves to strong
solutions, which, as we will see, facilitates the analysis considerably.

Theorem 3.2.4 Let B be the behavior defined by P ( d
dt )w = 0, where 0 6=

P (ξ) ∈ R[ξ]. For every w ∈ B, there exists a v ∈ B that is infinitely
differentiable and such that w = v almost everywhere.

Proof Let P (ξ) be given by

P (ξ) = P0 + P1ξ + · · ·+ Pnξ
n, Pn 6= 0.

Every weak solution of P ( d
dt )w = 0 satisfies the associated integral equation

PLw(t) + PL−1

t∫

0

w(τ)dτ + · · ·+ P0

t∫

0

· · ·
τL−1∫

0

w(τL)dτL · · · dτ1 = rL−1(t)

for some polynomial rL−1 of degree at most L− 1. Equivalently,

PLw(t) = −PL−1

t∫

0

w(τ)dτ −· · ·−P0

t∫

0

· · ·
τL−1∫

0

w(τL)dτL · · · dτ1+rL−1(t).

(3.6)
Since w ∈ Lloc

1 (R,R), it follows that the right-hand side of (3.6) is C0(R,R)
(continuous), and hence, since PL 6= 0, we conclude that w equals a function
in C0(R,R) almost everywhere. But this implies that the right-hand side of
(3.6) is C1(R,R) (continuously differentiable), and it follows that w equals
a function in C1(R,R) almost everywhere. Repeating this argument yields
that w equals a function v ∈ C∞(R,R) almost everywhere. Finally, Theorem
2.3.11, part 2, implies that v is a strong solution of P ( d

dt )w = 0. �

Theorem 3.2.4 allows us to restrict attention to strong solutions of (3.5).
The following theorem, which can be considered as the main result of the
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theory of differential equations, gives an explicit description of the behavior
represented by (3.5).

Theorem 3.2.5 Let P (ξ) ∈ R[ξ] be a monic polynomial and let λi ∈ C,
i = 1, . . . , N, be the distinct roots of P (ξ) of multiplicity ni: P (ξ) =
∏N

k=1(ξ − λk)
nk . The corresponding behavior B is autonomous and is a

finite-dimensional subspace of C∞(R,C) of dimension n = degP (ξ). More-
over, w ∈ B if and only if it is of the form

w(t) =
N∑

k=1

nk−1∑

ℓ=0

rkℓt
ℓeλkt (3.7)

with rkℓ, k = 1, 2, . . . , N, ℓ = 0, 1, . . . , nk − 1, arbitrary complex numbers.
Equivalently,

w(t) =
N∑

k=1

rk(t)e
λkt (3.8)

with rk(ξ) ∈ C[ξ] an arbitrary polynomial of degree less than nk.

The polynomial P (ξ) is called the characteristic polynomial of B, and the
roots of P (ξ) are called the characteristic values.

Before we can prove this theorem, we state and prove some preliminary
results. The first one is a theorem that gives an explicit expression for the
action of a polynomial differential operator applied to a function of the
form tkeλt.

Notation: We use the notation P (k)(ξ) to denote the kth derivative of the
polynomial matrix P (ξ). So if P (ξ) = P0 + P1ξ + · · ·+ PL−1ξ

L−1 + PLξ
L,

then

P (1) = P1+· · ·+(L−1)PL−1ξ
L−2+LPLξ

L−1 and P (k+1)(ξ) = (P (k))(1)(ξ).
(3.9)

In the next theorem we use binomial coefficients. Recall that for integers
j ≥ ℓ these are defined as:

(
j
ℓ

)

=
j!

(j − ℓ)! ℓ! .

Lemma 3.2.6 Let P (ξ) =
n∑

k=0

Pkξ
k and w(t) = tmeλt. Then

(P (
d

dt
)w)(t) =

m∑

k=0

(
m
k

)

P (m−k)(λ)tkeλt.

Proof Since dk

dtk
eλt = λkeλt, it follows that P ( d

dt )e
λt = P (λ)eλt. Differen-

tiating the left- and right-hand side of this equality m times with respect
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to λ yields

P (
d

dt
)tmeλt =

m∑

k=0

(
m
k

)

P (m−k)(λ)tkeλt.

�
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Corollary 3.2.7

(i) For all k ≥ 0, l ≤ k, and λ ∈ C, (
d

dt
− λ)k+1(tleλt) = 0.

(ii) For all k ≥ 0 and λ ∈ C, (
d

dt
− λ)k(tkeλt) = k!eλt.

Proof The proof is left as an exercise to the reader. �

The following theorem is an important step in the proof of Theorem 3.2.5.

Theorem 3.2.8 Let N,M ∈ N and let I ⊂ R be an interval of positive
length. Let λ1, . . . , λN ∈ C be mutually distinct. Define the functions bij :
I → C for i = 1, . . . , N, j = 1, . . . ,M as follows:

bij(t) = tj−1eλit.

The functions bij are linearly independent on I over C;. By that we mean

that if
∑N

i=1

∑M
j=1 αijbij(t) = 0 for all t ∈ I, where the αij ∈ C, then

αij = 0 for all i and j.

Proof Suppose that

N∑

i=1

M∑

j=1

αijbij(t) = 0 for all t ∈ I. (3.10)

Define functions b1, . . . , bN as bi :=
M∑

j=1

αijbij . We first show that all the bis

are identically zero. To that end define P (ξ) :=
N∏

i=2

(ξ − λi)M and Q(ξ) :=

(ξ − λ1)
M . Since the λis are mutually distinct, P (ξ) and Q(ξ) have no

common factors, and hence by Corollary B.1.7 there exist polynomials a(ξ)
and b(ξ) such that a(ξ)P (ξ)+b(ξ)Q(ξ) = 1. By (3.10) and Corollary 3.2.7(i)
it follows that P ( d

dt )b1 = 0 and Q( d
dt )b1 = 0. This implies that

b1 =

(

a(
d

dt
)P (

d

dt
) + b(

d

dt
)Q(

d

dt
)

)

b1 = 0.

In the same way one proves that b2 = 0, . . . , bN = 0.

Consider bi. By Corollary 3.2.7(i, ii) we conclude that ( d
dt − λi)M−1bi(t) =

αi,M (M − 1)!eλit = 0. This implies that αi,M = 0. Operating sequentially
by ( d

dt−λi)M−2, ( d
dt−λi)M−3, . . . proves that the remaining coefficients of bi

are zero. This shows that the functions bij are indeed linearly independent.
�

We are now ready to prove Theorem 3.2.5.
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Proof of Theorem 3.2.5 From Corollary 3.2.7 we know that every func-
tion of the form tjeλit, i = 1, . . . , N, j = 0, . . . , ni−1, is a solution of (3.5).
By the linearity of the differential equation it follows that the linear space
spanned by these functions is a subspace of the behavior B associated with
(3.5). This implies that the dimension of the behavior B is at least n. If we
can prove that the dimension is also at most n, we are done. This is proven
by induction on n.

For n = 0 the statement thatB has dimension zero follows trivially. Suppose
that for every polynomial P̃ (ξ) of degree n, the behavior B corresponding
to that polynomial has dimension n.

Let P (ξ) be a polynomial of degree n+1 and let λ be a root of P (ξ). Then
P (ξ) = P̃ (ξ)(ξ − λ), where P̃ (ξ) is a polynomial of degree n. Let w(t) be a
solution of P ( d

dt )w(t) = 0. Note that

P (
d

dt
)w = 0⇐⇒ P̃ (

d

dt
)(
d

dt
− λ)w = 0

and

P̃ (
d

dt
)(
d

dt
− λ)w = 0⇐⇒ P̃ (

d

dt
)w′ = 0 with w′ := (

d

dt
− λ)w.

Notice that since w is a solution of P ( d
dt )w = 0, we have that w ∈ C∞(R,R)

(by Theorem 3.2.4), so that w′ is well-defined. By the induction hypothesis
the behavior defined by P̃ (ξ) has an n-dimensional basis bi, i = 1, . . . , n,
so that w′ can be written as

w′(t) =
n∑

i=1

ribi(t),

By variation of constants, every strong solution of ( d
dt − λ)w = w′ is given

by:

w(t) = w(0)eλt +
t∫

0

eλ(t−τ)w′(τ)dτ

= w(0)eλt +
t∫

0

eλ(t−τ)
n∑

i=1

ribi(τ)dτ

= w(0)eλt +
n∑

i=1

ri
t∫

0

eλ(t−τ)bi(τ)dτ.

Now, w(t) has been written as a linear combination of n + 1 functions,
namely eλt and

t∫

0

eλ(t−τ)bi(τ)dτ, i = 1, . . . , n.

Notice that these n+1 functions all belong to the behavior defined by P (ξ).
This implies that the behavior corresponding to P ( d

dt )w = 0 has dimension
at most equal to n+ 1.
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Finally, we show that B is autonomous. Suppose that w1, w2 ∈ B and that
w1(t) = w2(t) for all t ≤ 0. Define w := w1 − w2. Then by linearity of B,
also w ∈ B. We have to prove that w(t) = 0 for all t > 0. We know that
w can be expressed as a linear combination of the form (3.7), so that in
particular,

0 =

N∑

k=1

nk−1∑

ℓ=0

rkℓt
ℓeλkt, t ≤ 0.

By Theorem 3.2.8 the functions tℓeλkt are linearly independent, so that all
coefficients are zero. It follows that w(t) = 0 for t > 0.

This completes the proof. �

Remark 3.2.9 Theorem 3.2.5 provides, despite its somewhat lengthy
proof, an elegant way of characterizing all trajectories in a scalar au-
tonomous behavior. The result may not be very easy to prove, but it is
easy to recall and to use. �

Before we proceed, we present some examples.

Example 3.2.10 Consider the equation

2y − 2
d

dt
y +

d2

dt2
y = 0. (3.11)

The corresponding polynomial is P (ξ) = 2− 2ξ + ξ2, and it factorizes as

(ξ − 1− i)(ξ − 1 + i).

Again, according to Theorem 3.2.5, every solution of (3.11) can be written
as

y(t) = r1e
(1+i)t + r2e

(1−i)t.

Here r1 and r2 are complex coefficients. Suppose we are interested in real
solutions only. One way to obtain real solutions is to take r2 as the complex
conjugate of r1. Another way is as follows. Write y = yr+yi, with yr and yi
the real and imaginary parts of y respectively. From P ( d

dt )y = 0, it follows

that P ( d
dt )yr = 0 and P ( d

dt )yi = 0. Let us determine yr and yi. Write
r1 = r1r + r1ii and r2 = r2r + r2ii. Then

yr(t) = Re[(r1r + ir1i)e
(1+i)t + (r2r + ir2i)e

(1−i)t]
= et Re[(r1r + ir1i)(cos t+ i sin t) + (r2r + ir2i)(cos t− i sin t)]
= et((r1r + r2r) cos t+ (r2i − r1i) sin t).

(3.12)
Similarly we find

yi(t) = et((r1i + r2i) cos t+ (r1r − r2r) sin t).
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By defining α := r1r + r2r and β := r2i − r1i, we obtain from (3.12) that
the real solutions of P ( d

dt )y = 0 consist of the functions of the form

y(t) = αet cos t+ βet sin t, α, β ∈ R.

�

Example 3.2.11 In Example 3.2.2 we discussed an autonomous mass–
damper–spring system. Take d = 0. The equation describing the position
of the mass with respect to its equilibrium is

(k1 + k2)w +M
d2

dt2
w = 0.

The corresponding polynomial is P (ξ) = Mξ2 + (k1 + k2). The roots of
P (ξ) are

λ1 = i

√

k1 + k2
M

, λ2 = −i
√

k1 + k2
M

.

According to Theorem 3.2.5 every possible motion of the mass is of the
form

w(t) = c1e
i

√

k1+k2
M

t + c2e
−i

√

k1+k2
M

t, c1, c2 ∈ C. (3.13)

Complex trajectories have no physical meaning, so we take the real part of
(3.13) to obtain a general expression for the real trajectories. This gives

w(t) = α sin(

√

k1 + k2
M

t) + β cos(

√

k1 + k2
M

t), α, β ∈ R,

or equivalently,

w(t) = A cos(

√

k1 + k2
M

t+ φ), A ∈ R, φ ∈ [0, 2π).

�

Example 3.2.12 As a third example, consider the behavior defined by

−6y − 11
d

dt
y − 3

d2

dt2
y + 3

d3

dt3
y +

d4

dt4
y = 0. (3.14)

The corresponding polynomial is

P (ξ) = −6− 11ξ − 3ξ2 + 3ξ3 + ξ4 = (ξ + 1)2(ξ − 2)(ξ + 3),

and according to Theorem 3.2.5, the solutions of (3.14) can be written as

y(t) = r10e
−t + r11te

−t + r20e
2t + r30e

−3t. (3.15)

The coefficients rij in (3.15) are completely free, but if we are interested
only in real solutions, then they should be real. �
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Taking real parts in (3.8) and proceeding as in Example 3.2.10, yields the
following immediate consequence of Theorem 3.2.8.

Corollary 3.2.13 Consider the dynamical system (R,R,B) represented
by the differential equation (3.5) with real coefficients. Then w ∈ B if and
only if it is of the form

w(t) =

N ′

∑

k=1

rk(t)e
λkt +

N ′′

∑

k=1

(r′k(t) cosωkt+ r′′k(t) sinωkt)e
λ′

kt, (3.16)

where λ1, λ2, . . . , λN ′ are the real roots of P (ξ), n1, n2, . . . , nN ′ their multi-
plicities; λ′1± iω1, λ

′
2± iω2, . . . , λ

′
N ′′± iωN ′′ the roots with nonzero imagi-

nary part, n′1, n′2, . . . , n′N ′′ their multiplicities and rk(t), r
′
k(t), r

′′
k(t) ∈ R[t]

arbitrary polynomials of degrees at most, nk − 1, n′k − 1, and n′k − 1 re-
spectively.

Proof If λ ∈ R, then obviously eλt is real-valued. This explains the first
part of (3.16).

If λ = µ+ iω is a root of multiplicity m of P (ξ), then λ̄ = µ− iω is also a
root of P (ξ) and has the same multiplicity. The roots λ and λ̄ give rise to
(complex-valued) solutions of the form

w(t) =

m−1∑

j=0

(aj + ia′j)t
jeλt +

m−1∑

j=0

(bj + ib′j)t
jeλ̄t, aj , a

′
j , bj , b

′
j ∈ R. (3.17)

Taking real and imaginary parts in (3.17) yields the result. �

Remark 3.2.14 Some remarks related to Theorem 3.2.5 and Corollary
3.2.13:

1. From Theorem 3.2.5 it follows that B is a finite-dimensional vector
space. Its dimension is equal to the number of free coefficients in (3.7),
namely n, the degree of P (ξ). Note also that

eλ1t, teλ1t, . . . , tn1−1eλ1t, . . . , eλN t, teλN t, . . . , tnN−1eλN t

form a basis for B in the complex case, while in the real case this
basis consists of

eλ1t, . . . , tn1−1eλ1t, . . . , eλN′ t, . . . , tnN′−1eλN′ t

eλ
′

1t cosω1t, e
λ′

1t sinω1t, . . . , t
n′

1−1eλ
′

1t cosω1t, t
n′

1−1eλ
′

1t sinω1t, . . . ,

eλ
′

N′′ t cosωN ′′t, . . . , tn
′

N′′−1eλ
′

N′′ t cosωN ′′t, tn
′

N′′−1eλ
′

N′′ t sinωN ′′t.

2. The constants rkℓ appearing in the polynomials in the expression of a
general solution w, (3.7), have an interpretation in terms of the value
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of w and its first n − 1 derivatives at t = 0. We derive this relation
for the case that all roots of P (ξ) have multiplicity one. Indeed

(
d

dt
)k(

n∑

i=1

rie
λit)(0) =

n∑

i=1

riλ
k
i .

This shows that there is a simple relation between w(0), w(1)(0),...,
w(n−1)(0) and the coefficients {ri}. Written in matrix notation








1 · · · 1
λ1 · · · λn
...

...
λn−1
1 · · · λn−1

n















r1
r2
...
rn







=








w(0)
w(1)(0)

...
w(n−1)(0)







. (3.18)

The matrix in (3.18) has a simple structure and is called a Vander-
monde matrix. It is not difficult to prove that this matrix is nonsin-
gular if and only if the λis are mutually distinct. See Exercise 3.16.
Hence the linear relation between the initial conditions and the coef-
ficients ri is bijective.

The reader is encouraged to treat the general case, multiplicities
larger than one, by doing Exercises 3.3 and 3.16.

3. Let w ∈ B. Now consider its past, w−, and its future, w+. Formally

w− : (−∞, 0)→ R is defined by w−(t) := w(t), t < 0;

w+ : [0,∞)→ R is defined by w+(t) := w(t), t ≥ 0.

Each element w ∈ B is of the form (3.7). By (3.18) the coefficients

rkl are uniquely determined by w(0), . . . , ( dn−1

dtn−1w)(0), which in turn
are determined by w−. It follows that w+ is uniquely determined by
w−, so that indeed the corresponding behavior is autonomous. Thus
the dynamical system represented by the differential equation (3.5)
has the special property that the past of an element in its behavior
uniquely specifies its future. This explains the title of Section 3.2.
Mathematically inclined readers understand that this follows from
the fact that all functions of the form (3.7) are analytic.

�

3.2.2 The multivariable case

We now consider the general case, g = q ≥ 1. Recall that we are inter-
ested in the characterization of the behavior B corresponding to the linear
differential equation

P (
d

dt
)w = 0, P (ξ) ∈ Rq×q[ξ], detP (ξ) 6= 0.
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Recall that for the scalar case, every weak solution of P ( d
dt )w = 0 is equal to

a strong one almost everywhere. This result is also true for the multivariable
case, but the proof is less straightforward. The reader is referred to Exercise
3.15 for a suggested proof. For the sake of completeness we state the result
in the form of a theorem (see also Theorem 3.2.4).

Theorem 3.2.15 Let B be the behavior defined by P ( d
dt )w = 0, where

P (ξ) ∈ Rq×q[ξ] and detP (ξ) 6= 0. For every w ∈ B there exists a v ∈
B ∩ C∞(R,Rq) such that w(t) = v(t) for almost all t.

Proof See Exercise 3.15. �

Because of Theorem 3.2.15, the object of interest in this section is

B :=

{

w ∈ L
loc
1 (R,Rq) | w is a strong solution of P (

d

dt
)w = 0

}

.

Refer to (3.9) for the notation for the higher-order derivatives of polynomial
matrices.

Theorem 3.2.16 Let P (ξ) ∈ Rq×q[ξ] and let λi ∈ C, i = 1, . . . , N, be the

distinct roots of detP (ξ) of multiplicity ni: detP (ξ) = c
∏N

k=1(ξ − λk)nk

for some nonzero constant c. The corresponding behavior B is autonomous
and is a finite-dimensional subspace of C∞(R,Cq) of dimension n =
deg detP (ξ). Moreover, w ∈ B if and only if it is of the form

w(t) =
N∑

i=1

ni−1∑

j=0

Bijt
jeλit, (3.19)

where the vectors Bij ∈ Cq satisfy the relations

ni−1∑

j=ℓ

(
j
ℓ

)

P (j−ℓ)(λi)Bij = 0, i = 1, . . . , N ; ℓ = 0, . . . , ni − 1. (3.20)

In matrix notation we get for i = 1, . . . , N :




(
0
0

)
P (0)(λi) · · · · · ·

(
ni − 1

0

)
P (ni−1)(λi)

0
. . .

(
ni − 1

1

)
P (ni−2)(λi)

...
. . .

...

0 · · · · · ·
(
ni − 1
ni − 1

)
P (0)(λi)







Bi,0

Bi,1

...

Bi,ni−1




= 0.
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The polynomial
∏N

k=1(ξ − λk)nk is called the characteristic polynomial of
the autonomous behavior B. The roots of detP (ξ), λ1, · · · , λN , are called
the characteristic values of the behavior. For the case that P (ξ) = Iξ − A
for some matrix A, the characteristic values are just the eigenvalues of A.

Proof For the proof of Theorem 3.2.16 we use a lemma, which we state
first. �

Remark 3.2.17 If all the roots of detP (ξ) have multiplicity one, say
detP (ξ) =

∏n
k=1(ξ−λk), then (3.19, 3.20) reduce to w(t) =

∑n
k=1Bke

λkt,
P (λk)Bk = 0. �

Before we give the proof of Theorem 3.2.16, we state the multivariable
analogue of Lemma 3.2.6.

Lemma 3.2.18 Let P (ξ) ∈ Rq×q[ξ], m a nonnegative integer, λ ∈ C, A ∈
Cq, and w(t) = Atmeλt. Then

(P (
d

dt
)w)(t) =

m∑

k=0

(
m
k

)

P (m−k)(λ)Atkeλt.

Proof See Exercise 3.11. �

Proof of Theorem 3.2.16 The proof is divided into four parts. In the
first part we show that the dimension of B is equal to the degree of the
determinant of P (ξ). In the second part we show that every w ∈ B is of the
form (3.19), and in the third part we show that the coefficients Bij should
satisfy (3.20). Finally, we show that B is autonomous.

Choose unimodular matrices U(ξ), V (ξ) such thatD(ξ) := U(ξ)P (ξ)V (ξ) =
diag(d1(ξ), . . . , dq(ξ)) is in Smith form. Notice that because 0 6= detP (ξ) =
c detD(ξ) for some nonzero constant c, the polynomials di(ξ) are nonzero
for i = 1, . . . , q.

(i) Since D(ξ) is diagonal, the behavior BD defined by D( d
dt )w = 0 can

be obtained as follows. Every component wi of a solution of D( d
dt )w = 0

satisfies di(
d
dt )wi = 0, and conversely, every w for which the components

satisfy di(
d
dt )wi = 0, i = 1, . . . q, is a solution of D( d

dt )w = 0. By Theorem

3.2.5, the dimension of the (scalar) behavior of di(
d
dt )wi = 0 equals the

degree of di(ξ). This implies that the dimension of BD is equal to the
sum of the degrees of the diagonal elements, which is the degree of the
determinant of D(ξ). After left and right unimodular transformations, the
determinant has changed only by a multiplicative nonzero constant, and
hence the dimension of BD equals deg detP (ξ). Finally, by Theorem 2.5.13,
the C∞ parts of the behaviors defined by P (ξ) and D(ξ) are isomorphic,
and hence they have the same dimension.
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An alternative proof that does not rely on the Smith form is suggested in
Exercise 3.10.

(ii) Since D(ξ) is diagonal, it follows from Theorem 3.2.5 that every solution
of D( d

dt )w̃ = 0 is of the form

w̃(t) =

N∑

i=1

ni−1∑

j=0

B̃ijt
jeλit. (3.21)

SinceD(ξ) = U(ξ)P (ξ)V (ξ), (3.21) implies that every w ∈ B can be written
as

w(t) = V (
d

dt
)w̃(t) =

N∑

i=1

ni−1∑

j=0

V (
d

dt
)
(

B̃ijt
jeλit

)

=:

N∑

i=1

ni−1∑

j=0

Bijt
jeλit.

The last equality follows from Lemma 3.2.18.

(iii) Next we prove that every function of the form (3.19) belongs to B if
and only if the relations (3.20) hold.

Suppose that w is given by (3.19). Then it follows by Lemma 3.2.18 that

P (
d

dt
)w=

N∑

i=1

ni−1∑

j=0

P (
d

dt
)Bijt

jeλit =
N∑

i=1

ni−1∑

j=0

j∑

ℓ=0

(
j
ℓ

)

P (j−ℓ)(λi)Bijt
ℓeλit

=
N∑

i=1

ni−1∑

ℓ=0

[
ni−1∑

j=ℓ

(
j
ℓ

)

P (j−ℓ)(λi)Bij

]

tℓeλit.

(3.22)
Now, w ∈ B if and only if the last line of (3.22) is identically zero. By
Theorem 3.2.8, the functions tℓeλit are linearly independent, and hence the
(vector-valued) coefficients in the last line of (3.22) should be zero. This
implies that w belongs to B if and only if

ni−1∑

j=ℓ

(
j
ℓ

)

P (j−ℓ)(λi)Bij = 0 for i = 1, . . . , N, ℓ = 0, . . . , ni − 1.

The fact that B is autonomous follows in the same way as for the scalar
case, and therefore we omit the details. �

Remark 3.2.19 The Smith form of the matrix P (ξ) gives some useful in-
formation about the structure of the corresponding behavior. To see this,
letD(ξ) be the Smith form of P (ξ). Let λi be a root of detP (ξ) of multiplic-
ity ni. In principle, we could expect elements w ∈ B of the form Bijt

jeλit

for j = 0, . . . , ni − 1. If, however, the factor (ξ − λi) appears in D(ξ) at
most with the power mi, for some mi ≤ ni − 1, then we can conclude that
the coefficients Bij with j ≥ mi are zero. An example clarifies this point.
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Let P (ξ) be such that detP (ξ) = ξ3. In principle, we can expect solutions
of P ( d

dt )w = 0 of the form

B0 +B1t+B2t
2.

Suppose, however, that the Smith form of P (ξ) is

D(ξ) =

[
ξ 0
0 ξ2

]

.

Then the solutions of D( d
dt )w = 0 are of the form

[
c1
c2

]

+

[
0
c3

]

t. (3.23)

From (3.23) we conclude that quadratic terms do not appear, and hence
B2 should be zero.

If, on the other hand, the Smith form of P (ξ) is

D(ξ) =

[
1 0
0 ξ3

]

,

then the solutions of D( d
dt )w = 0 are of the form

[
0
c0

]

+

[
0
c1

]

t+

[
0
c2

]

t2.

Note that for this case quadratic terms do occur. �

3.3 Systems in Input/Output Form

For autonomous behaviors, the future of a trajectory is completely deter-
mined by its past; two trajectories with the same past are necessarily iden-
tical. It follows from Section 3.2 that behaviors defined by square full row
rank polynomial matrices are autonomous. In this section we study the case
where the number of rows of R(ξ) is less than the number of columns, more
generally, when the rank of the polynomial matrix R(ξ) is less than the
number of columns. It turns out that in this case the trajectories contain
free components , parts of w that are not uniquely determined by their past.
The reader may find it convenient to refer to the analogy with underde-
termined systems of linear equations. When there are more variables than
equations, it can be expected that some of the variables are not restricted
by the equations. The analogy can be carried even further, since it turns
out that the number of free components is actually equal to the number of
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variables minus the number of independent equations. However, it requires
some work to derive this appealing result.

Before we concentrate on representations, we give a behavioral definition
of an input/output system that is in the same spirit as Definition 3.2.1.

Definition 3.3.1 Let B be a behavior with signal space Rq. Partition the
signal space as Rq = Rm × Rp and w ∈ Lloc

1 (R,Rq) correspondingly as
w = col(w1, w2) (w1 ∈ Lloc

1 (R,Rm) and w2 ∈ Lloc
1 (R,Rp)). This partition

is called an input/output partition if:

1. w1 is free; i.e., for all w1 ∈ Lloc
1 (R,Rm), there exists a w2 ∈

Lloc
1 (R,Rp) such that col(w1, w2) ∈ B.

2. w2 does not contain any further free components; i.e., given w1, none
of the components of w2 can be chosen freely. Stated differently, w1

is maximally free.

If 1 and 2 hold, then w1 is called an input variable and w2 is called an
output variable. �

To illustrate Definition 3.3.1, consider the following examples.

Example 3.3.2 This is a continuation of Example 3.2.3. We have already
seen that the mass–spring system is not autonomous. In fact, from physical
considerations, it should be clear that the force acting on the mass can be
any time function and can thus be seen as a free variable. Also, given
the force, the position of the mass as a function of time is completely
determined by the past (in fact, by the position and velocity at t = 0). So
from an intuitive point of view, the mass–spring system can be considered
as an input/output system with the force as input and the position as
output. �

A more mathematically oriented example is the following.

Example 3.3.3 Let w1, w2 be scalar variables and let B be the behavior
defined by

−w2 +
d

dt
w2 = w1. (3.24)

For a given w1 ∈ Lloc
1 (R,R), define w2 by

w2(t) :=

t∫

0

et−τw1(τ)dτ, t ∈ R. (3.25)

We should emphasize that w2 is defined by (3.25) for all t, also for t < 0. It
follows by substitution in (3.24) that if w1 is continuous, then (w1, w2) ∈ B.
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Actually, in this case, it is a strong solution. Later in this section we will
see that it is a weak solution if w1 is merely in Lloc

1 (R,R). This implies
that w1 is a free variable. Once w1 is given, w2 cannot be chosen to be
completely free, for if (w1, w2) and (w1, w

′
2) satisfy (3.24), then

(−1 + d

dt
)(w2 − w′

2) = 0.

This means that w2 −w′
2 should satisfy an equation of the type studied in

Section 3.2. In other words, w2 is completely determined by its past and
w1. The conclusion is that w1 is maximally free. �

Remark 3.3.4 The partition of w into input and output is in general not
unique. However, in Examples 3.3.2 and 3.3.3 there is no choice. In the latter
example, given w2, there will not always be a w1 such that (w1, w2) ∈ B.
For example, if w2 is not continuous, there does not exist a w1 ∈ Lloc

1 (R,R)
such that (3.24) is satisfied. So w2 is not free and can therefore not be
viewed as input. See Exercise 3.26.

A trivial example illustrates that there are cases in which the choice of
input is indeed not unique. Consider the behavior defined by

w1 = w2.

It is clear that we can either take w1 as input and w2 as output, or vice
versa. Trivial as this example may be, it has some consequences for model-
ing physical systems as input/output systems. For instance, when modeling
the voltage/current behavior of a resistor, either of the two variables can
act as an input. �

We now focus on a special class of behaviors defined by equations of the
form R( d

dt )w = 0, for which the polynomial matrix R(ξ) has a special form.
Before we can specify that form, we need the notion of a matrix of proper
rational functions.

Definition 3.3.5 A matrix of rational functions (i.e., each of the entries is
the ratio of two polynomials) is called proper if in each entry the degree of
the numerator does not exceed the degree of the denominator. It is called
strictly proper if in each entry the degree of the numerator is strictly smaller
than the degree of the denominator. �

In what follows, R(ξ) is assumed to be of the form

R(ξ) =
[
−Q(ξ) P (ξ)

]
,

where P (ξ) ∈ Rp×p[ξ] and Q(ξ) ∈ Rp×m[ξ] satisfy:

• detP (ξ) 6= 0.
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• P−1(ξ)Q(ξ) is a matrix of proper rational functions. By Cramer’s
rule, the entries of P−1(ξ)Q(ξ) are always rational functions. The
condition that they are proper, however, imposes a restriction.

For notational reasons we partition w conformably as

w =

[
u
y

]

,

so that the behavioral equations R( d
dt )w = 0 may be written as P ( d

dt )y =

Q( d
dt )u. The corresponding behavior is

B =

{

w = col(u, y) ∈ L
loc
1 (R,Rm × Rp) | P ( d

dt
)y = Q(

d

dt
)u, weakly

}

.

(3.26)

Remark 3.3.6 The matrix P−1(ξ)Q(ξ) is often referred to as the transfer
matrix of the behavior defined by (3.26). The transfer matrix plays an
important role in applications. We come back to it in Chapter 8. �

We will show that behaviors of the form (3.26) are indeed input/output
systems in the sense of Definition 3.3.1, with u as input and y as out-
put. In particular, we show that for every u ∈ Lloc

1 (R,Rm) there exists a
y ∈ Lloc

1 (R,Rp) such that (u, y) ∈ B. Moreover, we also show that every
behavior defined by R( d

dt )w = 0, of which (3.26) is a special case, admits a
representation of the form (3.26).

We first give a complete characterization of the behavior B defined by
(3.26). We do this in terms of the so-called partial fraction expansion of the
quotient of two polynomials.

Theorem 3.3.7 (Partial fraction expansion, scalar case)

Let P (ξ), Q(ξ) ∈ R[ξ], and degQ(ξ) = m ≤ n = degP (ξ). Suppose P (ξ) =
∏N

i=1(ξ − λi)ni , λi 6= λj, i 6= j. Then there exist a0 and aij ∈ C such that

P−1(ξ)Q(ξ) = a0 +

N∑

i=1

ni∑

j=1

aij
(ξ − λi)j

. (3.27)

Proof The proof is given in Appendix B, Theorem B.2.1. �

Corollary 3.3.8 Let the partial fraction expansion of P−1(ξ)Q(ξ) be given
by (3.27). Then

Q(ξ) = a0P (ξ) +

N∑

i=1

ni∑

j=1

aij [

N∏

k 6=i

(ξ − λk)nk ](ξ − λi)ni−j .
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Proof See Exercise 3.30. �

Remark 3.3.9 The coefficients aij can be calculated as follows:

a0 = lim
λ→∞

Q(λ)

P (λ)
,

aini
= lim

λ→λi

(λ− λi)ni
Q(λ)

P (λ)
, i = 1, . . . , N,

aij = lim
λ→λi

(λ− λi)j
[

Q(λ)

P (λ)
−

ni∑

k=j+1

aik
(λ− λi)k

]

, i = 1, . . . , N,

j = 1, . . . , ni − 1.

�

Example 3.3.10 Take Q(ξ) = 8 − 17ξ + 8ξ2 + 3ξ3 and P (ξ) = 1 − 2ξ +
2ξ2−2ξ3+ξ4. The polynomial P (ξ) factors as P (ξ) = (ξ−1)2(ξ− i)(ξ+ i).
If we take λ1 = 1, λ2 = i, and λ3 = −i, then according to Theorem 3.3.7,
Q(ξ)
P (ξ) can be written as

P−1(ξ)Q(ξ) =
a11

(ξ − 1)
+

a12
(ξ − 1)2

+
a21

(ξ − i) +
a31

(ξ + i)
. (3.28)

The coefficients of (3.28) are calculated as follows:

a12 = lim
λ→1

(λ− 1)2
Q(λ)

P (λ)
= lim

λ→1

8− 17λ+ 8λ2 + 3λ3

1 + λ2
= 1,

a11 = lim
λ→1

(λ− 1)

[
Q(λ)

P (λ)
− 1

(λ− 1)2

]

= lim
λ→1

−7 + 10λ+ 3λ2

1 + λ2
= 3.

The other coefficients are calculated accordingly. This yields that a21 = −5i
and a31 = 5i. Hence the partial fraction expansion is

P−1(ξ)Q(ξ) =
1

(ξ − 1)2
+

3

(ξ − 1)
− 5i

(ξ − i) +
5i

(ξ + i)
.

�

Remark 3.3.11 (Partial fraction expansion, matrix case) Formula
(3.27) is called the partial fraction expansion of P−1(ξ)Q(ξ). If P (ξ) and
Q(ξ) are polynomial matrices, with detP (ξ) 6= 0, then the partial fraction
expansion of the matrix of rational functions P−1(ξ)Q(ξ) is defined entry-
wise. The complex numbers λi are now the roots of the determinant of
P (ξ). �

We frequently use the following result.
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Lemma 3.3.12 Let u ∈ Lloc
1 (R,R) and k ≥ 1. Define

yk(t) :=

t∫

0

(t− τ)k−1

(k − 1)!
eλ(t−τ)u(τ)dτ. (3.29)

Then col(u, yk) satisfies

(
d

dt
− λ)kyk = u (3.30)

weakly

Proof The proof consists of two parts. In the first part we make the
assumption that u is infinitely differentiable, so that (u, yk) is a strong
solution. In the second part we show that (u, yk) is a weak solution by
approximating u by a sequence of C∞(R,R) functions. (i) Suppose that u
is infinitely differentiable.

(Induction) For k = 1 the statement that (u, yk) is a strong solution of
(3.29) is clearly true. Suppose that n > 1 and that for all k ≤ n, (3.29)
defines a solution of (3.30). Consider

yn+1(t) =

t∫

0

(t− τ)n
n!

eλ(t−τ)u(τ)dτ.

Since u is smooth, so is yn+1. The derivative of yn+1 satisfies

d

dt
yn+1(t) =

t∫

0

(t− τ)n−1

(n− 1)!
eλ(t−τ)u(τ)dτ + λ

t∫

0

(t− τ)n
(n)!

eλ(t−τ)u(τ)dτ

= yn(t) + λyn+1(t),

from which we conclude that

(
d

dt
− λ)yn+1 = yn,

which in turn implies

(
d

dt
− λ)n+1yn+1 = (

d

dt
− λ)nyn = u.

The last equality follows from the induction hypothesis.

(ii) Now assume that u ∈ Lloc
1 (R,R) and let yk be defined by (3.29). Choose

a sequence un ∈ C∞(R,R) such that un converges to u in the sense of Lloc
1 .

Define yk,n by

yk,n(t) :=

t∫

0

(t− τ)k−1

(k − 1)!
eλ(t−τ)un(τ)dτ.
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Then (un, yk,n) converges to (u, yk) (yk defined by (3.29)) in the sense of
Lloc
1 (R,R) as n tends to infinity; see Exercise 3.32. By Theorem 2.4.4 it

follows that (u, yk) is a weak solution of (3.30). �

Lemma 3.3.12 and the partial fraction expansion of P−1(ξ)Q(ξ) allow us to
provide an explicit expression of a particular solution of P ( d

dt )y = Q( d
dt )u.

Theorem 3.3.13 Let B be the behavior defined by (3.26), and let u ∈
Lloc
1 (R,Rm). Let the partial fraction expansion of the transfer matrix

P−1(ξ)Q(ξ) be given by

P−1(ξ)Q(ξ) = A0 +

N∑

i=1

ni∑

j=1

Aij

(ξ − λi)j
.

Define y by

y(t) := A0u(t) +
N∑

i=1

ni∑

j=1

Aij

t∫

0

(t− τ)j−1

(j − 1)!
eλi(t−τ)u(τ)dτ, t ∈ R. (3.31)

Then (u, y) ∈ B.

Proof For simplicity, we treat the single-input/single-output case p = 1,
m = 1 only. The multivariable case is proven analogously but is technically
more involved. A proof for the multivariable case is suggested in Exercise
3.24.

Let {λi} be the distinct roots of multiplicity ni of P (ξ), and let a0 and
aij , i = 1, . . . , N, j = 1, . . . , ni be the coefficients of the partial fraction
expansion of P−1(ξ)Q(ξ), as in (3.27). First assume that u ∈ C∞(R,R).

Define

y0(t) := a0u(t),

yij(t) := aij

t∫

0

(t− τ)j−1

(j − 1)!
eλi(t−τ)u(τ)dτ.

Then

y(t) = y0(t) +
N∑

i=1

ni∑

j=1

yij(t).
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Let us calculate P ( d
dt )y(t):

P (
d

dt
)y(t) =

N∏

k=1

(
d

dt
− λk)nk

(

y0(t) +
N∑

i=1

ni∑

j=1

yij(t)

)

= P (
d

dt
)a0u(t) +

N∑

i=1

ni∑

j=1

N∏

k=1

(
d

dt
− λk)nkyij(t)

= P (
d

dt
)a0u(t) +

N∑

i=1

ni∑

j=1

[
N∏

k 6=i

(
d

dt
− λk)nk ](

d

dt
− λi)niyij(t)

= P (
d

dt
)a0u(t) +

N∑

i=1

ni∑

j=1

[
N∏

k 6=i

(
d

dt
− λk)nk ](

d

dt
− λi)ni−jaiju(t)

= Q(
d

dt
)u(t).

(3.32)
The third equality follows from Lemma 3.3.12 and the last equality from
Corollary 3.3.8.

The case where u ∈ Lloc
1 (R,R) goes along the same lines as the second part

of the proof of Lemma 3.3.12. �

Corollary 3.3.14 Let B be the behavior defined by (3.26). Then (u, y)
defines an input/output partition in the sense of Definition 3.3.1.

Proof It follows from Theorem 3.3.13 that u is free: (3.31) shows that for
any u ∈ Lloc

1 (R,Rm) there exists a y ∈ Lloc
1 (R,Rp) such that (u, y) ∈ B.

Next we show that u ismaximally free; i.e., y does not contain any other free
components. Let u ∈ Lloc

1 (R,Rm) be given, and suppose (u, y1), (u, y2) ∈ B.
By linearity it follows that (0, y1 − y2) ∈ B. This implies that P ( d

dt )(y1 −
y2) = 0. Since by assumption detP (ξ) 6= 0, we conclude from Section 3.2
that P ( d

dt )y = 0 defines an autonomous behavior, and therefore y1 − y2
is uniquely determined by its past, whence y does not contain any further
free components.

The conclusion is that for given u ∈ Lloc
1 (R,Rm), the set of ys such that

(u, y) ∈ B is a finite-dimensional affine1 subspace of Lloc
1 (R,Rq). �

Corollary 3.3.14 justifies the following definition.

1An affine subspace of a linear space is a shifted linear subspace. In other words, a

subset S of a linear space X is affine if it is of the form S = a + V with a ∈ X and V

a linear subspace of X. Its dimension is defined as the dimension of the linear subspace
V. An example of a one-dimensional affine subspace in R2 is a line that does not pass
through the origin. In input/output behaviors, the set of outputs y for a given input u

such that (u, y) ∈ B is affine. If (u, y) ∈ B, then all possible outputs y′ can be written
as y′ = y + yhom where yhom satisfies P ( d

dt
)yhom = 0. Therefore, the dimension of the

set of possible outputs corresponding to this input u equals deg detP (ξ).
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Definition 3.3.15 A dynamical system represented by P ( d
dt )y = Q( d

dt )u
with P (ξ) ∈ Rp×p[ξ] and Q(ξ) ∈ Rp×m[ξ] is said to be in input/output form
if it satisfies:

• detP (ξ) 6= 0.

• P−1(ξ)Q(ξ) is a matrix of proper rational functions. (By Cramer’s
rule, the entries of P−1(ξ)Q(ξ) are rational functions.)

�

Example 3.3.16 Consider the behavior defined in Example 2.3.10. There
P (ξ) = −1 + ξ and Q(ξ) = 1; hence P−1(ξ)Q(ξ) is proper, and thus it
is a system in input/output form. One may check that the pair (u, y) :=
(w1, w2), defined by (2.14), belongs to B for every u ∈ Lloc

1 (R,R). In other
words, the dynamical system defined by (2.13) does not put any restriction
on the function u. Also, once u is given, y is completely determined by its
past. �

Example 3.3.17 Consider the spring–mass system of Example 3.2.3. Take
the force on the mass as u and the position of the mass as y. The equation
relating u and y becomes

(k1 + k2)y +M
d2

dt2
y = u, (3.33)

so that P (ξ) = Mξ2 + k1 + k2 and Q(ξ) = 1. Obviously, in this case
P−1(ξ)Q(ξ) = 1

k2+k1ξ+Mξ2 is proper, and hence (3.33) is in input/output
form, with the force as input and the displacement as output. �

Remark 3.3.18 It is the condition that P−1(ξ)Q(ξ) is proper that guar-
antees that w2 is a free variable. For instance, in an equation like

w1 =
d

dt
w2, (3.34)

w2 is not a free variable. To see this, take w2(t) = 1 for t ≥ 0, w2(t) =
0 for t < 0, and check that there is no w1 ∈ Lloc

1 (R,R) such that (3.34)
holds; see Exercise 3.25. However, if we had allowed distributions (exten-
sion of the set of admissible trajectories) or if we had confined ourselves to
C∞ functions (restriction of admissible trajectories), then w2 would have
been a free variable for the system (3.34). Let us elaborate on the latter
case. Consider a system of the form (3.26), where detP (ξ) 6= 0, but where
we do not assume that P−1(ξ)Q(ξ) is proper. Choose k ∈ N such that
ξ−kP−1(ξ)Q(ξ) is proper (convince yourself that such a k always exists),
and define P̃ (ξ) := ξkP (ξ). Choose w2 ∈ C∞(R,R). By Theorem 3.3.13
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there exists w̃1 such that P̃ ( d
dt )w̃1 = Q( d

dt )w2. Moreover, since w2 is in-
finitely differentiable, we conclude from (3.31) that w̃1 is also infinitely
differentiable. In particular, w1 := ( d

dt )
kw̃1 is well-defined and satisfies

P ( d
dt )w1 = Q( d

dt )w2. �

Theorem 3.3.13 combined with Theorem 3.2.16 allows us to to characterize
the complete behavior of the system (3.26).

Theorem 3.3.19 Consider the behavior

B =

{

(u, y) ∈ L
loc
1 (R, (Rm × Rp)) | P ( d

dt
)y = Q(

d

dt
)u, weakly

}

.

Then B = Bi/o +Bhom,

with Bi/o =
{
(u, yi/o) | u ∈ Lloc

1 (R,Rm) and yi/o is given by (3.31)
}

and Bhom = {(0, yhom) | yhom is of the form (3.19) }.

Proof This follows from the observation that every solution of a linear
time-invariant differential equation can be written as the sum of a partic-
ular solution and a solution of the associated homogeneous equation. More
precisely, let (u, y) ∈ B, and let yi/o be defined by (3.31). By Theorem
3.3.13 we know that (u, yi/o) ∈ B. Define yhom = y − yi/o. By linearity of
B, we have that (u, y) − (u, yi/o) ∈ B, and therefore (0, yhom) ∈ B. This

implies that P ( d
dt )yhom = 0, and hence yhom is of the form (3.19). This

shows that B ⊂ Bi/o +Bhom.

Conversely, by Theorem 3.3.13, we have that Bi/o ⊂ B. Further,

P ( d
dt )yhom = 0 implies that (0, yhom) ∈ B, so that also Bhom ⊂ B. Again

by linearity, it follows that Bi/o +Bhom ⊂ B. Hence B = Bi/o +Bhom. �

The following corollary expresses that the past of the output does not
restrict the future of the input.

Corollary 3.3.20 Let (u, y) ∈ B as in Theorem 3.3.19. Let ũ ∈
Lloc
1 (R,Rm) be such that ũ(t) = u(t), t ≤ t0, for some t0 ∈ R. Then

there exists ỹ such that (ũ, ỹ) ∈ B and ỹ(t) = y(t), t ≤ t0.

Proof By time invariance we may assume that t0 = 0. Since (u, y) ∈ B,
it follows from Theorem 3.3.19 that

y(t) = yh(t) +A0u(t) +

N∑

i=1

ni∑

j=1

Aij

t∫

0

(t− τ)(j−1)

(j − 1)!
eλi(t−τ)u(τ)dτ, (3.35)

where yh satisfies P ( d
dt )yh = 0. Now simply define ỹ as in (3.35), but with

u replaced by ũ. Since ũ(t) = u(t) for t ≤ 0, it follows that ỹ(t) = y(t) for
t ≤ 0. �



3.3 Systems in Input/Output Form 93

Remark 3.3.21 Corollary 3.3.20 implies nonanticipation. Indeed, the past
of the output is not restricted by the future of the input. Nor is the future of
the input restricted by the past of the output. This implies that y does not
anticipate u, or simply that the relation between the input and the output
is nonanticipating . We say that y does not anticipate u strictly if for all
(u, y) ∈ B and ũ ∈ Lloc

1 (R,Rm) such that ũ(t) = u(t), t < t0 (notice the
difference; the inequality t ≤ t0 has been replaced by a strict inequality)
for some t0 ∈ R, there exists ỹ such that (ũ, ỹ) ∈ B and ỹ(t) = y(t), t ≤ t0.
In other words, inputs that are equal in the strict past generate outputs
that are equal up to and including the present.

Consider, for instance, the mass–spring system of Example 3.2.3. Suppose
the system is in its equilibrium position for t < 0. At t = 0 the force on the
mass could be changed abruptly, causing the mass to leave its equilibrium.
It is clear that in principle the force that can be applied from t = 0 on
is not restricted by the fact that the mass was in its equilibrium position
before that time instant. And of course the input force after t = 0 has
no influence on the position of the mass before t = 0, so that indeed the
position of the mass does not anticipate the force. Thus in this system the
force is the input, the position is the output, and the system is strictly
nonanticipating. �

Let us now return to the differential equation R( d
dt )w = 0 given by (2.5). We

have seen in Section 2.5 that there always exists an equivalent system with
the corresponding R(ξ) of full row rank. We may thus assume without loss
of generality that R(ξ) has indeed full row rank. The question that we now
want to consider is the following. Is there a sense in which this system can
be viewed as an input/output system? In other words, is there a partition
of w, possibly after permutation of the components, as w = (u, y) such that
(u, y) satisfies (3.26)? The answer to this question is yes. We now explain
in what sense this is so.

Theorem 3.3.22 Let R(ξ) ∈ Rg×q[ξ] be of full row rank. If g < q, then
there exists a choice of columns of R(ξ) : ci1(ξ), . . . , cig (ξ) ∈ Rg×q[ξ] such
that

1. det
[
ci1(ξ) · · · cig (ξ)

]
6= 0.

2.
[
ci1(ξ) · · · cig (ξ)

]−1 [
cig+1

(ξ) · · · ciq (ξ)
]
is a proper ratio-

nal matrix.

Proof Choose R1(ξ) as a g × g nonsingular submatrix of R(ξ) such that
the degree of its determinant is maximal among the g × g submatrices of
R(ξ). Since R(ξ) has full row rank, we know that detR1(ξ) is not the zero
polynomial. Denote the matrix formed by the remaining columns of R(ξ)
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by R2(ξ). We claim that R−1
1 (ξ)R2(ξ) is proper. To see that, notice that

by Cramer’s rule, the ijth entry of R−1
1 (ξ)R2(ξ) is given by

[
R−1

1 (ξ)R2(ξ)
]

ij
=

detR1ij(ξ)

detR1(ξ)
,

where the matrixR1ij(ξ) is obtained by replacing the ith column ofR1(ξ) by
the jth column of R2(ξ). Since the determinant of R1(ξ) is maximal among
the g×g submatrices of R(ξ), it follows that deg detR1ij(ξ) ≤ deg detR1(ξ).

This implies that R−1
1 (ξ)R2(ξ) is proper. �

Corollary 3.3.23 Let R( d
dt )w = 0, R(ξ) ∈ Rg×q[ξ], be a full row rank

representation of the behavior B. B admits an i/o representation in the
sense of Definition 3.3.1 with, in the notation of Theorem 3.3.22, input
u = col(wig+1

, . . . , wiq ) and output y = col(wi1 , . . . , wig ).

Proof If g = q, then detR(ξ) 6= 0, so that by Corollary 3.3.23 the behavior
is autonomous. In other words, w does not contain any free components
at all. This is a special case of an input/output representation, a behavior
with outputs only.

Assume that g < q. In view of Theorem 2.5.23 we may assume that
R(ξ) ∈ Rg×q[ξ] has full row rank. According to Theorem 3.3.22 we can
choose a g × g submatrix R1(ξ) of R(ξ) such that R−1

1 (ξ)R2(ξ) is proper (of
course, R2(ξ) is the submatrix of R(ξ) consisting of the remaining columns).
Partition w according to the choice of columns that led to R1(ξ) and R2(ξ)
as (y, u). Thus if R1(ξ) = [ci1(ξ) · · · cig (ξ)], then y = col(wi1 , . . . , wig ), and
u contains the remaining components of w, u = col(wig+1

, . . . , wiq ). The

equation R( d
dt )w = 0 can now equivalently be written as

R1(
d

dt
)y = −R2(

d

dt
)u. (3.36)

Since by Theorem 3.3.22, R−1
1 (ξ)R2(ξ) is proper, it follows that (3.36) is

indeed an i/o representation of R( d
dt )w = 0. �

As a last result in this section we mention that a system in input/output
form P ( d

dt )y = Q( d
dt )u with P−1(ξ)Q(ξ) proper may be transformed into a

strictly proper input/output system by means of a static right unimodular
transformation.

Theorem 3.3.24 Let P (ξ) ∈ Rp×p[ξ] and Q(ξ) ∈ Rp×m[ξ] with
P−1(ξ)Q(ξ) proper. Consider the input/output system P ( d

dt )y = Q( d
dt )u.

Then there exists a matrix M ∈ Rp×m such that the relation between u and
y′ := y +Mu is a strictly proper input/output relation.

Proof If P−1(ξ)Q(ξ) is strictly proper then there is nothing to prove.
Assume that P−1(ξ)Q(ξ) is proper, but not strictly proper. Let the partial
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fraction expansion of P−1(ξ)Q(ξ) be given by

P−1(ξ)Q(ξ) = A0 +

N∑

i=1

ni∑

j=1

Aij

(ξ − λi)j
. (3.37)

By multiplying both sides of (3.37) from the left by P (ξ) we get

Q(ξ) = P (ξ)A0 + Q̃(ξ),

where Q̃(ξ) ∈ Rp×m[ξ]. The input/output equation P ( d
dt )y = Q( d

dt )u can

now be rewritten as P ( d
dt )y = (P ( d

dt )A0 + Q̃( d
dt ))u, so that

P (
d

dt
)[y −A0u] = Q̃(

d

dt
)u.

Define M = −A0, and since

P−1(ξ)Q̃(ξ) = P−1(ξ)Q(ξ)−A0 =
N∑

i=1

ni∑

j=1

Aij

(ξ − λi)j
,

it follows that P−1(ξ)Q̃(ξ) is strictly proper, and P ( d
dt )y

′ = Q̃( d
dt )u. �

Example 3.3.25 Consider the i/o system defined by

y + 2
d

dt
y +

d2

dt2
y = u− 3

d

dt
u+ 4

d2

dt2
u,

The corresponding polynomials are p(ξ) = 1+2ξ+ξ2 and q(ξ) = 1−3ξ+4ξ2.
It is easily checked that q(ξ) = 4p(ξ)− 3− 11ξ, from which it follows that

p(
d

dt
)(y − 4u) = −3u− 11

d

dt
u.

Indeed, the relation between u and y − 4u is a strictly proper i/o relation.
�

Remark 3.3.26

1. The partition into input and output as given in Corollary 3.3.23 is
in general not unique, since there may be more than just one choice
of square submatrices with maximal determinant degree. As a trivial
example, which we already discussed, consider the behavior defined
by w1 = w2. It is obvious that either one of the two components of w
can be viewed as the input variable. As another example, consider the
manifest behavior of the RLC circuit of Example 1.3.5. The manifest
behavior is described by (1.12) or (1.13). In both cases the input can
be chosen to be the current I or the voltage V .
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2. If R(ξ) ∈ Rg×q[ξ] has full row rank and g ≤ q, then for every i/o
partition of w, it can be proven that the number of outputs (the
number of components in the output vector) is g, and the number of
inputs is q − g. See Exercise 3.27.

3. In our choice of the notions of input and output, we have opted to call
those variables input that are free in Lloc

1 (R,R). Thus in the system
d
dtw1+w2 = 0, we have chosen to call w2 input and w1 output but not
vice versa. See Remark 3.3.18. This is in keeping with common usage
in systems theory. If, however, we had considered only sufficiently
smooth signals w1, say in C1(R,R), then in the above equation w1

would be free, and in this sense we could have considered (contrary
to our chosen nomenclature) w1 as an input and w2 = − d

dtw1 as
the resulting output. There are, in fact, many useful devices that dif-
ferentiate signals. For example, tachometers measure the position of
a moving object and output the velocity, and it is certainly reason-
able to call the position the input and the velocity the output of a
tachometer.

�

Example 3.3.27 Consider the electrical circuit shown in Figure 3.3.

V

−

+ ↑ I
R0

C1

R1

C2

R2

FIGURE 3.3. Electrical circuit.

Assume that C1, C2, R1, R2 are strictly positive and that R0 ≥ 0. After
introducing as latent variables the voltages and currents in the internal
branches and eliminating them (we omit these calculations), we arrive at
the following behavioral equations,

[

1 + (C1R1 + C1R2 + C2R1 + C2R2)
d
dt + C1C2R1R2

d2

dt2

]

V =
[
R0 +R1 +R2 + (C1R0R1 + C1R0R2 + C2R0R2 + C2R1R2)

d
dt

+(C1C2R0R1R2)
d2

dt2

]

I,

as the differential equation describing the relation between the port voltage
V and the port current I of this RC-circuit. In terms of our standard
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notation, we have, with w = col(V, I),

R(ξ) =
[
R1(ξ) R2(ξ)

]
,

where R1(ξ) and R2(ξ) are given by

R1(ξ) = 1 + (C1R1 + C1R2 + C2R2)ξ + C1C2R1R2ξ
2

R2(ξ) = −(R0 +R1 +R2)− (C1R0R1 + C1R0R2 + C2R0R2 + C2R1R2)ξ

−(C1C2R0R1R2)ξ
2

When R0 > 0, it follows that V can be chosen as input and I as output
or, conversely, that I can be seen as input and V as output. In the former
case, the circuit is considered as an admittance (the voltage is input and
the current is the output —the term voltage controlled is also used). In the
latter case, the circuit is considered as an impedance (the current is input
and the voltage is output—the circuit is current controlled).

When R0 = 0, the input/output choice is restricted to I as input and V as
output.

Above we have considered the input/output structure of the port variables
(V, I). However, circuits as the one shown in Figure 3.3 can be used as filters
relating the voltage Vin at the external port to the voltage Vout across the
resistor R2; see Figure 3.4.

Vin

−

+

R0

C1

R1

C2

R2 Vout

−

+

FIGURE 3.4. Electrical circuit.

The relation between Vin and Vout is (again we omit the details)

Vin = (1 +
R0 +R1

R2
) + (C2R1 + C1R0 + C2R0 +

C1R0R1

R2
) d
dt

+(C1C2R0R1)
d2

dt2 )Vout.

It follows from that in order to satisfy the requirements of Definition 3.3.1,
we have to take Vin as input and Vout as output. �



98 3. Time Domain Description of Linear Systems

3.4 Systems Defined by an Input/Output Map

We now briefly study dynamical systems that are defined by a map between
the set of functions u and the set of functions y of the integral form

y(t) =

∞∫

−∞

H(t, τ)u(τ)dτ, H ∈ L
loc
1 (R2,Rp×m). (3.38)

The function H is called the kernel of the integral representation (3.38)
(not to be confused with the kernel of a linear map). In order to define
the behavior specified by (3.38), we have to define the set of admissible
trajectories (u, y). A first attempt might be to allow every function u for
which the integral (3.38) exists. This, however, has the effect that the set
of admissible trajectories depends on the particular system, which is unde-
sirable. Therefore, we take the set of all functions (u, y) ∈ Lloc

1 (R,Rm×Rp)
for which u has compact support. We say that the function u : R→ Rm has
compact support if the set on which u is nonzero is bounded. The behavior
B corresponding to (3.38) is now defined as

B := {(u, y) | u ∈ L
loc
1 (R,Rm), u has compact support, (u, y) satisfies (3.38)}.

(3.39)

Property 3.4.1 The system defined by (3.39) has the following properties:

• It is linear.

• In general, it is time-varying. It is time-invariant if and only if for
all t′ and for all (t, τ), H(t + t′, τ + t′) = H(t, τ); i.e., H(t, τ) =
H(t− τ, 0).

• u is a free variable, in the sense that for all u ∈ Lloc
1 (R,Rm) with com-

pact support there corresponds a y ∈ Lloc
1 (R,Rm) such that (u, y) ∈ B.

Remark 3.4.2 (3.38) defines a map from the set of input functions to the
set of output functions, whereas the equation (2.5) only defines a relation
on the Cartesian product of these two sets. Indeed, in (2.5) in Corollary
3.3.14 we saw that for every u ∈ Lloc

1 (R,Rm) there exists an n-dimensional
(with n = deg detP (ξ)) affine subspace of corresponding outputs. �

Example 3.4.3 (Population dynamics) Let y(t) denote the size of the
population of a certain species at time t and let P (t, τ) denote the prob-
ability that an individual that is born at time t − τ is still alive at time
t. Let u(t) be the rate of births per time unit. A model that describes the
relation between u and y is

y(t) =

∞∫

−∞

P (t, τ)u(t− τ)dτ. (3.40)
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For obvious reasons, P (t, τ) = 0 for t < τ, and hence, after a change of
variables, (3.40) can be written as

y(t) =

t∫

−∞

P (t, t− τ)u(τ)dτ.

A further refinement of the model is obtained when a maximum age is
introduced:

y(t) =

t∫

t−m

P (t, t− τ)u(τ)dτ,

where m is the maximum age that the species can reach. Furthermore,
time-invariance follows if P (t, τ) depends only on t − τ , which is in many
applications an acceptable assumption.

�

We are mainly concerned with systems of the form (3.39) that are time-
invariant, i.e., for which H(t, τ) depends on (t, τ) through the difference of
t and τ . With abuse of notation H(t, τ) is then written as a function of one
argument: H(t). Moreover, we assume that the system is nonanticipating :
H(t) = 0 for t < 0. The system map then becomes

y(t) =

t∫

−∞

H(t− τ)u(τ)dτ. (3.41)

Since (3.41) is the convolution product of H and u, systems of the
form (3.41) are called nonanticipating convolution systems.

For convolution systems, the kernel H is usually referred to as the impulse
response of the system. The reason for this terminology is, loosely speaking,
that if an input is applied that is zero everywhere and a pulse at time 0,
then the output of the system is exactly the function H. This can be made
precise by making use of the theory of distributions, but it can be explained
intuitively by applying a sequence of inputs that approach a pulse. To that
end, define

un(t) =

{

n 0 ≤ t ≤ 1

n
,

0 otherwise.
(3.42)

If H is continuous, then the response of the system to the input un behaves
like H(t) as n tends to infinity. Indeed,

lim
n→∞

t∫

−∞

H(t− τ)un(τ)dτ = lim
n→∞

n

1

n∫

0

H(t− τ)dτ = H(t). (3.43)
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Of course, (3.43) is just an intuitive justification of the terminology used.
Although the sequence of input functions un does not converge in Lloc

1 (R,R),
un can be seen as an approximation of a pulse at time τ = 0. In the sense
of distributions, un indeed converges to the celebrated Dirac δ function.

Example 3.4.4 Consider the convolution system with kernel,

H(t) =

{
e−t t ≥ 0;
0 t < 0.

Thus

y(t) =

t∫

−∞

e−(t−τ)u(τ)dτ.

Let un be given by (3.42). Then

yn(t) =







n

t∫

0

H(t− τ)dτ = n

t∫

0

e−(t−τ)dτ = e−tn(et − 1), 0 ≤ t ≤ 1
n ,

n

1
n∫

0

H(t− τ)dτ = n

1
n∫

0

e−(t−τ)dτ = e−tn(e
1
n − 1), t ≥ 1

n .

(3.44)
From (3.44) it follows that indeed

lim
n→∞

yn(t) = e−t = H(t) for all t.

In Figure 3.5 we have depicted H and y1, y2, y3, . . . , y10. �

A
m

pl
itu

de

0 1 2 3 4 5 6

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

Time (secs)

n = 10

n = ∞
n = 2

n = 1

FIGURE 3.5. Approximation of the impulse response for n = 1, 2, 10,∞.
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3.5 Relation Between Differential Systems and
Convolution Systems

In this section we study the relation between convolution systems and in-
put/output systems described by differential equations of the form (3.26).
Until now we have defined the set of admissible trajectories for systems
described by differential equations to be Lloc

1 (R,Rq). We now restrict the
behavior to functions in Lloc

1 (R,Rq) that are zero at −∞ and show that the
resulting behavior can be described by a nonanticipating convolution sys-
tem. By “zero at −∞” we mean that the function is zero before some time.
More precisely, for each such function w, there exists a t′ ∈ R such that
w(t) = 0 for all t < t′. For convenience we will distinguish the Lloc

1 (R,Rq)
case from the restricted case by referring to the latter as systems initially
at rest .

Definition 3.5.1 Let the (linear differential) dynamical system Σ =
(R,Rq,B) be given. With B we associate the initially at rest behavior
B0:

B0 := {w ∈ B | ∃t0 such that for all t ≤ t0 : w(t) = 0}.

Note that t0 is not fixed; it may depend on w. �

Theorem 3.5.2

(i) Let P (ξ) ∈ Rp×p[ξ], Q(ξ) ∈ Rp×m[ξ] be such that detP (ξ) 6= 0 and
that P−1(ξ)Q(ξ) is strictly proper and assume that the partial fraction
expansion of P−1(ξ)Q(ξ) is given by

P−1(ξ)Q(ξ) =

N∑

i=1

ni∑

j=1

Aij

(ξ − λi)j
.

Then the initially at rest behavior of the system defined by P ( d
dt )y =

Q( d
dt )u is also described by the convolution system of the form (3.41)

with H given by

H(t) =

N∑

i=1

ni∑

j=1

Aij
tj−1

(j − 1)!
eλit (t ≥ 0).

(ii) Consider the convolution system described by y(t) =
t∫

−∞
H(t −

τ)u(τ)dτ . There exist polynomial matrices P (ξ) ∈ Rp×p[ξ], Q(ξ) ∈
Rp×m[ξ] such that the initially at rest behavior of the convolution sys-
tem is also described by P ( d

dt )y = Q( d
dt )u if and only if H is of the
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form

H(t) =

N∑

i=1

ni∑

j=1

Aij
tj−1

(j − 1)!
eλit (t ≥ 0) (3.45)

for some N, ni ∈ N, Aij ∈ Cp×m, λi ∈ C such that the complex λis
come in complex conjugate pairs and the corresponding matrices Aij

also come in complex conjugate pairs.

Proof (i) Define

H(t) =







N∑

i=1

ni∑

j=1

Aij
tj−1

(j − 1)!
eλit for t ≥ 0,

0 otherwise.

Then, by Theorem 3.3.13, (3.31), and since we restrict our attention to the
initially at rest part of the system, every solution (u, y) of P ( d

dt )y = Q( d
dt )u

satisfies

y(t) =

t∫

−∞

H(t− τ)u(τ)dτ.

This proves part (i).

(ii) Define the rational matrix T (ξ) ∈ Rp×m(ξ) by

T (ξ) :=

N∑

i=1

ni∑

j=1

Aij

(ξ − λi)j
.

We want to find polynomial matrices P (ξ) and Q(ξ) such that
P−1(ξ)Q(ξ) = T (ξ). This is easy. Define d(ξ) ∈ R[ξ] as

d(ξ) :=

N∏

i=1

(ξ − λi)ni

and take P (ξ) such that (ξ−λi)ni divides P (ξ) and such that detP (ξ) 6= 0,
e.g.,

P (ξ) := d(ξ)Ip (Ip is the p× p identity-matrix).

Finally, define Q(ξ) as

Q(ξ) := P (ξ)T (ξ) (= d(ξ)T (ξ)).

For the the single-input/single-output case this comes down to

P (ξ) :=

N∏

i=1

(ξ − λ)ni and Q(ξ) := P (ξ)T (ξ).

�
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Remark 3.5.3 A function of the form (3.45) is called a (matrix of) Bohl
function. A Bohl function is a finite sum of products of polynomials and
exponentials. In the real case, a Bohl function is a finite sum of products
of polynomials, real exponentials, sines, and cosines. �

3.6 When Are Two Representations Equivalent?

In Chapter 2, Theorem 2.5.4, we have seen that if U(ξ) is unimodular, then
R(ξ) and U(ξ)R(ξ) represent the same behavior. In this section we ask the
converse question: What is the relation between two matrices R1(ξ) and
R2(ξ) that define the same behavior? It turns out that if these matrices
have the same number of rows, then R1(ξ) and R2(ξ) define the same
behavior if and only if there exists a unimodular matrix U(ξ) such that
R2(ξ) = U(ξ)R1(ξ).

Preparatory to this result, we prove the following lemma.

Lemma 3.6.1 Let P1(ξ), P2(ξ) ∈ Rq×q[ξ], with detP1(ξ) 6= 0. Denote the
corresponding behaviors by BP1

and BP2
respectively. If BP1

∩C∞(R,Rq) =
BP2

∩ C∞(R,Rq), then there exists a unimodular matrix U(ξ) ∈ Rq×q[ξ]
such that P1(ξ) = U(ξ)P2(ξ).

Proof The proof goes by induction on q. Let q = 1. It follows from
Theorem 3.2.5 that BP1

= BP2
implies that the (scalar) polynomials P1(ξ)

and P2(ξ) have the same roots. This can only be the case if P1(ξ) = uP2(ξ)
for some nonzero constant u. This yields the statement for the scalar case.

Assume now that the result is true for q ≤ n, and let Pi(ξ) ∈
R(n+1)×(n+1)[ξ](i = 1, 2). By Theorem 2.5.14 (upper triangular form)
it follows that by premultiplication by suitable unimodular matrices, both
P1(ξ) and P2(ξ) can be transformed into the form

P1(ξ) =




P

(1)
11 P

(1)
12

0 P
(1)
22



 , P2(ξ) =




P

(2)
11 P

(2)
12

0 P
(2)
22





with P
(i)
11 ∈ Rn×n[ξ], i = 1, 2. Partition w as w = col(w1, w2) with w2 scalar.

Choose w1 such that P
(1)
11 ( d

dt )w1 = 0. Then col(w1, 0) ∈ BP1
, and therefore

also col(w1, 0) ∈ BP2
, and hence P

(2)
11 ( d

dt )w1 = 0. The converse is, of course,
also true, and by the induction hypothesis we conclude that there exists a

unimodular matrix U11(ξ) ∈ Rn×n[ξ] such that P
(2)
11 (ξ) = U11(ξ)P

(1)
11 (ξ).

We now show that P
(1)
22 (ξ) = αP

(2)
22 (ξ) for some nonzero constant α.

Choose w2 such that P
(1)
22 ( d

dt )w2 = 0. Since by Theorem 3.2.5, w2 is in

C∞(R,R) and since detP
(1)
11 (ξ) 6= 0, it follows from Remark 3.3.18 that
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there exists w1 such that P
(1)
11 ( d

dt )w1 + P
(1)
12 ( d

dt )w2 = 0. In other words,
w ∈ BP1

. Then, by assumption, w also belongs to BP2
, and therefore in

particular, P
(2)
22 ( d

dt )w2 = 0. In the same way we conclude the converse,

that P
(2)
22 ( d

dt )w2 = 0 implies P
(1)
22 ( d

dt )w2 = 0. This shows that indeed

P
(1)
22 (ξ) = αP

(2)
11 (ξ) for some constant α.

What we have obtained thus far is that P1(ξ) and P2(ξ) are of the form

P1(ξ) =




P

(1)
11 (ξ) P

(1)
12 (ξ)

0 P
(1)
22 (ξ)



 , P2(ξ) =




U11(ξ)P

(1)
11 (ξ) P

(2)
12 (ξ)

0 αP
(1)
22 (ξ)



 .

This is almost what we are after, except that the upper right corner of P2(ξ)
still needs to be expressed in terms of P1(ξ). To derive such an expression,
choose w2 such that P22(1)(

d
dt )w2 = 0. As before, there exists w1 such that

P
(1)
11 (

d

dt
)w1 + P

(1)
12 (

d

dt
)w2 = 0, U11(

d

dt
)P

(1)
11 (

d

dt
)w1 + P

(2)
12 (

d

dt
)w2 = 0,

and therefore

U11(
d
dt )P

(1)
11 (

d

dt
)w1 + U11(

d
dt )P

(1)
12 (

d

dt
)w2 = 0,

U11(
d
dt )P

(1)
11 (

d

dt
)w1 + P

(2)
12 (

d

dt
)w2 = 0.

(3.46)

Subtraction of the two equations in (3.46) yields
(

U11(
d

dt
)P

(1)
12 (

d

dt
)− P (2)

12 (
d

dt
)

)

w2 = 0. (3.47)

Hence P22(1)(
d
dt )w2 = 0 implies (3.47). It is not difficult to check (see

Exercise 3.2) that therefore P22(1)(ξ) divides every entry of the polynomial

vector (U11(ξ)P
(1)
12 (ξ)−P (2)

12 (ξ)), and hence there exists a polynomial vector

U12(ξ) ∈ Rg×1[ξ] such that P
(2)
12 (ξ)− U11(ξ)P

(1)
12 (ξ) = U12(ξ)P22(1)(ξ).

It follows that

P2(ξ) =

[
U11(ξ) U12(ξ)

0 α

]

︸ ︷︷ ︸

U(ξ)

P1(ξ). (3.48)

Since U11(ξ) is unimodular by the induction hypothesis and α is a nonzero
constant, the matrix U(ξ) in (3.48) is unimodular, and the lemma is proven.

�

We are now ready to state and prove the converse of Theorem 2.5.4.

Theorem 3.6.2 The polynomial matrices R1(ξ), R2(ξ) ∈ Rg×q[ξ] define
the same behavior B if and only if there exists a unimodular matrix U(ξ) ∈
Rg×g[ξ] such that R1(ξ) = U(ξ)R2(ξ).
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Proof The “if” part was already proven in Theorem 2.5.4. The “only if”
part may be proved as follows. By elementary row operations, R1(ξ) and
R2(ξ) may be transformed into

[

R̃i(ξ)
0

]

, i = 1, 2

with R̃i(ξ) of full row rank. According to Corollary 3.3.23, R̃1(ξ) may be
written in the form

R̃1(ξ) =
[

P̃1(ξ) Q̃1(ξ)
]

(3.49)

with P̃−1
1 (ξ)Q̃1(ξ) proper. To obtain (3.49) could require a permutation of

the columns of R̃1(ξ). It is, however, not a restriction to assume that R̃1(ξ)
is already in the form (3.49). Partition R̃2(ξ) accordingly:

R̃2(ξ) =
[

P̃2(ξ) Q̃2(ξ)
]
.

Choose w1 such that P̃1(
d
dt )w1 = 0. Then col(w1, 0) ∈ B, and therefore also

P̃2(
d
dt )w1 = 0. Conversely, P̃2(

d
dt )w1 = 0 implies that P̃1(

d
dt )w1 = 0. Since

det P̃1(ξ) 6= 0, it follows from Lemma 3.6.1 that there exists a unimodular
matrix U(ξ) such that

P̃2(ξ) = U(ξ)P̃1(ξ). (3.50)

Choose w2 arbitrarily. Then, since P̃−1
1 (ξ)Q̃1(ξ) is proper, there exists w1

such that

P̃1(
d

dt
)w1 + Q̃1(

d

dt
)w2 = 0,

and hence also P̃2(
d
dt )w1 + Q̃2(

d
dt )w2 = 0. By (3.50) it follows that

P̃2(
d

dt
)w1+U(

d

dt
)Q̃1(

d

dt
)w2 = 0 and P̃2(

d

dt
)w1+Q̃2(

d

dt
)w2 = 0. (3.51)

Subtracting the two equations in (3.51) yields that for all w2

(

U(
d

dt
)Q̃1(

d

dt
)− Q̃2(

d

dt
)

)

w2 = 0. (3.52)

Equation (3.52) can only hold if Q̃2(ξ) = U(ξ)Q̃1(ξ), see Exercise 3.34. This
shows that indeed R2(ξ) = U(ξ)R1(ξ). �

Corollary 3.6.3 Two matrices R1(ξ) ∈ Rg1×q[ξ] and R2(ξ) ∈ Rg2×q[ξ]
define the same behavior if and only if R1(ξ) can be obtained from R2(ξ)
by a series of operations of the following type:

1. Premultiplication by a unimodular matrix.

2. Addition or deletion of zero-rows.
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Proof See Exercise 3.35. �

In Chapter 2 we introduced the notion of full row rank and minimal of the
system described by R( d

dt )w = 0. We are now able to prove the claim made
in Chapter 2 that these notions coincide.

Theorem 3.6.4 Let the behavior B be defined by R( d
dt )w = 0, where, as

usual, R(ξ) ∈ Rg×q[ξ].

1. The polynomial matrix R(ξ) has full row rank if and only if it is a
minimal representation.

2. All full row rank representations have the same number of rows.

3. Let R1(ξ) and R2(ξ) be two minimal representations of B. Then there
exists a unimodular matrix U(ξ) such that U(ξ)R1(ξ) = R2(ξ).

Proof 1. The “if” part was proven in Theorem 2.5.25. For the “only if” part
we proceed as follows. Assume thatR(ξ) is of full row rank, and suppose that
R(ξ) is not minimal. Then there exists a representation R′(ξ) ∈ Rg′×q[ξ] of
B with g′ < g. It follows from Theorem 3.6.2 that there exists a unimodular
matrix U(ξ) ∈ Rg×g[ξ] such that

U(ξ)R(ξ) =

[
R′(ξ)
0

]

. (3.53)

From Theorem 2.5.22 we know that the row rank of a matrix is invariant
under premultiplication by a unimodular matrix, and therefore the row
rank of the right-hand side of (3.53) is equal to g, the row rank of R(ξ).
Since zero-rows do not contribute to the row rank, R′(ξ) should also have
row rank equal to g. This is impossible, since the number of rows of R′(ξ)
was assumed to be strictly less than g′.

2. By definition of minimality, all minimal representations have the same
number of rows. Since minimality and full row rank are the same, the
statement follows.

3. This follows from Theorem 3.6.2 and part 2. �

3.7 Recapitulation

In this chapter we have discussed two important classes of systems: autonomous
and input/output systems. The main points in Chapter 3 are:

• A system is autonomous if for any trajectory in the behavior, its future is
completely determined by its past (Definition 3.2.1).
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• Autonomous systems can be described by differential equations R( d
dt
)w = 0

with R(ξ) a square polynomial matrix such that detR(ξ) 6= 0. The behavior
of such a system can be described quite explicitly through the roots of
detR(ξ) and the vectors in the kernel of R(λ) for the roots λ of detR(ξ)
(Theorem 3.2.16). In the scalar case the behavior is completely determined
by the roots of the scalar polynomial that defines the behavior (Theorem
3.2.5).

• For autonomous systems, every trajectory in the behavior is almost every-
where equal to an infinitely differentiable one (Theorem 3.2.4).

• Input/output systems can be described by P ( d
dt
)y = Q( d

dt
)u with the

matrix of rational functions P−1(ξ)Q(ξ) proper. This matrix is referred to
as the transfer function or transfer matrix and plays an important role in
all of systems and control theory. The behavior of an input/output system
can be expressed explicitly in terms of an integral expression involving
the partial fraction expansion of the transfer function and the solutions of
P ( d

dt
)y = 0 (Theorems 3.3.13 and 3.3.19).

• Every behavior described by differential equations of the form R( d
dt
)w = 0

can be written in input/output form by selecting appropriate components
of w as input and considering the remaining components as output. (The-
orem 3.3.22 and Corollary 3.3.23).

• Using the above results we were able to complete two issues raised in Chap-
ter 2:

– The equivalence of all polynomial matrices that represent the same
behavior (Corollary 3.6.3). Two polynomial matrices R1(ξ), R2(ξ) ∈
Rg×q[ξ] define the same behavior if and only if there exists a unimod-
ular matrix U(ξ) such that R2(ξ)U(ξ) = R1(ξ).

– The characterization of minimal and full row rank representations
(Theorem 3.6.4). The matrix R(ξ) is minimal if and only if it has full
row rank.

3.8 Notes and References

The material in this chapter is based on [59, 60], where, however, mainly the

case of discrete-time systems, i.e., systems described by difference equations, is

covered. Many of the proofs in this chapter appear here for the first time.

3.9 Exercises

As a simulation exercise illustrating the material covered in this chapter
we suggest A.3.
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3.1 Determine the behavior B associated with the differential equation

−32w + 22
d2

dt2
w + 9

d3

dt3
w +

d4

dt4
w = 0.

3.2 Let Pi(ξ) ∈ R[ξ], (i = 1, 2). Denote the corresponding behaviors by Bi.
Assume that B1 ⊂ B2. Prove that the polynomial P1(ξ) divides P2(ξ).

3.3 Refer to Remark 3.2.14. Prove that:

(a)
dk

dtk
(tjeλt)(0) =





0 j > k,
k!

(k − j)!
j ≤ k.

Hint: Use Leibniz’s formula for the kth derivative of the product of
two functions.

(b)
dk

dtk
(

m−1∑

j=0

ajt
jeλt)(0) =





k∑
j=0

aj
k!

(k − j)!
λk−j 1 ≤ k ≤ m− 1,

m−1∑
j=0

aj
k!

(k − j)!
λk−j k ≥ m− 1.

(c)
dk

dtk
(

m−1∑

j=0

ajt
jeλt)(0) =

m−1∑

j=0

aj((
d

dλ
)jλk), k ≥ 0.

(d)
dk

dtk
(

N∑

i=1

ni−1∑

j=0

aijt
jeλt)(0) =

N∑

i=1

ni−1∑

j=0

aij((
d

dλ
)jλk

i ).

(e) Derive a formula similar to (3.18) for the case that the multiplicities
are allowed to be larger than one.

3.4 Prove Corollary 3.2.7.

3.5 Many differential equations occurring in physical applications, e.g., in me-
chanics, contain even derivatives only. Consider the behavioral equation

P (
d2

dt2
)w = 0,

with P (ξ) ∈ Rq×q[ξ], detP (ξ) 6= 0. Assume that the roots of detP (ξ) are
real and simple (multiplicity one). Describe the real behavior of this system
in terms of the roots λk of detP (ξ) and the kernel of P (λk).

3.6 Consider the set of differential equations

w1 +
d2

dt2
w1 − 3w2 −

d

dt
w2 +

d2

dt2
w2 +

d3

dt3
w2 = 0,

w1 −
d

dt
w1 − w2 +

d

dt
w2 = 0.

(3.54)

(a) Determine the matrix P (ξ) ∈ R2×2[ξ] such that (3.54) is equivalent
to P ( d

dt
)w = 0.

(b) Determine the roots of detP (ξ).
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(c) Prove that every (strong) solution of (3.54) can be written as

w(t) =

[
α1 − 3α2

α1

]
et +

[
α2

α2

]
tet +

[
β
β

]
e−2t +

[
γ
γ

]
e−t.

3.7 (a) Show that the polynomial matrix U(ξ) ∈ R2×2[ξ] given by

U(ξ) :=

[
1 + 3ξ + ξ2 −2ξ − ξ2

−2− ξ 1 + ξ

]

is unimodular, and determine (U(ξ))−1.

(b) Write U(ξ) as a product of elementary unimodular matrices.

(c) Determine the behavior of U( d
dt
)w = 0. What general principle lies

behind your answer?

3.8 Determine the behavior B associated with P ( d
dt
)w = 0, where

P (ξ) =

[
2 + ξ2 1

2− 2ξ − 4ξ2 1 + ξ

]
.

3.9 Different polynomial matrices may have the same determinant. Let P (ξ) ∈
R2×2[ξ] be a diagonal matrix. Given detP (ξ) = −2 − ξ + 2ξ2 + ξ3, how
many different behaviors correspond to this determinant?

3.10 The purpose of this exercise is to derive a proof of Theorem 3.2.16 that
does not rely on the Smith form. Let P (ξ) be given by

P (ξ) :=



P11(ξ) 0

P21(ξ) P22(ξ)




Consider the behavior associated with P ( d
dt
)w = 0.

(a) Take P11(ξ) = 1 − 2ξ + ξ2, P21(ξ) = −3 + ξ, and P22(ξ) = 1 + ξ.
Determine a basis of the corresponding behavior Ba and conclude
that that Ba is a linear subspace of dimension three.

(b) Take P11(ξ) and P22(ξ) as in in the previous part and P21(ξ) = −3+
2ξ−2ξ2+ξ3. Prove that the corresponding behavior, Bb, equals Ba.

(c) Now let P11(ξ) 6= 0, P22(ξ) 6= 0, and P22(ξ) arbitrary. Prove that the
corresponding behavior is a linear subspace of dimension equal to the
degree of P11(ξ)P22(ξ).

Hint: First calculate the dimension of P11(
d
dt
)w1 = 0 by applying

Theorem 3.2.5. Any solution of that equation can be plugged in as
an input to the “input/output system” P21(

d
dt
)w1 + P22(

d
dt
)w2 = 0.

Why don’t you have to worry about the possible nonproperness of
P21(ξ)
P22(ξ)

? Now use Theorem 3.3.13 to obtain the proof.
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(d) Consider the more general case

P (ξ) :=

[
P11(ξ) P12(ξ)

P21(ξ) P22(ξ)

]
.

Prove that P can be brought into lower triangular form by elemen-
tary row operations. Use this to prove that the dimension of the
corresponding behavior is equal to the degree of the determinant of
P (ξ).

Hint: Elementary row operations do not change the determinant.

(e) Use induction on q to prove Theorem 3.2.16.

3.11 Prove Lemma 3.2.18 along the same lines as Lemma 3.2.6.

3.12 Verify that Theorem 3.2.16, specialized to the case q = 1, yields Theorem
3.2.5.

3.13 Consider the mechanical system shown in Figure 3.6. Assume that q1 = 0

M M

q2

k1 k1k2

q1

FIGURE 3.6. Mass–spring system.

corresponds to the equilibrium position of the mass on the left-hand side
and that q2 = 0 corresponds to that of the other mass.

(a) Determine for each of the cases below the differential equations de-
scribing

i. col(q1, q2),

ii. q1,

iii. q2.

(b) Use Theorem 3.2.16 to determine the behavior for the three cases
above.

(c) Consider the behavior B of col(q1, q2). It is of interest to see how
the time behavior of q1 relates to that of q2. Show that the behavior
B may be written as B = Bs +Ba (subscript ‘s’ for symmetric, ‘a’
for antisymmetric), with Bs consisting of elements of B of the form
(q1, q2) = (q, q) and Ba consisting of elements of the form (q,−q).
Derive differential equations describing Bs and Ba.
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(d) Prove that also Bs and Ba consist of pure sinusoids. Denote the
respective frequencies by ωs and ωa. Discuss these frequencies for the
cases

i.
k1
k2

≪ 1.

ii.
k1
k2

≫ 1.

These phenomena are numerically illustrated in simulation exercise A.3.

3.14 Consider the one-dimensional horizontal motion of the mechanical system
depicted in Figure 3.7. Let q1 denote the displacement of M1 from some

F1

M1 M2

k

q1 q2

F2

FIGURE 3.7. Mass–spring system.

reference point, and q2 the displacement of M2 from its equilibrium when
M1 is in the position corresponding to q1 = 0. Assume that external forces
F1, F2 act on the masses M1 and M2 respectively.

(a) Derive differential equations relating q1, q2, F1, F2.

(b) Derive all possible input/output partitions of q1, q2, F1, F2.

(c) Derive an integral expression relating the input col(F1, F2) to
col(q1, q2).

3.15 The aim of this exercise is to prove Theorem 3.2.15. Let P (ξ) ∈ Rq×q[ξ]
and detP (ξ) 6= 0. Choose a unimodular matrix U(ξ) such that T (ξ) :=
U(ξ)P (ξ) is an upper triangular matrix (see Theorem 2.5.14):

T (ξ) =




T11(ξ) · · · · · · T1q(ξ)
0 T22(ξ) · · · T2q(ξ)

. . .

0 · · · 0 Tqq(ξ)


 . (3.55)

According to Theorem 2.5.4, P (ξ) and T (ξ) define the same behavior. Let
w be a solution of P ( d

dt
)w = 0 and hence of T ( d

dt
)w = 0. Denote the

components of w by w1, . . . , wq respectively.

(a) Use Theorem 3.2.4 to conclude that there exists vq ∈ C∞(R,R) such
that wq = vq almost everywhere.
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(b) Since vq ∈ C∞(R,R), there exists ṽq−1 ∈ C∞(R,R) such that

Tq−1,q−1(
d

dt
)ṽq−1 + Tq−1,q(

d

dt
)vq = 0 strongly,

and since wq = vq almost everywhere, we also have

Tq−1,q−1(
d

dt
)wq−1 + Tq−1,q(

d

dt
)vq = 0 weakly.

By linearity it follows that

Tq−1,q−1(
d

dt
)(wq−1 − ṽq−1) = 0 weakly. (3.56)

Use Theorem 3.2.4 and (3.56) to conclude that there exists vq−1 ∈
C∞(R,R) such that vq−1 = wq−1 almost everywhere and

Tq−1,q−1(
d

dt
)vq−1 + Tq−1,q(

d

dt
)vq = 0 strongly.

(c) Use induction to prove that there exist vq−2, . . . , v1 ∈ C∞(R,R) such
that wi and vi are the same except on sets of measure zero (i =
q − 2, . . . , 1).

3.16 Refer to Remark 3.2.14.

(a) Let λ1, . . . , λn ∈ C. In (3.18) we derived a relation in which the
following Vandermonde matrix M appeared:

M =




1 · · · · · · 1
λ1 · · · · · · λn

...
...

λn−1
1 · · · · · · λn−1

n


 .

Prove that M is nonsingular if and only if the λis are mutually dis-
tinct. Hint: Let v ∈ Cn such that vTM = 0. Consider the entries
of v as the coefficients of a polynomial. Use the Fundamental The-
orem of Algebra (every complex polynomial of degree n has exactly
n complex roots, counting multiplicities) to show that if the λis are
distinct, then v must be zero.

(b) Let λ1, . . . , λN ∈ C. Let n1, . . . , nN ∈ N, and define n :=
∑N

i=0 ni.
If the multiplicities of the λs are allowed to be larger than one, than
a relation like (3.18) still holds; see Exercise 3.3. The Vandermonde
matrix is then replaced by a matrix M that is constructed as fol-
lows. The first column is (1, λ1, . . . , λ

n−1
1 )T , the second column is the

derivative with respect to λ1 of the first column, the third column
is the derivative of the second column, etc., up to the n1th column.
Repeat this for λ2, . . . , λN . Then M is given by

M =




1 0 0 · · · 1 0 0 · · ·
λ1 1 0 · · · λN 1 0 · · ·
λ2
1 2λ1 2 · · · λ2

N 2λN 2 · · ·
...

...
...

...
...

...
λn−1
1 (n− 1)λn−2

1 (n− 1)(n− 2)λn−3
1 · · · λn−1

N (n− 1)λn−2
N · · ·



.
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Prove that this matrix is invertible if and only if the λis are mutually
distinct.

3.17 Consider expression (3.8). Let

rk(t) = r0k + r1kt+ · · ·+ r
nk−1
k tnk−1.

Prove that ( dℓ

dtℓ
rk)(0) = l!rlk. Deduce from this the matrix that takes the

vector col(r01, r
1
1, . . . , r

n1−1
1 , r02, r

1
2, . . . , r

n2−1
2 , . . . , r0N , r

1
N , . . . , r

nN−1
N ) into

col

(
w(0), (

d

dt
w)(0), . . . , (

dn−1

dtn−1
w)(0)

)

with n = n1+n2+ · · ·+nN . Prove that this matrix is invertible and hence
that there exists a bijection between the polynomials (r1, r2, . . . , rN ) and

the initial values col(w(0), ( d
dt
)w(0), . . . , ( dn−1

dtn−1w)(0)).

3.18 Determine the partial fraction expansion of
1− 6ξ + ξ2

−36 + 5ξ2 + ξ4
.

3.19 Consider the input/output equation 2y − 3
d

dt
y +

d2

dt2
y = u+

d

dt
u.

(a) Determine the corresponding behavior.

(b) Determine all possible ys corresponding to the input u(t) = sin t.

(c) Determine y corresponding to the input u(t) = sin t and the initial
condition y(0) = d

dt
y(0) = 0.

3.20 Consider the i/o system defined by

p(
d

dt
)y = q(

d

dt
)u (3.57)

with p(ξ) = ξ − 2ξ2 + ξ3 and q(ξ) = −1 + ξ2.

(a) Determine the partial fraction expansion of
q(ξ)

p(ξ)
.

(b) Give an explicit characterization of the behavior B of (3.57).

(c) Consider now

p̃(
d

dt
)y = q̃(

d

dt
)u (3.58)

with p̃(ξ) = −ξ + ξ2 and q̃(ξ) = 1+ ξ. Determine the partial fraction

expansion of q̃(ξ)
p̃(ξ)

. What strikes you?

(d) Give an explicit characterization of the behavior B̃ of (3.58).

(e) In what sense are B and B̃ different?

(f) Give a convolution representations of B and B̃.
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3.21 Let the polynomial matrix R(ξ) be given by

R(ξ) :=

[
−5ξ + ξ2 −5 + ξ
−ξ + ξ2 −1 + ξ

]
.

Show that R( d
dt
)w = 0 does not define an autonomous system. Write this

system in input/output form. Indicate clearly which component of w is
considered input and which is the output.

3.22 Consider the system of differential equations

6w1 − 5
d

dt
w1 +

d2

dt2
w1 − 3w2 +

d

dt
w2 = 0,

2w1 − 3
d

dt
w1 +

d2

dt2
w1 − w2 +

d

dt
w2 = 0.

(3.59)

(a) Does this set of differential equations define an autonomous system?

(b) If the answer is no, find an input/output representation for it.

3.23 Consider the mechanical system depicted in Figure 3.8. The variables

w3

k1

d1

M2M1

d2 d3

k2 k3

w1 w2

FIGURE 3.8. Mass–damper–spring system.

w1, w2, w3 denote the displacements of the masses from their equilibrium
positions. The damper coefficients are d1, d2, d3 respectively and the spring
constants are k1, k2, k3. Both masses are assumed to be unity. All displace-
ments are in the horizontal direction only; rotations and vertical movements
are not possible.

(a) Show that the equations of motion are given by

(k1 + k2)w1 + (d1 + d2)
d

dt
w1 +

d2

dt2
w1 − k2w2 − d2

d

dt
w2 = 0,

−k2w1 − d2
d

dt
w1 + (k2 + k3)w2 + (d2 + d3)

d

dt
w2 +

d2

dt2
w2

−k3w3 − d3
d

dt
w3 = 0.

(b) Determine a polynomial matrixR(ξ) ∈ R2×3[ξ] such that the behavior
B of the system is described by R( d

dt
)w = 0.
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Choose d1 = 1, d2 = 1, d3 = 4, k1 = 0, k2 = 1, and k3 = 6.

(c) Interpret k1 = 0 physically.

(d) Show that R(ξ) is of full row rank and write the system in in-
put/output form P ( d

dt
)y = Q( d

dt
)u; i.e., take the appropriate com-

ponents of w as output and the remaining components as input.

(e) Determine detP (ξ) and its roots and the partial fraction expansion
of P−1(ξ)Q(ξ).

(f) Determine the behavior of P ( d
dt
)y = 0 and the behavior of P ( d

dt
)y =

Q( d
dt
)u.

3.24 The purpose of this exercise is to prove Theorem 3.3.13 for the multivariable
case. Let P (ξ) ∈ Rp×p[ξ], Q(ξ) ∈ Rp×m[ξ] with P−1Q(ξ) proper. Assume
that the partial fraction expansion of P (ξ)−1Q(ξ) is given by

P−1Q(ξ) = A0 +

n∑

k=1

Ak
1

ξ − λk
.

Choose ū ∈ L
loc
1 (R,Rm) and define

ȳ(t) = A0u(t) +
n∑

k=1

Ak

t∫

0

eλk(t−τ)ū(τ)dτ, Ak ∈ Cp×m.

We want to prove that with this definition of ȳ, the pair (ū, ȳ) satisfies
P ( d

dt
)ȳ = Q( d

dt
)ū, weakly. Choose unimodular matrices of appropriate di-

mensions U(ξ), V (ξ) such that P̃ (ξ) := U(ξ)P (ξ)V (ξ) is in Smith form.
Define Q̃(ξ) = U(ξ)Q(ξ) and Ãk(ξ) = V −1(ξ)Ak, k = 0, . . . , n. It follows
that P̃−1(ξ)Q̃(ξ) is given by

P̃−1Q̃(ξ) = Ã0(ξ) +

n∑

k=1

Ãk(ξ)
1

ξ − λk
.

(a) Assume that ū ∈ C∞(R,Rm), and define ỹ ∈ C∞(R,Rp) by

ỹ(t) = Ã0(
d

dt
)u(t) +

n∑

k=1

Ãk(
d

dt
)

t∫

0

eλk(t−τ)ū(τ)dτ, Ak ∈ Cp×m.

Prove, in a similar way as the proof of Theorem 3.3.13 for the scalar
case, that P̃ ( d

dt
)ỹ = Q̃( d

dt
)ū and conclude that indeed P ( d

dt
)ȳ =

Q( d
dt
)ū.

(b) Prove that P ( d
dt
)ȳ = Q( d

dt
)ū is also satisfied (weakly) if u ∈

L
loc
1 (R,Rm).

3.25 Refer to Example 3.3.18. Consider the differential equation w1 = d
dt
w2.

Take w2(t) = 1, t ≥ 0, and w2(t) = 0, t < 0. Prove that there does
not exist a w1 ∈ L

loc
1 (R,R) such that (w2, w1) is a weak solution of the

differential equation.
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3.26 Consider the behavior in Example 3.3.3. Let w2 be as in Exercise 3.25.
Prove that there does not exist a w1 ∈ L

loc
1 (R,R) such that (w1, w2) ∈ B.

3.27 Let R(ξ) ∈ Rg×q[ξ] be of full row rank and consider the behavior B defined
by R( d

dt
)w = 0. Assume that w = col(w1, w2) is an i/o partition; i.e., w1

is maximally free. We want to prove that q1, the dimension of w1, equals
q − g. To that end assume that q1 < q − g and argue that w2 contains
free components in that case. Alternatively, if q1 > q − g, then not all
components of w1 are free.

3.28 Consider the electrical circuit of Example 2.3.1.

(a) Give an exact expression of the short-circuit behavior (i.e., determine
all currents I compatible with V = 0).

(b) Give also an expression of the open-circuit behavior (i.e., determine
all voltages V compatible with I = 0).

(c) Assume next that the circuit is terminated by a resistor R > 0; see
Figure 3.9. Determine the resulting behavior of (V, I).

V

−

+
↑ I

R0

C
R1R

FIGURE 3.9. Electrical circuit.

3.29 Consider the electrical circuit described in Example 1.3.5. Determine for
all values of RC > 0, RL > 0, C > 0, L > 0, the input/output structure,
the short-circuit behavior, and the open-circuit behavior.

3.30 Prove Corollary 3.3.8. Hint: multiply both sides of (3.27) by P (ξ).

3.31 Let P (ξ), Q(ξ) ∈ R[ξ], degP (ξ) = n, degQ(ξ) = k, k ≤ n. Consider the
SISO input/output system

P (
d

dt
)y = Q(

d

dt
)u. (3.60)

As usual, we denote by Cm(R,R),m ≥ 0, the functions that are m times
continuously differentiable. For the sake of this exercise denote L

loc
1 (R,R)

by C−1(R,R). Define the relative degree of (3.60) by r := n− k. Prove that
if u ∈ Cm(R,R),m ≥ −1, and if (u, y) satisfies (3.60), then y ∈ Cm+r(R,R).
Hint: Use the integral representation (2.12) of (3.60). Use the fact that if
w ∈ Cm(R,R), then the integral of w is in Cm+1(R,R).
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3.32 Let u ∈ L
loc
1 (R,R) and let un ∈ C∞(R,R) be a sequence that converges to

u in the sense of Lloc
1 (R,R). Define yn by

yn(t) :=

t∫

0

(t− τ)k−1

(k − 1)!
eλ(t−τ)un(τ)dτ

and y by

y(t) :=

t∫

0

(t− τ)k−1

(k − 1)!
eλ(t−τ)u(τ)dτ.

Show that yn converges to y in the sense of Lloc
1 (R,R).

3.33 Consider the convolution system given by

y(t) =

∞∫

−∞

h(t− τ)u(τ)dτ,

where h(t) = e−t; t ≥ 0; h(t) = 0, t < 0.

(a) Determine an input/output system of the form

P (
d

dt
)y = Q(

d

dt
)u

such that the initially-at-rest-behaviors of both systems are the same.

(b) Of course, there is a trivial nonuniqueness in the answer to the previ-
ous question: If (p(ξ), q(ξ)) is a possible answer, then the same is true
for (αp(ξ), αq(ξ)) for every constant α ∈ R. Do you see a nontrivial
form of nonuniqueness?

(c) Give an example of an input/output pair (u, y) that belongs to the
behavior of the input/output system but that does not belong to
the behavior of the convolution system. Conclude that although the
associated initially-at-rest systems coincide, the behaviors themselves
are not the same. Is there an inclusion relation?

3.34 Refer to the statement just following (3.52). Let B be the behavior defined
by R( d

dt
)w = 0. Prove that B = L

loc
1 (R,Rq) if and only if R(ξ) is equal to

the zero matrix. Hint: Write R(ξ) = R0 + R1ξ + · · · + RLξ
L; then take w

a nonzero constant to show that R0 = 0; then take w a multiple of t; etc.

3.35 Prove Corollary 3.6.3.

3.36 Let R1(ξ), R2(ξ) ∈ Rg×q[ξ] be of full row rank. The corresponding behav-
iors are denoted by B1 and B2 respectively.

(a) Show that R2(ξ)R
T
2 (ξ) is invertible as a rational matrix. It suffices to

prove that detR2(ξ)R
T
2 (ξ) 6= 0.

(b) Show that R2(ξ) has a right inverse; i.e., there exists a rational matrix
R∗

2(ξ) such that R2(ξ)R
∗
2(ξ) = Ig.
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(c) Assume that B1 = B2. Show that R1(ξ)R
∗
2(ξ) is a polynomial uni-

modular matrix.

(d) Show by means of a simple example that the converse is not true:
If R1(ξ)R

∗
2(ξ) is a polynomial unimodular matrix, then we need not

have that B1 = B2.

(e) Prove that B1 = B2 if and only if R1(ξ)R
∗
2(ξ) is a polynomial uni-

modular matrix and R1(ξ) = R1(ξ)R
∗
2(ξ)R2(ξ).

(f) Let R1(ξ) and R2(ξ) be given by

R1(ξ) :=

[
1 + ξ2 ξ 1 + ξ
ξ 0 1

]
, R2(ξ) :=

[
1 ξ 1
ξ 0 1

]
.

Prove or disprove: B1 = B2.



4

State Space Models

4.1 Introduction

In Chapter 1 we argued that mathematical models obtained from first
principles usually contain latent variables. Up to now these latent variables
did not enter the mathematical development. In Chapters 5 and 6 latent
variable systems will be pursued in full generality. In the present chapter
we discuss a special and important class of latent variables, namely state
variables . State variables either show up naturally in the modeling process
or they can be artificially introduced. State variables have the property
that they parametrize the memory of the system, i.e., that they “split” the
past and future of the behavior. The precise meaning of this statement will
be made clear in the sequel.

The chapter is structured as follows. In Section 4.2 we introduce and briefly
discuss differential systems containing latent variables and formally intro-
duce state variables. In Section 4.3 we relate state variables to differential
equations that are of first order in the latent variables and of order zero
in the manifest variables. Then, in Section 4.4 we consider a more struc-
tured class of state space models, namely state space models for systems
in input/output form. This leads to input/state/output representations.
State space transformations are treated in Section 4.6, and in Section 4.7
we study linearization of nonlinear state space models.
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4.2 Differential Systems with Latent Variables

Assume that a mathematical model contains, in analogy with the dis-
cussion in Section 1.5, see (1.17), q real-valued manifest variables w =
col(w1, . . . , wq) and d real-valued latent variables ℓ = col(ℓ1, . . . , ℓd). Then,
assuming that the joint equations governing w and ℓ are linear constant-
coefficient differential equations, we obtain the following generalization of
(2.1):

R(
d

dt
)w =M(

d

dt
)ℓ, (4.1)

where w : R → Rq denotes the manifest variable and ℓ : R → Rd the
latent variable, and R(ξ) ∈ Rg×q[ξ] and M(ξ) ∈ Rg×d[ξ] are polynomial
matrices with the same number of rows, namely g, and with q and d columns
respectively. Corresponding to (4.1) we define the following behaviors:

Definition 4.2.1 The full behavior Bf and the manifest behavior B rep-
resented by (4.1) are defined as

Bf = {(w, ℓ) ∈ L
loc
1 (R,Rq × Rd) | (w, ℓ) satisfies (4.1) weakly}, (4.2)

B = {w ∈ L
loc
1 (R,Rq) | ∃ℓ ∈ L

loc
1 (R,Rd) such that (w, ℓ) ∈ Bf}.

�

The idea is that (4.1) is obtained from first principles modeling, but that
we are primarily interested in the manifest behavior B. It turns out, in fact,
that B can itself be described by differential equations. However, for the
moment we are not concerned with the issue of how this could be proven,
or how the differential equations for B could be computed in a systematic
way. We will come back to this in Chapter 6.

4.3 State Space Models

We now study an exceedingly important class of latent variables, state
variables, that not only often show up naturally in applications, but that
are also very useful in the analysis and synthesis of dynamical systems. We
start by introducing the concept of state on an intuitive level by means of
two examples.

Example 4.3.1 Consider the mass–spring system in Figure 4.1. Recall
from Example 3.2.3 that the equation describing the behavior is

(k1 + k2)q +M(
d

dt
)2q = F. (4.3)
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M

q

k1 k2

F

FIGURE 4.1. Mass–spring system.

We want to know to what extent the past of a trajectory determines its
future. Otherwise stated, if we observe a trajectory w = (F, q) up to t = 0
(the past), what can we then say about (F, q) after t = 0 (the future)?
We have seen in Chapter 3 that whatever the past of (F, q), the future
of F is not restricted by it. The future of q depends, on the one hand,
on the future of F , and on the other hand on the position and velocity
at t = 0. So, if wi = (qi, Fi), i = 1, 2, are possible trajectories, then the
trajectory w = (q, F ) that equals w1 up to t = 0 and w2 after t = 0,
i.e., a trajectory that concatenates the past of w1 and the future of w2 at
t = 0, is also an element of the behavior, provided that q1(0) = q2(0) and
( d
dtq1)(0) = ( d

dtq2)(0). This observation, which still needs mathematical

justification, inspires us to introduce the latent variable x := col(q, d
dtq).

Thus x forms what we call the state of this mechanical system. Notice that
we can rewrite the system equation (4.3) in terms of x as

d

dt
x =





0 1

−k1 − k2
M

0



x+





0

1

M



F, q =
[
1 0

]
x, w = col(q, F ).

(4.4)
Using (4.4) we may reexpress the concatenation condition as follows: If
(w1, x1) and (w2, x2) satisfy (4.4), then (w, x), the concatenation of (w1, x1)
and (w2, x2) at t = 0, also satisfies (4.4) if x1(0) = x2(0). This is the reason
that we call x the state. Notice that (4.4) is first order in the latent variable
x and order zero (static) in the manifest variables q and F . �

As a second example of a state space model, we consider an electrical circuit.

Example 4.3.2 Consider the electrical circuit consisting of a resistor, a
capacitor, an inductor, and an external port shown in Figure 4.2. Suppose
we want to model the relation between the voltage across and the current
through the external port. Introduce the voltages across and the currents
through the other elements as latent variables. Using the obvious notation,
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V

↑ I

r

r

R

C
✟
✠

✟
✠

✟
✠
L

FIGURE 4.2. Electrical circuit.

the equations describing the full behavior are

V = VR = VC = VL, I = IR + IC + IL, VR = RIR,

IC = C
d

dt
VC , VL = L

d

dt
IL.

(4.5)

This is a set of equations that implicitly determines the relation between
V and I: again it contains latent variables. By eliminating VR, IR, IC , and
VL in (4.5), we obtain

C
d

dt
VC = −VC

R
− IL + I, L

d

dt
IL = VC , V = VC . (4.6)

Now, (4.5) and (4.6) form two latent variable systems. It is not difficult to
see that they define the same manifest behavior. The representation (4.6)
shares some of the features with (4.4). If we define x = col(VC , IL), then
(4.6) may be written as

d

dt
x =






− 1

RC
− 1

C
1

L
0




x+





1

C
0



 I, V =
[
1 0

]
x. (4.7)

Just as in (4.4), these equations are of first order in the latent variable x
and of order zero in the manifest variables I and V . It turns out that also
in this case, x can be seen as the state of the system. �

In many physical systems, the state has a direct interpretation in terms of
physical variables, e.g., the positions and the velocities of the masses (in
mechanical systems, as in Example 4.3.1) or the charges on the capacitors
and the currents through the inductors (in electrical circuits, as in Example
4.3.2). Notice once more that both (4.4) and (4.7) are first order in x and
order zero in the manifest variables col(q, F ) in (4.4) and col(V, I) in (4.7).
We will soon see that this feature is characteristic for state space systems.
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In Example 4.3.1 we have made plausible that two trajectories (w1, x1),
(w2, x2) may be concatenated at t0 provided that x1(t0) = x2(t0). This is
what we call the property of state.

Definition 4.3.3 (Property of state) Consider the latent variable sys-
tem defined by (4.2). Let (w1, ℓ1), (w2, ℓ2) ∈ Bf and t0 ∈ R and suppose
that ℓ1, ℓ2 are continuous. Define the concatenation of (w1, ℓ1) and (w2, ℓ2)
at t0 by (w, ℓ), with

w(t) =

{
w1(t) t < t0,
w2(t) t ≥ t0, and ℓ(t) =

{
ℓ1(t) t < t0,
ℓ2(t) t ≥ t0. (4.8)

Then Bf is said to be a state space model , and the latent variable ℓ is called
the state if ℓ1(t0) = ℓ2(t0) implies (w, ℓ) ∈ Bf . �

Remark 4.3.4 The state property expresses that ℓ splits the past and
the future of w. All the information needed to decide whether or not two
trajectories w1 and w2 can be concatenated withinB at time t0 is contained
in the values of the corresponding states at time t0. This, indeed, is precisely
the content of (4.8).

It can be shown that for each behavior B defined by equations of the
form R( d

dt )w = 0, there exists a representation of the form (4.1), with ℓ
having the property of state. In Chapter 6 we will demonstrate this for
SISO systems.

Another useful intuitive interpretation of the state property is in terms of
thememory of the dynamical system. Indeed, assume that a past trajectory
(w−, ℓ−) in the behavior has been observed. What future trajectories can
we expect? The state property implies that all we need to know to answer
this question is ℓ−(0). Any trajectory (w+, ℓ+) : [0,∞) → Rq × Rn in
the behavior can occur as a future continuation of (w−, ℓ−) provided that
ℓ−(0) = ℓ+(0) and ℓ− and ℓ+ are continuous. As such, ℓ−(0) contains all
the information about the past required to be able to understand what the
future may look like. In other words, ℓ−(0) is the memory of the system. �

The behavioral equations (4.4) and (4.7) are special cases of the general
class of differential equations

E
dx

dt
+ Fx+Gw = 0 (4.9)

relating the latent variable x ∈ Lloc
1 (R,Rn) and the manifest variable w ∈

Lloc
1 (R,Rq). The matrices E, F , G are real matrices of appropriate sizes.

Usually the state of a system is denoted by x. We follow that convention
with Definition 4.3.3 as the only exception. Another convention is that x
takes its values in Rn, so that E,F ∈ Rg×n and G ∈ Rg×q. The integer n
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is the dimension, or the order, of the state space representation (4.9) and
Rn its state space. Note that (4.9) is a special case of (4.1) with R(ξ) = G
and M(ξ) = −F −Eξ. We now show that (4.9) defines a state space model
with the latent variable x as the state. The full behavior of (4.9) is defined
as

Bf = {(w, x) ∈ L
loc
1 (R,Rq × Rn) | (w, x) satisfies (4.9) weakly}. (4.10)

Since Bf is governed by a set of differential equations that are first order
in x and order zero in w, it has the state property.

Theorem 4.3.5 The behavior Bf defined by (4.10) is a state space model
with x as the state.

Proof Recall that (w, x) is a weak solution of (4.9) if there exists a constant
vector c ∈ Rg such that for almost all t

Ex(t) + F

t∫

0

x(τ)dτ +G

t∫

0

w(τ)dτ = c. (4.11)

In fact, it follows from Lemma 2.3.9 that the lower limit in (4.11) is imma-
terial and that equivalently, (w, x) is a weak solution if and only if for all
t0 ∈ R there exists a ct0 ∈ Rg such that for almost all t

Ex(t) + F

t∫

t0

x(τ)dτ +G

t∫

t0

w(τ)dτ = ct0 . (4.12)

We claim that x satisfies the property of state. Suppose that (w1, x1) and
(w2, x2) are weak solutions of (4.9) with x1, x2 continuous and such that
x1(t0) = x2(t0). By (4.12) there exist constant vectors c1, c2 ∈ Rg such that
for almost all t

Exi(t) + F

t∫

t0

xi(τ)dτ +G

t∫

t0

wi(τ)dτ = ci, i = 1, 2. (4.13)

Since both x1 and x2 are continuous, (4.13) must hold for all t rather than
just for almost all t. To see this, suppose that, e.g., the first equation in
(4.13) does not hold for some t̄. Since (4.13) can fail to be true only for t in
a set of measure zero, there exists a sequence tk converging to t̄ and such
that

Ex1(tk) + F

tk∫

t0

x1(τ)dτ +G

tk∫

t0

w1(τ)dτ − c1 = 0. (4.14)
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Since by assumption the left-hand side of (4.14) is continuous, it follows
that

lim
k→∞

Ex1(tk) + F

tk∫

t0

x1(τ)dτ +G

tk∫

t0

w1(τ)dτ − c1

= Ex1(t̄) + F

t̄∫

t0

x1(τ)dτ +G

t̄∫

t0

w1(τ)dτ − c1 = 0.

In particular, (4.13) holds for t = t0. By substituting t = t0 in (4.13) we
conclude that c1 = c2. Define (w, x) by

(w(t), x(t)) =

{
(w1(t), x1(t)) t < t0,

(w2(t), x2(t)) t ≥ t0.

Now it is clear that (w, x) satisfies (4.12). For t < t0 this follows from (4.13)
with i = 1 and for t ≥ t0 with i = 2, and hence (w, x) is a weak solution of
(4.9). �

Theorem 4.3.5 allows us to conclude that equations of the form (4.9) define
state space representations. It can in fact be shown that the converse is also
true. If the full behavior Bf of (4.1) satisfies the property of state, then the
equations (4.1) are equivalent (in the sense of Definition 2.5.2) to a system
of differential equations of the form (4.9). We will not need this result in
the sequel, and therefore we do not prove it in this book.

Next we present a more academic example.

Example 4.3.6 Consider the (autonomous) behavior defined by

3w + 2
d

dt
w +

d2

dt2
w = 0. (4.15)

Here w : R → R. As we have seen in Theorem 3.2.15, we may confine
ourselves to strong solutions of (4.15). Define x := col(w, d

dtw). Then

d

dt
x =

[
0 1
−3 −2

]

x, w =
[
1 0

]
x.

From Theorem 4.3.5, it follows easily that this defines a state space repre-
sentation. See also Theorem 4.4.1. �

Examples 4.3.1, 4.3.2, and 4.3.6 illustrate how in various situations state
space representations occur in practice. In Example 4.3.1 the state variables
(q, d

dtq) were introduced using physical reasoning. It was shown that they
form state variables. In Example 4.3.2 the latent variables (VC , IL) were
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introduced in the modeling process. They also turned out to be state vari-
ables. Note that in both these examples the state is immediately related to
the energy of the system: 1

2 (k1 + k2)q
2 + 1

2M( d
dtq)

2 in Example 4.3.1 and
1
2CV

2
C + 1

2LI
2
L in Example 4.3.2. In Example 4.3.6, on the other hand, our

choice of the state (w, d
dtw) was guided by the choice of the initial condition

required to specify the solution uniquely. These examples show that state
variables may be introduced from either physical or mathematical consid-
erations. In Chapter 6 we will return to the question of associating to a
differential system of the form R( d

dt )w = 0 a state space representation of
the type (4.9). Note that in Examples 4.3.1, 4.3.2, and 4.3.6 we were able
to solve this representation problem in an ad hoc way.

4.4 Input/State/Output Models

In Chapter 3 we have seen that it is always possible to partition the variable
w into inputs and outputs (see Corollary 3.3.23). This insightful way of
viewing a system can be combined with the notion of state. We thus arrive
at input/state/output systems , a very common way of describing linear
systems. Such representations are of the form

d

dt
x = Ax+Bu,

y = Cx+Du.
(4.16)

Here u ∈ Lloc
1 (R,Rm) is the input, x ∈ Lloc

1 (R,Rn) is the state, and y ∈
Lloc
1 (R,Rp) is the output. Consequently, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rp×m. The matrix D is called the feedthrough term.

In polynomial form, (4.16) can be written as R( d
dt )w = M( d

dt )x, with
w = col(u, y) and R(ξ), M(ξ) given by

R(ξ) :=

[
B 0
−D I

]

, M(ξ) =

[
Iξ −A
C

]

. (4.17)

Note that the “dynamics”, the part of the equations that contains deriva-
tives, of this system is completely contained in the vector (u, x) and the
first-equation of (4.16), and that moreover, only first-order derivatives oc-
cur. The equation determining y from x and u is static: it does not contain
derivatives. The relation between u and x is of an i/o nature in the sense
of Definition 3.3.1. To see this, write d

dtx = Ax+Bu as ( d
dtI −A)x = Bu.

Since det(Iξ−A) 6= 0 and since (Iξ−A)−1B is strictly proper (see Exercise
4.19), u is a maximally free variable in Lloc

1 (R,Rm).

The full behavior defined by (4.16) is defined by

Bi/s/o := {(u, x, y) ∈ L
loc
1 (R,Rm × Rn × Rp) | (4.16) is satisfied weakly .}
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The variable x is considered a latent variable, and hence the manifest be-
havior is given by

Bi/o := {(u, y) ∈ L
loc
1 (R,Rm×Rp) | ∃x ∈ L

loc
1 (R,Rn) s.t. (u, x, y) ∈ Bi/s/o}.

(4.18)

In Chapter 6 it turns out that (4.16) is just another representation of an
i/o system in the sense that each i/o system of the form P ( d

dt )y = Q( d
dt )u

as studied in Section 3.3 can be expressed as the manifest behavior of a
system of the form (4.16). Hence, in view of Corollary 3.3.23, every system
described by R( d

dt )w = 0 admits an i/s/o representation of the form (4.16).
Let us now convince ourselves that (4.16) indeed defines a state space
model for the behavior (4.18). We have to verify that the property of state,
Definition 4.3.3, holds.

Theorem 4.4.1 The representation (4.16) is a state space representation.

Proof This is just a matter of writing (4.16) in the form (4.9), for which
we have already proved that it satisfies the property of state. The matrices
E,F,G, are readily obtained from (4.17):

E =

[
I
0

]

, F =

[
−A
−C

]

, G =

[
−B 0
−D I

]

.

�

Remark 4.4.2 The property of state is the fundamental property of x.
As explained, it expresses that x(t0) splits the past and the future of the
behavior. For i/s/o systems of the form (4.16) this should be understood as
follows. Take two trajectories (u1, x1, y1) and (u2, x2, y2) in Bi/s/o. Restrict
the first trajectory to the interval (−∞, t0), the past of (u1, x1, y1), and call
it (u−1 , x

−
1 , y

−
1 ). Analogously, denote the restriction of (u2, x2, y2) to the

interval [t0,∞), the future of (u2, x2, y2), by (u+2 , x
+
2 , y

+
2 ). Now, whether

the past of (u1, x1, y1) and the future of (u2, x2, y2) can be glued together
(that is, concatenated) at time t0 to form a trajectory in the behavior
is determined by whether x1(t0) and x2(t0) are equal. That means that
the state at time t0 contains all the information about the past that is
needed to decide whether or not this gluing of trajectories is possible. Stated
otherwise, given x(t0), as far as the future is concerned, we can forget
everything that happened before t0. How the system got into the state
x(t0) is immaterial for its future. �

4.5 The Behavior of i/s/o Models

We now give a complete analysis of what the trajectories of the differential
equation (4.16) look like. Observe that since the second equation, y =
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Cx+Du, does not contain any derivatives, the difficulty lies completely in
the input/state equation

d

dt
x = Ax+Bu. (4.19)

We derive an explicit expression for the behavior of (4.19) in two steps:

1. The case u = 0. If u = 0, then (4.19) reduces to the autonomous
differential equation d

dtx = Ax. The solutions of this equation are
characterized in terms of eAt, the matrix generalization of the more
familiar scalar exponential function eat for a ∈ R.

2. The general case, u 6= 0.

4.5.1 The zero input case

If u = 0, then (4.19) reduces to

d

dt
x = Ax. (4.20)

We want to determine all solutions of (4.20). Let us first recall the scalar
case, n = 1: d

dtx = ax, a ∈ R. For this case, all solutions of (4.20) are of
the form

x(t) = eatc, c ∈ R.

Recall from calculus that one way to define eat is through a power series
expansion:

eat =

∞∑

k=0

aktk

k!
. (4.21)

From (4.21) it is easy to see that eat satisfies d
dtx = ax:

d

dt

∞∑

k=0

aktk

k!
=

∞∑

k=0

d

dt

aktk

k!
=

∞∑

k=1

aktk−1

(k − 1)!
= a

∞∑

j=0

ajtj

j!
= aeat. (4.22)

This motivates us to define the exponential of a matrix.

Definition 4.5.1 LetM ∈ Rn×n. The (matrix) exponential ofM , denoted
by eM , is defined as the infinite series

eM :=

∞∑

k=0

Mk

k!
. (4.23)

Here, M0 is defined as the identity matrix I. In particular, if we take
M = At, we have

eAt =

∞∑

k=0

Aktk

k!
. (4.24)
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�

It is easy to prove, see Exercise 4.10, that the infinite sum in (4.23) converges
absolutely, so that eM is indeed well-defined. Mimicking (4.22), we see
that the matrixvalued function of t, eAt, satisfies the differential equation
d
dtX = AX. Indeed, since (4.24) is an absolutely convergent power series,
we may interchange summation and differentiation ([51]):

d

dt
eAt =

d

dt

∞∑

k=0

Aktk

k!
=

∞∑

k=0

d

dt

Aktk

k!
=

∞∑

k=1

Aktk−1

(k − 1)!
= A

∞∑

j=0

Ajtj

j!
= AeAt.

(4.25)
The discussion above leads to the following characterization.

Theorem 4.5.2 Let A ∈ Rn×n. All (strong) solutions of the differential
equation d

dtx = Ax are of the form

x(t) = eAtc, c ∈ Rn. (4.26)

Proof From (4.25) it follows directly that every function of the form (4.26)
is a solution of d

dtx = Ax.

Conversely, let x ∈ C∞(R,Rn) be a solution of d
dtx = Ax. Define the

function z as z(t) := e−Atx(t). It follows that

d

dt
z = −Ae−Atx(t) + e−At d

dt
x(t) = −Ae−Atx(t) + e−AtAx(t) = 0.

This shows that z(t) is constant, say z(t) = c. This implies that

x(t) = eAtc, ∀t ∈ R.

�

Remark 4.5.3 An alternative proof of Theorem 4.5.2 is obtained as fol-
lows. Observe that the equation d

dtx = Ax is a special case of the gen-

eral autonomous equation P ( d
dt )w = 0, with P (ξ) = Iξ − A. From Theo-

rem 3.2.16 it follows that the solution set is a finite-dimensional subspace
of C∞(R,Rn) of dimension n (= deg det(Iξ − A)). Hence it suffices to
construct n independent solutions of the form (4.26). This is easy; just
let c range over all n standard basis vectors: xi(t) = eAtei, i = 1, . . . , n,
ei = [0 · · · 0 1 0 · · · 0]T . �

4.5.2 The nonzero input case: The variation of the constants
formula

Let us now return to the input/state equation

d

dt
x = Ax+Bu. (4.27)
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Define the input/state behavior:

Bi/s := {(u, x) ∈ L
loc
1 (R,Rm × Rn) | d

dt
x = Ax+Bu, weakly}.

Bi/s is a special case of the i/o systems studied in Chapter 3. Rather than
applying the general theory presented there, we explore the special (and
simple) structure of (4.27) to determine the corresponding behavior.

Proposition 4.5.4 Let u ∈ Lloc
1 (R,Rm), and define x by

x(t) :=

t∫

0

eA(t−τ)Bu(τ)dτ. (4.28)

Then (u, x) ∈ Bi/s.

Proof Let x be given by (4.28) and suppose u is continuous. Then x is
differentiable, and its derivative is given by

(
d

dt
x)(t) = A

t∫

0

eA(t−τ)Bu(τ)dτ +Bu(t)

= Ax(t) +Bu(t).

This shows that (u, x) is a strong solution of (4.27), and hence (u, x) ∈ Bi/s.

For general u ∈ Lloc
1 (R,Rm), not necessarily continuous, the proof that

(4.28) defines a weak solution follows the same lines as the second part of
the proof of Lemma 3.3.12. �

Corollary 4.5.5 Every element (u, x) of Bi/s is of the form

x(t) = eAtc+

t∫

0

eA(t−τ)Bu(τ)dτ, c ∈ Rn. (4.29)

Proof Let (u, x) be of the form (4.29). It follows from Theorem 4.5.2 and
Proposition 4.5.4 that (u, x) ∈ Bi/s.

Conversely, let (u, x) ∈ Bi/s. Define x′ and x′′ by

x′(t) =

t∫

0

eA(t−τ)Bu(τ)dτ and x′′ = x− x′.

Then

d

dt
x′′ =

d

dt
x− d

dt
x′ = Ax+Bu− (Ax′ +Bu) = A(x− x′) = Ax′′. (4.30)
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It follows from (4.30) and Theorem 4.5.2 that

x′′(t) = eAtc for some c ∈ Rn.

This concludes the proof. �

Remark 4.5.6 The expression (4.29) is known as the variation of the con-
stants formula. �

4.5.3 The input/state/output behavior

Now that we have determined Bi/s, it is easy to describe Bi/s/o explicitly:

Bi/s/o =






(u, x, y)

∣
∣
∣
∣
∣
∣

∃c ∈ Rn, x(t) = eAtc+
t∫

0

eA(t−τ)Bu(τ)dτ

y(t) =Cx(t) +Du(t)






.

From this description, x can readily be eliminated, yielding Bi/o :

Bi/o = {(u, y) | ∃c ∈ Rn, y(t) = CeAtc+

t∫

0

CeA(t−τ)Bu(τ)dτ +Du(t)}.

(4.31)
Thus each element of Bi/o in this case is completely specified by the arbi-

trary input u ∈ Lloc
1 (R,Rq) and the arbitrary initial state c = x(0). Conse-

quently, the elements of the behavior of the i/o system induced by (4.16) are
parametrized by the input u ∈ Lloc

1 (R,Rq) and the initial state x(0) ∈ Rn:
once they are given, the output is determined by (4.31).

Summarizing, we have defined i/s/o systems, and we have determined the
associated behaviors explicitly.

We have already shown in Theorem 4.4.1 that (4.16) has the property
of state. This can also be shown by using the variation of the constants
formula, (4.29), but we will not pursue this. Another useful and fundamental
property is that given the state at time t0, the state, and therefore the
output from time t0 on, is completely determined by the input after time
t0.

Property 4.5.7 Consider the i/s/o system defined by

d

dt
x = Ax+Bu,

y = Cx+Du.

Then
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(i) x has the state property.

(ii) The system has the property of determinism. This is defined as fol-
lows. Let (u1, x1, y1), (u2, x2, y2) ∈ Bi/s/o and suppose that for some
t0 ∈ Rx1(t0) = x2(t0), and u1(t) = u2(t) for t ≥ t0 . Then
x1(t) = x2(t) for t ≥ t0, and y1(t) = y2(t) for t ≥ t0.

Proof (i) That x has the state property was proved in Theorem 4.4.1.

(ii)

xi(t) = eA(t−t0)xi(t0) +

t∫

t0

eA(t−τ)Bui(τ)dτ, i = 1, 2. (4.32)

If x1(t0) = x2(t0) and u1(t) = u2(t) for t ≥ t0, then it follows form (4.32)
that x1(t) = x2(t) for t ≥ t0. Then also, since y = Cx+Du, y1(t) = y2(t)
for t ≥ t0. �

Remark 4.5.8 The property of determinism expresses that the state at
time t0 and the input from time t0 on uniquely determine the output from
time t0 on. It shows the crucial role played by the inputs as the external
variables that drive the system. �

There is a strong connection between the property of state and the property
of determinism. We show that determinism combined with nonanticipation
(see Remark 3.3.21) implies the property of state. This is a result that
holds more generally than for systems described by linear time-invariant
differential equations.

Theorem 4.5.9 Consider a behavior B ⊂ Lloc
1 (R,Rm×Rn), not necessar-

ily linear or time-invariant, consisting of time trajectories (u, x). Assume
that u is free in Lloc

1 (R,Rm); i.e., for all u ∈ Lloc
1 (R,Rm) there exists a

trajectory x such that (u, x) ∈ B. Suppose that x does not anticipate u
strictly and that the property of determinism is satisfied. Then x satisfies
the property of state.

Proof Choose (u1, x1), (u2, x2) ∈ B and suppose that x1(t0) = x2(t0).
We have to show that the two trajectories may be concatenated at time t0.
Define the concatenation of u1 and u2 at t0 as u(t) = u1(t), t < t0, and
u(t) = u2(t), t ≥ t0. By assumption there exists x such that (u, x) ∈ B.
Moreover, by strict nonanticipation, we know that x may be taken such
that x(t) = x1(t), t ≤ t0. Finally, by the property of determinism, the
future of x is uniquely determined by x(t0) and the input for t ≥ t0, and
since (u2, x2) ∈ B, it follows that x(t) = x2(t) for t ≥ t0. �
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Remark 4.5.10 The condition that the relation between u and x is strictly
nonanticipating is essential for Theorem 4.5.9 to hold. See Exercise 4.20. �

Remark 4.5.11 We now know that (4.16) indeed defines a state space
representation. The i/o system of which it is a state space representation
is given by (4.31). In Chapter 6 we will see that this input/output system
can also be represented in the form P ( d

dt )y = Q( d
dt )u, with P

−1(ξ)Q(ξ) a
matrix of proper rational functions. �

4.5.4 How to calculate e
At?

It is clear that in the characterization of the behavior of d
dtx = Ax+Bu, the

matrix exponential eAt plays a crucial role. Definition 4.5.1 does not give
a clue as to what eAt actually looks like, nor does it provide a constructive
way to calculate it in concrete examples. Calculation of eAt may be achieved
via several different methods. We discuss three of these methods:

1. By transforming A into Jordan normal form.

2. By applying the theory of higher-order autonomous behaviors as stud-
ied in Section 3.2.

3. Using the partial fraction expansion of (Iξ −A)−1.

In the following proposition we have collected some useful properties of the
matrix exponential.

Proposition 4.5.12

If M1 and M2 commute, i.e., if M1M2 =M2M1, then

eM1+M2 = eM1eM2 . (4.33)

If M1 and M2 are square matrices, then

e





M1 0
0 M2





=

[
eM1 0
0 eM2

]

.

If S is nonsingular, then

eS
−1MS = S−1eMS. (4.34)

If λi ∈ C, i = 1, . . . , n, then

ediag(λ1, . . . , λn) = diag(eλ1 , . . . , eλn). (4.35)
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The matrix exponential of a matrix with ones on the upper diagonal and
zeros elsewhere is given by

e





























0 1 0 · · · 0
. . .

. . .
. . .

...
. . .

. . . 0

. . . 1
0





























t

=















1 t
t2

2!
· · · tn−1

(n− 1)!

0
. . .

. . .
. . .

...
. . .

. . .
. . .

t2

2!
. . .

. . . t
0 1















, (4.36)

where n is the number of rows and columns of the matrices in (4.36).

If ω ∈ R, then

e





0 ω
−ω 0





=

[
cosω sinω
− sinω cosω

]

.

Proof The proofs are straightforward applications of Definition 4.5.1 and
are left as an exercise; see Exercise 4.11. �

4.5.4.1 Calculation of eAt via the Jordan form

If A has a basis of eigenvectors, then eAt may be calculated as follows.
Assume that Avi = λivi, i = 1, . . . , n, and that the vectors vi form a basis
of Cn. Define the nonsingular matrix S and the diagonal matrix Λ by

S =
[
v1 · · · vn

]
, Λ = diag(λ1, . . . , λn).

Then S−1AS = Λ. Using (4.34) and (4.35) we conclude that

eAt = S diag(eλ1t, . . . , eλnt)S−1.

Example 4.5.13 Let A be given by

A =






−1 0 0
1 1 0
−3
2

0 1




 .

The characteristic polynomial of A is det(Iξ − A) = (ξ − 1)2(ξ + 1). The
eigenvalues of A are λ1 = λ2 = 1, λ3 = −1. Corresponding eigenvectors are

v1 =





0
1
0



 , v2 =





0
0
1



 , v3 =






−2
1
−3
2




 ,
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so that

eAt =






0 0 −2
1 0 1

0 1
−3
2










et 0 0
0 et 0
0 0 e−t










0 0 −2
1 0 1

0 1
−3
2






−1

=











e−t 0 0

1

2
et − 1

2
e−t et 0

3

4
e−t − 3

4
et 0 et











.

�

Not every matrix has a basis of eigenvectors. As an example of a matrix
that does not have a basis of eigenvectors, consider

A =

[
1 1
0 1

]

.

Although this matrix cannot be diagonalized by means of a similarity trans-
formation, it is easy to compute eAt. Using (4.33, 4.35, 4.36) it follows that

eAt = e





1 0
0 1



 t+

[
0 1
0 0

]

t
= e





1 0
0 1



 t
e





0 1
0 0



 t
=

[
et tet

0 et

]

.
(4.37)

The attentive reader may have recognized that A in (4.37) is in Jordan
form. Recall that every matrix A ∈ Rn×n may be transformed into Jordan
form by means of a similarity transformation; i.e., there exists a nonsingular
matrix S such that

S−1AS =









J1
. . .

. . .

JN









. (4.38)

The (possibly complex) submatrices Jk in (4.38) are called the Jordan
blocks. These are defined as follows. Let v1, . . . , vN be a maximal set of in-
dependent eigenvectors of A, say Avk = λkvk. To each vk there corresponds
exactly one Jordan block Jk of the form

Jk =









λk 1

0
. . .

. . .

. . . 1
λk









.
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The number of Jordan blocks corresponding to an eigenvalue λ of A is equal
to the maximal number of independent eigenvectors of the eigenvalue and
is called the geometric multiplicity of λ. The multiplicity of λ as a root of
the characteristic polynomial of A, on the other hand, is referred to as the
algebraic multiplicity .

Using Proposition 4.5.12, it follows that

eAt = SeJtS−1, eJt = diag(eJ1t, . . . , eJN t).

Finally, using (4.33, 4.35, 4.36) we obtain

eJkt =
































eλkt teλkt
t2

2!
eλkt

t3

3!
eλkt · · · · · · · · ·

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
t3

3!
eλkt

. . .

. . .
. . .

t2

2!
eλkt

. . .

. . . teλkt

. . .

eλkt
































. (4.39)

Expression (4.39) provides a clear insight as to what kind of entries the
matrix eAt contains. Apparently, they are linear combinations of products
of eλkts, with the λks the eigenvalues of A, and polynomials in t. The
maximal degree of the polynomial parts is related to the dimensions of
the Jordan blocks. A Jordan block with ℓ rows and columns gives rise to
polynomial parts up to and including degree ℓ− 1.

Example 4.5.14 Let A ∈ R3×3 be given by

A =





−4 4 3
−12 11 8
9 −8 −6



 .

The characteristic polynomial of A is det(Iξ − A) = (ξ − 1)2(ξ + 1). The
corresponding eigenvectors are

v1 =





1
2
−1



 , v2 =





1
3
−3



 , Av1 = v1, Av2 = −v2.
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In addition to the eigenvectors v1 and v2, A has a generalized eigenvector
w1 corresponding to the eigenvalue 1:

w1 =





0
1
−1



 , Aw1 = v1 + w1.

Define S = [v1w1v2]. Then

S =





1 0 1
2 1 3
−1 −1 −3



 , S−1 =





0 1 1
−3 2 1
1 −1 −1





and

S−1AS =





1 1 0
0 1 0
0 0 −1



 .

This matrix is in Jordan form, so we can now compute eAt by using the
fact that eAt = SeS

−1AStS−1, yielding

eAt =





−3tet + e−t (1 + 2t)et − e−t (1 + t)et − e−t

(−3− 6t)et + 3e−t (4 + 4t)et − 3e−t (3 + 2t)et − 3e−t

(3 + 3t)et − 3e−t (−3− 2t)et + 3e−t (−2− t)et + 3e−t



 .

�

4.5.4.2 Calculation of eAt using the theory of autonomous behaviors

The differential equation d
dtx = Ax is a special case of the general equations

P ( d
dt )w = 0 studied in Section 3.2. Theorem 3.2.16 gives a complete char-

acterization of the solutions P ( d
dt )w = 0, so it seems reasonable to expect

that by invoking this theorem we should be able to consider eAt from a
somewhat different perspective. Below we show how this can be done.

Definition 4.5.15 The unique function Φ : R×R→ Rn×n with the prop-
erties

• ∀t0, t ∈ R :
d

dt
Φ(t, t0) = AΦ(t, t0),

• ∀t0 ∈ R : Φ(t0, t0) = I

is called the state transition matrix, or simply the transition matrix, of the
autonomous system defined by d

dtx = Ax. �

Remark 4.5.16
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• The term transition matrix stems from the property that to every
c ∈ Rn there corresponds exactly one solution x of d

dtx = Ax such
that x(t0) = c, namely x(t) = Φ(t, t0)c.

• Since the system is time-invariant, it is sufficient to restrict attention
to t0 = 0. By abuse of notation, Φ(t, 0) is often written as Φ(t).

�

Theorem 4.5.17 Let A ∈ Rn×n and let Φ the matrix valued function as
defined in Definition 4.5.15. Then Φ(t, t0) = eA(t−t0).

Proof By the uniqueness property of the transition matrix, it suffices to
show that eA(t−t0) satisfies the requirements of Definition 4.5.15. By The-
orem 4.5.2 it follows that d

dte
A(t−t0) = AeA(t−t0). Moreover, by definition,

eA(t0−t0) = e0 = I. �

Suppose now that we have n independent solutions x1, . . . , xn of d
dtx =

Ax. From these functions we can form the matrix X := [x1 · · ·xn]. By
construction, X satisfies the matrix differential equation

d

dt
X = AX. (4.40)

Since the columns ofX are linearly independent and sinceX satisfies (4.40),
it follows that for every t ∈ R, X(t) is nonsingular; see Exercise 4.16. Define
Φ(t, t0) := X(t)X−1(t0). Then

d

dt
Φ(t, t0) =

d

dt
X(t)X−1(t0) = AΦ(t, t0).

Moreover Φ(t0, t0) = I. It follows that this Φ is the transition matrix, and
therefore eAt = X(t)X(0)−1.

The conclusion is that every n-tuple of linearly independent solutions of
d
dtx = Ax provides a means to obtain eAt. The question now is how to find
n independent solutions. From Theorem 3.2.16 we know that every strong
solution of (4.20) can be written as

x(t) =

N∑

i=1

ni−1∑

j=0

Bijt
jeλit, (4.41)

where the complex numbers λi are the distinct roots of the polynomial
p(ξ) := det(Iξ−A) and the nis are their respective algebraic multiplicities,
and where the vectors Bij ∈ Cn satisfy the linear relations

ni−1∑

j=ℓ

(
j
ℓ

)
dj−ℓ

dsj−ℓ
(sI −A)|s=λi

Bij = 0, i = 1, . . . , N, ℓ = 0, . . . , ni− 1.

(4.42)
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Since the derivatives of sI−A of order larger than one are zero, the relations
(4.42) reduce to

(λiI −A)Bi,ni−1 = 0,

(λiI −A)Bi,ni−2 + (ni − 1)Bi,ni−1 = 0,

(λiI −A)Bi,ni−3 + (ni − 2)Bi,ni−2 = 0,

...

(λiI −A)Bi,1 + 2Bi,2 = 0,

(λiI −A)Bi,0 +Bi,1 = 0.

(4.43)

It follows from Theorem 3.2.16 that the dimension of the autonomous be-
havior of d

dtx = Ax equals the degree of det(Iξ−A); i.e., it has dimension n.
As a consequence, we can find n linearly independent solutions x1, . . . , xn
of the form (4.41).

Example 4.5.18 Take

A =





3 −2 0
1 0 0
1 −1 1



 . (4.44)

Then det(Iξ−A) = −2+5ξ−4ξ2+ ξ3 = (ξ−1)2(ξ−2). The characteristic
roots are λ1 = 1, n1 = 2 and λ2 = 2, n2 = 1. Every strong solution of
d
dtx = Ax is of the form

x(t) = B10e
t +B11te

t +B20e
2t. (4.45)

The vectors Bij should satisfy the relations

(I −A)B10 +B11 = 0,

(I −A)B11 = 0,

(2I −A)B20 = 0.

(4.46)

Solving these equations yields

B10 = a





1
1
0



+ b





0
0
1



 , B11 =





0
0
0



 , B20 = c





2
1
1



 . (4.47)
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Hence every solution x can be written as

x(t) = a





1
1
0



 et + b





0
0
1



 et + c





2
1
1



 e2t. (4.48)

From here three linearly independent solutions are easily obtained:

x1(t) =





et

et

0



 , x2(t) =





0
0
et



 , x3(t) =





2e2t

e2t

e2t



 . (4.49)

The matrix X is defined as X = [x1 x2 x3]. Finally

eAt = Φ(t) := X(t)X−1(0) =





2e2t − et 2et − 2e2t 0
e2t − et 2et − e2t 0
e2t − et et − e2t et



 . (4.50)

�

4.5.4.3 Calculation of eAt using the partial fraction expansion of
(Iξ −A)−1

As argued in Section 4.5.2, the behavior of d
dtx = Ax + Bu, denoted by

Bi/s, is in input/output form with the state as the output. From Section
3.3 we know that the pairs (u, x) ∈ Bi/s can be described in terms of the
partial fraction expansion of (Iξ −A)−1B. Suppose

(Iξ −A)−1B =

N∑

i=1

ni∑

j=1

Tij
1

(ξ − λi)j
, Tij ∈ Cn×m.

Then to every u ∈ Lloc
1 (R,Rm) there corresponds x ∈ Lloc

1 (R,Rn) such that
(u, x) ∈ Bi/s. One such x is given by

x(t) =

N∑

i=1

ni∑

j=1

Tij

t∫

0

(t− τ)j−1

(j − 1)!
eλi(t−τ)u(τ)dτ.

On the other hand, we know from (4.28) that also (u, x̃) ∈ Bi/s, with x̃
given by

x̃(t) =

t∫

0

eA(t−τ)Bu(τ)dτ.

Now, since x(0) = x̃(0) and since given the initial state, the solution of
d
dtx = Ax + Bu is unique, it follows that x = x̃. Therefore, since u was



4.5 The Behavior of i/s/o Models 141

arbitrary, we conclude that

eAtB =
N∑

i=1

ni∑

j=1

Tij
tj−1

(j − 1)!
eλit. (4.51)

In other words, eAtB may be computed from the partial fraction expansion
of (Iξ −A)−1B. In particular, if we take B = I, we obtain a third method
for the calculation of eAt.

Corollary 4.5.19 Let (Iξ−A)−1 =
N∑

i=1

ni∑

j=1

Tij
1

(ξ−λi)j
, Tij ∈ Cn×n. Then

eAt =
N∑

i=1

ni∑

j=1

Tij
tj−1

(j − 1)!
eλit.

Proof Take B = I in (4.51). �

Example 4.5.20 Consider the matrix A in Example 4.5.14:

A =





−4 4 3
−12 11 8
9 −8 −6



 .

The partial fraction expansion of (Iξ − A)−1 (see Remark 3.3.11) is given
by





1 −1 −1
3 −3 −3
−3 3 3




1

ξ + 1
+





0 1 1
−3 4 3
3 −3 −2




1

ξ − 1
+





−3 2 1
−6 4 2
3 −2 −1




1

(ξ − 1)2
.

Applying Corollary 4.5.19, it follows that

eAt =





1 −1−1
3 −3−3
−3 3 3



 e−t +





0 1 1
−3 4 3
3 −3−2



 et +





−3 2 1
−6 4 2
3 −2−1



 tet

=









−3tet + e−t (1 + 2t)et − e−t (1 + t)et − e−t

(−3− 6t)et + 3e−t (4 + 4t)et − 3e−t (3 + 2t)et − 3e−t

(3 + 3t)et − 3e−t (−3− 2t)et + 3e−t (−2− t)et + 3e−t









,

which was already derived in Example 4.5.14 by using the Jordan form of
A. �
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Example 4.5.21 If the matrix A has a complex eigenvalue with nonzero
imaginary part, then eAt contains trigonometric functions. Consider for
example the matrix

A =

[
0 −2
1 2

]

.

Its characteristic polynomial is p(ξ) = det(ξ −A) = 2− 2ξ + ξ2. It follows
that the characteristic values are given by λ1 = 1 + i, λ2 = 1 − i. Using
either of the methods, it follows that

eAt =







et[
1

2
(eit + e−it)− 1

2i
(eit − e−it)] −2et 1

2i
(eit − e−it)

et
1

2i
(eit − e−it) et[

1

2
(eit + e−it) +

1

2i
(eit − e−it)]







=





et(cos t− sin t) −2et sin t

et sin t et(cos t+ sin t)



 .

�

Remark 4.5.22 We have presented three methods to calculate eAt. The
main purpose for providing these methods is to gain insight into some of
the features of eAt. In particular, it is clear now how the eigenvalues and
their algebraic and geometric multiplicities enter the picture. In practice,
we will of course use numerically reliable methods to calculate eAt. The
three methods that we presented need not always offer reasonable numerical
procedures for computing eAt. An overview of various other methods for
computing eAt and their numerical properties may be found in [42]. �

4.6 State Space Transformations

In Section 2.5 we have seen that different polynomial matrices may repre-
sent the same behavior. We now study the question to what extent i/s/o
representations of the same input/output behavior are nonunique. Since we
are mainly interested in the input and output variables and not so much in
the state variables, we use a weaker concept of equivalence.

Definition 4.6.1 Two i/s/o representations are called input/output equiv-
alent if they represent the same input/output behavior. �
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The i/s/o representations of a given i/o system are not unique. Indeed,
consider

d

dt
x = Ax+Bu,

y = Cx+Du.
(4.52)

Let S ∈ Rn×n be a nonsingular matrix and let (u, x, y) satisfy (4.52). Define
x̃ := Sx. Note that this corresponds to expressing the state coordinates with
respect to a new basis. The differential equation governing x̃ is

d

dt
x̃ = SAS−1x̃+ SBu,

y = CS−1x̃+Du.
(4.53)

Equations (4.52, 4.53) show that every (u, y) that belongs to the i/o behav-
ior defined by (4.52) also belongs to the i/o behavior defined by (4.53). By
applying the inverse transformation to (4.53) it follows that the converse
is also true. This means that (4.52) and (4.53) represent the same i/o be-
havior, and therefore the representations (4.52) and (4.53) are input/output
equivalent. We state this as a theorem.

Theorem 4.6.2 Two state space representations of the form (4.52),
parametrized by (A1, B1, C1, D1) and (A2, B2, C2, D2) respectively, are
input/output equivalent if there exists a nonsingular matrix S ∈ Rn×n such
that SA1S

−1 = A2, SB1 = B2, C1S
−1 = C2, D1 = D2.

Correspondingly, we call two quadruples (A1, B1, C1, D1), (A2, B2, C2, D2) ∈
Rn×n×Rn×m×Rp×n×Rp×m equivalent, or similar, if there exists a nonsin-
gular matrix S ∈ Rn×n such that SA1S

−1 = A2, SB1 = B2, C1S
−1 = C2,

and D1 = D2. The matrix S is called the corresponding state similarity
transformation matrix.

Remark 4.6.3 Note that Theorem 4.6.2 shows that similarity implies the
same i/o behavior. However, if two representations of the form (4.52) are
i/o equivalent, then the corresponding quadruples of system matrices need
not be similar. See Exercise 4.22. �

4.7 Linearization of Nonlinear i/s/o Systems

Our main interest in this book concerns linear systems. However, many sys-
tems in applications are nonlinear, particularly in areas such as mechanics
and chemical reactions. However, linear systems are quite important for
the analysis of nonlinear systems, since nonlinear systems can in the neigh-
borhood of a nominal trajectory be described approximately by a linear
system. This procedure of replacing the nonlinear system by a linear one
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is called linearization and will now be explained. For simplicity, we restrict
attention to nominal trajectories that are constant in time. These are called
equilibrium solutions.

Consider the nonlinear input/state/output system described by the system
of differential equations

dx

dt
= f(x, u), y = h(x, u). (4.54)

Here f : Rn×Rm → Rn is called the state evolution function; f(x, u) shows
what the derivative of the state trajectory is equal to when the system is
in state x and the input value applied is u. The map h : Rn × Rm → Rp

is called the read-out map; h(x, u) shows what the output value is equal to
when the system is in state x and the input value applied is u.

Of course, we may view (4.54) as defining a dynamical system with manifest
variables w = (u, y) and latent variable x. Let B denote its behavior.
Formally,

B = {(u, y, x) : R→ Rm×Rp×Rn | x ∈ C1(R,Rn) and (4.54) is satisfied }.

With this definition of behavior, it is easy to prove that x is a state variable
in the sense of Definition 4.3.3. Intuitively, it is also clear that u is an input
variable (in the sense that it is free) and that y is an output variable (in
the sense that y is uniquely specified by u and x(0)). However, in order to
prove this formally, we would need to impose some smoothness conditions
(of the Lipschitz continuity type) in order to ensure that the initial value
problem

dx

dt
= f(x, u(t)), x(0) = x0,

has a unique solution for all u ∈ Lloc
1 (R,Rm) and x0 ∈ Rn. We do not enter

into these considerations in this book.

Of special interest are the elements in the behavior B of (4.54) that are
constant in time. Let w∗ = (u∗, y∗, x∗) ∈ Rm × Rp × Rm. It is easily seen
that w defined by w(t) = w∗ belongs to B if and only if f(x∗, u∗) = 0 and
y∗ = h(x∗, u∗). An element (u∗, y∗, x∗) ∈ Rm × Rp × Rn satisfying this is
called an equilibrium point. We will soon see how the system (4.54) can
be approximated with a linear one such as (4.44) in the neighborhood of
an equilibrium point. However, before we discuss this linearization, we give
an example of how equations (4.54) are arrived at and how equilibria are
obtained.

Example 4.7.1 Inverted pendulum Consider the mechanical system
depicted in Figure 4.3. An inverted pendulum is mounted on a carriage
moving on a horizontal rail. The carriage has mass M and is attached to
a wall via a spring with spring constant k2. The pendulum is mounted
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on the carriage by means of a spring with spring constant k1. The length
of the pendulum is 2ℓ and its mass, assumed homogeneously distributed
along the rod, is denoted by m. We can exert a force u on the carriage.
The position of the center of gravity of the carriage with respect to its
equilibrium position is denoted by z, and the angle of the pendulum with
respect to the vertical position by θ. The input to the system is the force
u, and the output is the angle θ. From the laws of mechanics it follows that

k2

z

k1

M

θ

u

FIGURE 4.3. An inverted pendulum on a carriage.

the equations relating u, z, and θ are given by

(M +m)
d2

dt2
z + k2z +mℓ cos θ

d2

dt2
θ = mℓ(

d

dt
θ)2 sin θ + u,

mℓ cos θ
d2

dt2
z +

4

3
mℓ2

d2

dt2
θ = mgℓ sin θ − k1θ.

(4.55)

Introduce the state vector x = col(z, d
dtz, θ,

d
dtθ). For simplicity, take M =

1, m = 1, and ℓ = 1. The nonlinear i/s equations can be written as d
dtx =

f(x, u), with f given by













x2

4k2x1−3k1x3 cosx3−4x24 sinx3+3g cosx3 sinx3−4u
3 cos2 x3−8

x4

−3k2x1 cosx3+6k1x3−6g sinx3+3x24 cosx3 sinx3+3u cosx3
3 cos2 x3−8













. (4.56)

The output equation is given by y = h(x) := x3. The equilibria of the
system when no force is acting on the carriage, i.e., u = 0, can be found
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by solving the equation f(x, 0) = 0. It is easy to check that x = 0, y = 0
is an equilibrium. Physically, this corresponds to the situation where the
cart is at rest in its equilibrium position and the pendulum is at rest in
vertical position. In this example there are, however, two more equilibria;
see Exercise 4.24. �

Since f and h are continuously differentiable, we may write, using Taylor’s
formula

f(x, u) = f(x∗, u∗) + [∂f∂x (x
∗, u∗)](x− x∗) + [∂f∂u (x

∗, u∗)](u− u∗) + rf (x, u),

h(x, u) = h(x∗, u∗) + [∂h∂x (x
∗, u∗)](x− x∗) + [∂h∂u (x

∗, u∗)](u− u∗) + rh(x, u),
(4.57)

where [∂f∂x (x
∗, u∗)] and [∂f∂u (x

∗, u∗)] denote the matrices of partial derivatives
of f with respect to x and u respectively, evaluated at the point (x∗, u∗).
Similarly for h. See also (4.60, 4.61). The functions rf and rh satisfy

lim
(x,u)→(x∗,u∗)

rf (x, u)

‖(x, u)‖ = 0 and lim
(x,u)→(x∗,u∗)

rh(x, u)

‖(x, u)‖ = 0. (4.58)

It follows from (4.57, 4.58) and the fact that f(x∗, u∗) = 0 and h(x∗, u∗) =
y∗ that if ‖(x − x∗, u − u∗)‖ is small, then f(x, u) and h(x, u) may be
approximated as

f(x, u) ≈ [∂f∂x (x
∗, u∗)](x− x∗) + [∂f∂u (x

∗, u∗)](u− u∗),

h(x, u) ≈ y∗ + [∂h∂x (x
∗, u∗)](x− x∗) + [∂h∂u (x

∗, u∗)](u− u∗).

As a consequence, we expect that in the neighborhood of the equilibrium,
the differential equation (4.54) may be approximated by the linear differ-
ential equation

d
dtx = [∂f∂x (x

∗, u∗)](x− x∗) + [∂f∂u (x
∗, u∗)](u− u∗),

y − y∗ = [∂h∂x (x
∗, u∗)](x− x∗) + [∂h∂u (x

∗, u∗)](u− u∗).

Motivated by the discussion above, we define the linearization of the system
(4.54) about the equilibrium (x, u) = (x∗, u∗) as

d
dt (x− x∗) = A(x− x∗) +B(u− u∗),

y − y∗ = C(x− x∗) +D(u− u∗), (4.59)

where the matrices (A,B,C,D) are given by (notice that f has n compo-
nents (f1, . . . , fn), fi : Rn×Rm → R and h = (h1, . . . , hp), hj : Rn×Rm →
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R)

A =









∂f1
∂x1

(x∗, u∗) . . .
∂f1
∂xn

(x∗, u∗)

...
...

∂fn
∂x1

(x∗, u∗) . . .
∂fn
∂xn

(x∗, u∗)









, B =









∂f1
∂u1

(x∗, u∗) . . .
∂f1
∂um

(x∗, u∗)

...
...

∂fn
∂u1

(x∗, u∗) . . .
∂fn
∂um

(x∗, u∗)









,

(4.60)

C =









∂h1
∂x1

(x∗, u∗) . . .
∂h1
∂xn

(x∗, u∗)

...
...

∂hp
∂x1

(x∗, u∗) . . .
∂hp
∂xn

(x∗, u∗)









, D =









∂h1
∂u1

(x∗, u∗) . . .
∂h1
∂um

(x∗, u∗)

...
...

∂hp
∂u1

(x∗, u∗) . . .
∂hp
∂um

(x∗, u∗)









.

(4.61)
The usefulness of the representation (4.59) lies in the fact that it provides
a linear approximation of the nonlinear behavior. The closer that x(0) and
u are to (x∗, u∗), the better the approximation is. Thus (4.59) gives a local
description of the nonlinear behavior.

To illustrate these formulas, we derive the linearization of the system of
Example 4.7.1

Example 4.7.2 Inverted pendulum, continued Let us now determine
the linearization of the system (4.56) about (u, x) = (0, 0). Obviously, the
D is the zero matrix. Calculation of the matrices A, B, and C according
to (4.60, 4.61) yields

A =












0 1 0 0

−4k2
5

0
3k1 − 3g

5
0

0 0 0 1

3k2
5

0
6g − 6k1

5
0












, B =












0

4

5

0

−3
5












, C =
[
0 0 1 0

]
.

(4.62)
This example is continued in Exercise 7.31. �

Linearization may also be defined for other than state space systems. Let
G : (Rq)L+1 → Rg be continuously differentiable, and consider the nonlinear
behavior defined by

G(w,
d

dt
w, (

d

dt
)2w, . . . , (

d

dt
)Lw) = 0. (4.63)

Assume that w∗ is an equilibrium solution of (4.63): G(w∗, 0, . . . , 0) = 0.
Define matrices Ri:

Ri =
∂G

∂zi
(w∗, 0, . . . , 0), i = 0, 1, . . . , L.
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Analogously to (4.57), G(z) may be written as

G(z0, z1, . . . , zL) = R0(z0 − w∗) +R1z1 + · · ·+RLzL + rG(z0, . . . , zL),

and rG satisfies

lim
z→(w∗,0,...,0)

rG(z)

‖z‖ = 0.

The linearization of (4.63) about the equilibrium (w∗, 0, . . . , 0) is defined
as

R(
d

dt
)w = 0,

where the polynomial matrix R(ξ) ∈ Rg×q[ξ] is given by

R(ξ) = R0 +R1ξ +R2ξ
2 + · · ·+RLξ

L.

See Exercise 4.23 to apply linearization for higher-order differential equa-
tions to the equations (4.55).

4.8 Recapitulation

In this chapter we have studied a particular class of latent variable models, namely
state space models. The main points were:

• Latent variable models are the result of modeling from first principles.

• A special class of latent variable models are those that are first-order in
the latent variables and order zero in the manifest variables. These models
have the property of state: the possible future of a trajectory is completely
determined by the value of the state variable at the present time and does
not depend on the past of the trajectory (Theorem 4.3.5).

• An important class of state space models is formed by the linear time-
invariant input/state/output models of the form d

dt
x = Ax + Bu, y =

Cx+Du. We derived a complete characterization of the trajectories in the
corresponding behaviors (Section 4.5.3).

• In the analysis of the behavior of d
dt
x = Ax + Bu, the exponential of a

matrix, in particular eAt, played a central role. We discussed three methods
to calculate eAt: via the Jordan form of A, using the theory of autonomous
behaviors, and using the partial fraction expansion of (Iξ − A) (Section
4.5.4).

• A change of basis in the state space of a linear i/s/o system leads to what
is called a similar system. Similarity transformations do not affect the i/o
behavior (Theorem 4.6.2).

• Nonlinear differential equations may be linearized about equilibrium solu-
tions. The behavior of the resulting linear differential system approximates
the nonlinear behavior in the neighborhood of the equilibrium (Section
4.7).
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4.9 Notes and References

State space systems became the dominant model class used in control theory

around 1960, particularly under the influence of the work of Kalman [28]; see also

the preface of this book. Of course, state models have been used for a long time

in mechanics and in other areas of physics. The central role of latent variables as

the result of first principles modeling is emphasized and formalized in [59, 60].

4.10 Exercises

4.1 Verify the state space equations (4.7) and write them in the form (4.16);
i.e., specify the matrices A,B,C,D.

4.2 Consider the i/o system described by

−4y + 3
d

dt
y +

d2

dt2
y = u.

Find an i/s/o representation for it.

4.3 Consider the electrical circuit shown in Figure 4.4:

q

q
R3R1

C1

R2
C2

FIGURE 4.4. Electrical circuit.

The input u is the voltage across the external port, and the output y is the
voltage across C2. Take as state-vector

[
x1
x2

]
=

[
VC1

VC2

]
.

Assume that Ri > 0, i = 1, 2, 3, and Ci > 0, , i = 1, 2.

(a) Determine the i/s/o equations.

(b) Determine the differential equation describing the i/o behavior.

(c) Repeat the above questions for the case R3 = 0.

4.4 Consider the mechanical system in Figure 4.5. Here u and y denote the
horizontal displacements from the respective equilibria. Determine an i/s/o
representation.
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u

k1

M1

k2

M2

k3

y

FIGURE 4.5. Mechanical system.

4.5 Determine an i/s/o representation of the electrical circuit in Figure 4.6,
with u the voltage across the external port and y the current through C2.

q

q

✞ ☎✞☎✞☎

L
R2R1

C1 C2

FIGURE 4.6. Electrical circuit.

4.6 Determine an i/s/o representation of the discrete-time system y(t) = u(t−
5), t ∈ Z. Hint: Use your intuition (the state is the memory) to choose the
state.

4.7 Consider the discrete-time i/o system defined by y(t) = u(t)u(t − 1)u(t −
2), t ∈ Z. Is the corresponding dynamical system:

(a) Linear?

(b) Time-invariant?

(c) Determine an i/s/o representation for it.

4.8 Consider the continuous-time i/o system defined by y(t) = u(t−1), t ∈ R.
Determine a state space model for this system. In other words, construct
a latent variable system that satisfies the property of state and that has
y(t) = u(t−1) as the specification of the input/output behavior. Note that
the state space is not be finite-dimensional; hence most of the theory in
this chapter does not apply.

4.9 We have seen that the property of state and first-order representations
of the form (4.9) are closely related. Consider, however, the autonomous
behavior B described by R( d

dt
)x = 0, where R(ξ) is given by

R(ξ) =




3 + 3ξ 2 + 5ξ + ξ2

−5 + 3ξ2 −5− 4ξ + 4ξ2 + ξ3


 .
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Prove that this system is a state space representation with x as the state.
Hint: Premultiply R(ξ) by a suitable unimodular matrix to obtain a poly-
nomial matrix in which only first-order polynomials appear.

4.10 Let M be a real square matrix. Prove that the infinite series

∞∑

k=0

Mk

k!

converges absolutely.

4.11 Prove Proposition 4.5.12 by direct application of the definition of the expo-
nential of a matrix, Definition 4.5.1, or by exploiting the fact that eAt is the
unique solution of the matrix differential equation d

dt
X = AX, X(0) = I

(see Theorem 4.5.17).

4.12 Compute eAit for

A1 =

[
λ ω
−ω λ

]
, A2 =




0 ω ǫ 0
−ω 0 0 ǫ
0 0 0 ω
0 0 −ω 0


 , ǫ = 0, 1.

4.13 LetM ∈ Rn×n. The trace ofM , denoted by TrM , is the sum of its diagonal
elements. Prove the following subtle property of matrix exponentials:

det eM = eTrM .

Hint: TransformM into Jordan form and use the fact that for every nonsin-
gular matrix S, it holds that TrS−1MS = TrM and detS−1MS = detM .

4.14 Let A ∈ Rn×n. Prove that all entries of eAt are nonnegative for t ≥ 0 if
and only if all nondiagonal elements of A are nonnegative.

4.15 Let A ∈ Rn×n be given by

A =




0 1 0 · · · 0
... 0 1
...

. . .

0 0 1
−a0 −a1 · · · −an−2 −an−1



.

(a) Show that the characteristic polynomial of A equals a0 + a1ξ + · · ·+
an−1ξ

n−1 + ξn.

(b) Let λ be an eigenvalue of A, i.e., a root of its characteristic polyno-
mial. Show that a corresponding eigenvector is given by

vλ =
[
1 λ λ2 · · · λn−1

]T
.

(c) Prove that for each eigenvalue λ the dimension of kerλI −A is equal
to one.
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(d) Let A be given by

A =




0 1 0
0 0 1
−6 −11 −6


 .

Determine eAt.

4.16 (a) Let x1, . . . , xn : R → Rn be strong solutions of the differential equa-
tion d

dt
x = Ax. Prove that the functions x1, . . . , xn are linearly inde-

pendent if and only if the vectors x1(0), . . . , xn(0) are linearly inde-
pendent.

(b) Show by means of an example that the previous equivalence is no
longer true for arbitrary functions x1, . . . , xn.

4.17 Take

A =




3 −2 0
1 0 0
1 −1 1


 , b =




1
0
0


 .

(a) Determine eAt.

(b) Determine all solutions of d
dt
x = Ax+ bu, where u is given by u(t) =

e−t.

4.18 In Section 4.5.4 we discussed three methods to determine the exponential of
a matrix. In this exercise we want to find the relation between the method
based on the Jordan form and the one that uses the theory of autonomous
behaviors. Let A ∈ Rn×n, and assume that λ ∈ C is an eigenvalue of A with
algebraic multiplicity two and geometric multiplicity one. This means that
to λ there corresponds an eigenvector v ∈ Cn and a generalized eigenvector
w ∈ Cn; i.e., Av = λv and Aw = λw+v. From (4.41) we know that λ gives
rise to solutions of d

dt
x = Ax of the form

x(t) = B10e
λt +B11te

λt.

The vectors B10 and B11 should satisfy (4.43).

(a) Show that if an eigenvector v and corresponding generalized eigen-
vector w are given, then B10 and B11 may be expressed as B10 =
αv + βw,B11 = βv, α, β ∈ C.

(b) Show that if B10 and B11 are given such that (4.43) is satisfied, then
an eigenvector v and corresponding generalized eigenvector w may be
expressed as v = γB11, w = γB10 + δB11, γ, δ ∈ C.

(c) Generalize the above formulas for the case that λ is an eigenvalue of
algebraic multiplicity k and geometric multiplicity one.

4.19 Let A ∈ Rn×n. Prove that (Iξ−A)−1 is a strictly proper matrix of rational
functions, i.e., in each entry the degree of denominator exceeds the degree
of the numerator by at least one.
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4.20 Consider the behavior B defined by

d

dt
w =

d

dt
u.

(a) Show that u is free in L
loc
1 (R,R).

(b) Prove that B satisfies the property of determinism.

(c) Prove that w does not anticipate u.

(d) Prove that w does not have the property of state.

(e) Relate the above results to Theorem 4.5.9. Which of the conditions
are not satisfied?

Conclusion: The property of determinism is weaker than the property of
state.

4.21 Consider the set of differential equations

d

dt
x =

[
0 ω
−ω 0

]
x+

[
0
1

]
u, y =

[
1 0

]
x.

Prove that the corresponding input/output behavior is described by ω2y+
d2

dt2
y = ωu. Hint: Use (4.31).

4.22 Consider i/s/o representations of the form
d

dt
x = Ax+Bu, y = Cx with

(a) A =

[
−1 0
0 −2

]
, B =

[
1
0

]
, C =

[
1 0

]
.

(b) A =

[
−2 0
0 −1

]
, B =

[
0
1

]
, C =

[
0 1

]
.

(c) A =

[
−1 0
0 0

]
, B =

[
1
0

]
, C =

[
1 0

]
.

Prove that these three i/s/o representations define the same behavior.
Prove that the first two are similar. Are the first and the third system
also similar?

4.23 (a) Derive the linearized equations of (4.55) about (z, u, θ) = (0, 0, 0).

(b) Determine an input/state/output representation of the linearized
equations with x = col(z, d

dt
z, θ, d

dt
θ). Does your answer coincide with

(4.62)?

4.24 Consider the system of Example 4.7.1. Of course, this system always has
two equilibria: one corresponding to the upright position of the rod and
one corresponding to the downward position of the rod. For which values
of k1 and k2 does the system 4.7.1 have more than two equilibria for u = 0?
Determine these equilibria and give a physical interpretation.
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5

Controllability and Observability

5.1 Introduction

In this chapter we introduce two concepts that play a central role in sys-
tems theory. The first concept is controllability; the second is observability.
Loosely speaking, we call a behavior controllable if it is possible to switch
from one trajectory to the other within the behavior. The advantage is
that in a controllable behavior, one can, in principle, always move from an
“undesirable” trajectory to a “desirable” one. Observability, on the other
hand, is not a property of the behavior as such; rather it is a property
related to the partition of the trajectories w into two components w1 and
w2. We call w2 observable from w1 if w1 and the laws that governing the
system dynamics uniquely determine w2. Thus observability implies that
all the information about w is already contained in w1.

In Section 5.2 we give the definition of controllability of behaviors defined
by equations of the form R( d

dt )w = 0. Subsequently, we study the control-
lability of i/s/o systems. Next, in Section 5.3, we introduce the concept
of observability on a general level and, finally, specialize to the problem
when the state of an i/s/o system is observable from the input/output
trajectories. By combining the concepts of controllability and observability
applied to i/s/o systems, we arrive at the Kalman decomposition. This is
the subject of Section 5.4.
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5.2 Controllability

In Section 3.2 we have studied autonomous systems. We have seen there
that in autonomous systems the past of a trajectory completely determines
its future. Once the system follows a particular trajectory, it stays on that
trajectory forever. In this section we introduce and study behaviors that
are to some extent the opposite of autonomous systems, namely control-
lable systems, in which we can always switch between between any two
trajectories.

Example 5.2.1 Consider two pendula mounted on a cart; see Figure 5.1.
Suppose for the time being that the masses m1 and m2 of the pendula

L2

m2

M
force

w3

w1
w2

m1

w4

L1

FIGURE 5.1. Two pendula mounted on a cart.

are identical. Later, in Example 5.2.12, it turns out that the values of the
masses do not play any role in the present discussion. Suppose in addition
that their lengths L1 and L2 are equal. Physical intuition indicates that the
relative position of the rods is then completely determined by the initial
relative position and the initial relative angular velocity, and is independent
of the external force. Stated otherwise, w1 − w2 does not depend on the
force w3. That means that if the rods are in phase during a certain time
interval, they remain in phase, no matter what force acts on the cart.
This indicates lack of controllability. It is less intuitive what happens if
L1 6= L2. It turns out that in that case it is always possible to switch from
one possible trajectory (w′

1, w
′
2, w

′
3, w

′
4) to any other possible trajectory

(w′′
1 , w

′′
2 , w

′′
3 , w

′′
4 ) after a small time-delay. More precisely: If (w′

1, w
′
2, w

′
3, w

′
4)

and (w′′
1 , w

′′
2 , w

′′
3 , w

′′
4 ) are possible trajectories, then there exists a third

possible trajectory (w1, w2, w3, w4) and t1 > 0 with the property

wi(t) =

{
w′

i(t) t ≤ 0,
w′′

i (t− t1) t ≥ t1, i = 1, 2, 3, 4. (5.1)
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Equation (5.1) implies that the system can behave according to trajectory
w′ until t = 0 and proceed according to the delayed w′′ after time t1. The
time interval (0, t1) is needed for the transfer, through judicious choice of
the force w3, from w′ to w′′.

This example illustrates the concept of controllability. If the rods have un-
equal lengths, then the system is controllable. If their lengths are equal,
then the system is not controllable. This will be proven rigorously in Ex-
ample 5.2.12. �

We now give the formal definition of controllability.

Definition 5.2.2 Let B be the behavior of a time-invariant dynamical
system. This system is called controllable if for any two trajectories w1, w2 ∈
B there exist a t1 ≥ 0 and a trajectory w ∈ B with the property

w(t) =

{
w1(t) t ≤ 0,
w2(t− t1) t ≥ t1.

�

Controllability thus implies that strictly obeying the laws governing the
system, i.e., within the behavior, we can switch from one trajectory to the
other, provided that we allow a delay. This is in contrast to autonomous
systems, where we cannot get off a trajectory once we are on it. Figure 5.2
gives a visual explanation the notion of controllability.

Controllability is a desirable property, since in principle it enables one to
steer the system to a desired trajectory.

Example 5.2.3 Trivial examples of controllable systems are:

• B := {w : R → Rq | w = 0}, corresponding to the behavioral equa-
tion Iw = 0.

• B := {w ∈ Lloc
1 (R,Rq)}, corresponding to the behavioral equation

Ow = 0, where O denotes the zero-matrix.

As already remarked, autonomous systems are not controllable, with the
exception of trivial systems likeB = {0}. Consider, for instance, the behav-
ior B defined by ( d

dt − 1)w = 0. It is given by {w | w(t) = cet, c ∈ R}. To
see that this system is not controllable, take two trajectories w1, w2 ∈ B,
say wi(t) = cie

t, i = 1, 2. Suppose that we could switch from w1 to w2.
Then there would exist a trajectory w ∈ B, a constant c ∈ R, and t1 ≥ 0
such that w(t) = cet = c1e

t for t ≤ 0 and w(t) = c2e
t−t1 for t ≥ t1. The

equality for t ≤ 0 implies that c = c1, and the equality for t ≥ t1 im-
plies that c1 = c2e

−t1 . If c1 > c2, then it follows that t1 < 0, which is a
contradiction. This shows that the system is not controllable. �
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w1

desired future

given past

w2

W

(a)

w2
0

w1 W

(b)

0

W

σ−t1w2

t1

concatenating
trajectory

w time

time

w1

FIGURE 5.2. Controllability.

Definition 5.2.2 would not be very useful without a simple test to decide
whether or not a system is controllable. We first present such a test for
autonomous systems.

Lemma 5.2.4 Let P (ξ) ∈ Rq×q[ξ] with det(P (ξ)) 6= 0. Then the system
defined by P ( d

dt )w = 0 is controllable if and only if P (ξ) is unimodular,
i.e., if and only if B = {0}.

Proof If P (ξ) is unimodular, then B = {0}, and hence B is trivially
controllable. On the other hand, if P (ξ) is not unimodular, then it follows
from Remark 3.2.14 that the past of each trajectory uniquely determines
its future. It follows from Theorem 3.2.16 that for nonunimodular P (ξ), B
contains more than one trajectory. It follows that B cannot be controllable.

�

The following theorem gives a test for controllability of the C∞ part of the
behavior: B ∩ C∞(R,Rq). It is preparatory for a test for the full behavior.

Theorem 5.2.5 Consider the system defined by R( d
dt )w = 0, and denote

by B
∞ the C∞ part of its behavior B; i.e., B∞ = B ∩ C∞(R,Rq). Then

B
∞ is controllable if and only if the rank of the (complex) matrix R(λ) is

the same for all λ ∈ C.
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Proof Choose unimodular matrices U(ξ), V (ξ) such that U(ξ)R(ξ)V (ξ) =
R̃(ξ) = [D(ξ) 0] is in Smith form. Define the transformed behavior as

B̃
∞

:= V −1( d
dt )B

∞. Let

D(ξ) =

[
D1(ξ) 0

0 0

]

,

where det(D1(ξ)) 6= 0. Then B̃
∞

= {(w̃1, w̃2) | D1(
d
dt )w̃1 = 0}, where,

of course, the partition of w̃ is made in accordance with the partitions of
R̃(ξ) and D(ξ). Since w̃2 is completely free, see Exercise 5.22, it follows

that B̃
∞

is controllable if and only if the behavior {w̃1 | D1(
d
dt )w̃1 = 0}

is controllable. By Lemma 5.2.4 this is the case if and only if the square
polynomial matrix D1(ξ) is unimodular. This in turn is equivalent to the
condition that rank R̃(λ) is constant for λ ∈ C.

Notice that rankR(λ) = rankU−1(λ)R̃(λ)V −1(λ) = rank R̃(λ), since U(ξ)

and V (ξ) are unimodular. Hence B̃
∞

is controllable if and only if rankR(λ)
does not depend on λ ∈ C.

The last step is to prove thatB∞ is controllable if and only if B̃
∞

is control-
lable. To that end assume that B∞ is controllable and choose w̃′, w̃′′ ∈ B̃

∞
.

Define w′, w′′ ∈ B
∞ by w′ := V ( d

dt )w̃
′ and w′′ := V ( d

dt )w
′′. Since B

∞ is
controllable, there exist t1 ≥ 0 and w ∈ B

∞ such that

w(t) =

{
w′(t) t ≤ 0,
w′′(t− t1) t ≥ t1. (5.2)

Define w̃ ∈ B̃
∞

by w̃ := V −1( d
dt )w̃. Then it follows from (5.2) that

w̃(t) =

{
w̃′(t) t ≤ 0,
w̃′′(t− t1) t ≥ t1.

This shows that B̃
∞

is controllable. In the same way, the converse statement
follows: if B̃

∞
is controllable then B

∞ is also controllable.

This concludes the proof. �

Corollary 5.2.6 For B
∞, the time t1 required in Definition 5.2.2 is in-

dependent of w1 and w2 and can be taken to be arbitrarily small.

Proof Let B̃
∞

be as in the proof of Theorem 5.2.5. Choose t1 > 0 ar-
bitrarily. Define w̃i ∈ B̃

∞
by w̃i := V −1( d

dt )wi, i = 1, 2. Since two C∞
functions can always be interpolated in a smooth way, see Exercise 5.22,
there exists w̃ ∈ B̃ such that

w̃(t) =

{
w̃1(t) t ≤ 0,
w̃2(t− t1) t ≥ t1. (5.3)
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Define w as w := V ( d
dt )w̃. Then w ∈ B, and by (5.3),

w(t) =

{
w1(t) t ≤ 0,
w2(t− t1) t ≥ t1.

�

Remark 5.2.7 If the rank of R(λ) is not the same for all λ ∈ C, then we
call λ ∈ C for which the rankR(ξ) drops a singular value of R(ξ). Recall
from Chapter 3 that in the case of a square polynomial matrix with nonzero
determinant, these values were called characteristic values. �

We now extend the rank test of Theorem 5.2.5 by showing that B is con-
trollable if and only if B∞ is controllable. But first we state a lemma about
polynomial matrices that do not have constant rank for all complex num-
bers.

Lemma 5.2.8 Let R(ξ) ∈ Rg×q[ξ]. Then there exist polynomial matri-
ces F (ξ) ∈ Rg×g[ξ] and R̃(ξ) ∈ Rg×q[ξ], such that R(ξ) = F (ξ)R̃(ξ) and
rank R̃(λ) is the same for all λ ∈ C.

Proof Choose unimodular matrices U(ξ), V (ξ) such that U(ξ)R(ξ)V (ξ) =
[D(ξ) 0] = [diag(d1(ξ), · · · , dk(ξ), 0 · · · , 0) 0] is in Smith form with dj(ξ) 6=
0, j = 1, . . . , k. Then

R(ξ) = U−1(ξ)D(ξ)
︸ ︷︷ ︸

F (ξ)

[
Ik 0
0 0

]

V −1(ξ)

︸ ︷︷ ︸

R̃(ξ)

.

Since V (ξ) is unimodular, it is obvious that rank R̃(λ) is the same for all
λ ∈ C. �

Theorem 5.2.9 Let the behavior B be defined by R( d
dt )w = 0; i.e., B

is the set of weak solutions in Lloc
1 (R,Rq) of R( d

dt )w = 0. Then B
∞ :=

B ∩ C∞(R,Rq) is controllable if and only if B is controllable.

Proof Suppose thatB∞ is controllable. By Theorem 2.5.23 we may assume
that R(ξ) has full row rank. According to Corollary 3.3.23, B admits an
i/o representation

P (
d

dt
)y = Q(

d

dt
)u (5.4)

with P (ξ) ∈ Rp×p[ξ] and Q(ξ) ∈ Rp×m[ξ]. Let the partial fraction expansion
of P−1(ξ)Q(ξ) be given by

P−1(ξ)Q(ξ) = A0 +
N∑

i=1

ni∑

j=1

Aij

(ξ − λi)j
,
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Define

H(t) :=
N∑

i=1

ni∑

j=1

Aij
tj−1

(j − 1)!
eλit.

Then by Theorem 3.3.19, every (weak) solution of (5.4) can be written as

y(t) := A0u(t) + yhom(t) +

t∫

0

H(t− τ)u(τ)dτ, (5.5)

where yhom satisfies P ( d
dt )yhom = 0.

Let yhom be any solution of P ( d
dt )yhom = 0. By Theorem 3.2.15 we may

assume that yhom ∈ B
∞. Since B∞ is controllable and in view of Corollary

5.2.6, there exists (u, y) ∈ B
∞ such that

(u(t), y(t)) =

{
(0, 0) t ≤ 0,
(0, yhom(t− 1)) t ≥ 1.

(5.6)

From (5.5) and (5.6) it follows that for t ≤ 0,

0 = y(t) = yhom(t),

so that for t ≥ 1,

1∫

0

H(t− τ)u(τ)dτ = yhom(t− 1). (5.7)

Now choose (u1, y1), (u2, y2) ∈ B arbitrarily, say

yj(t) = A0uj(t) + yhom,j(t) +

t∫

0

H(t− τ)uj(τ)dτ, j = 1, 2.

From (5.7) it follows that there exists a u12 ∈ Lloc
1 (R,Rm) such that for

t ≥ 1,
1∫

0

H(t− τ)u12(τ)dτ = yhom,2(t− 1)− yhom,1(t).

Take ũ as follows:

ũ(t) =







u1(t) t ≤ 0,
u12(t) 0 < t < 1,
u2(t− 1) t ≥ 1

and ỹ as

ỹ(t) := A0ũ(t) + yhom,1(t) +

t∫

0

H(t− τ)ũ(τ)dτ.
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Then (ũ, ỹ) ∈ B. Moreover, for t ≤ 0, we have ỹ(t) = y1(t), and for t ≥ 1,

ỹ(t) = A0ũ(t) + yhom,1(t) +
t∫

0

H(t− τ)ũ(τ)dτ

= A0u2(t− 1) + yhom,1(t) +
1∫

0

H(t− τ)u12(τ)dτ

+
t∫

1

H(t− τ)u2(τ − 1)dτ

= A0u2(t− 1) + yhom,1(t) + yhom,2(t− 1)− yhom,1(t)

+
t∫

1

H(t− τ)u2(τ − 1)dτ

= A0u2(t− 1) + yhom,2(t− 1) +
t∫

1

H(t− τ)u2(τ − 1)dτ

= y2(t− 1).

This shows that controllability of B∞ implies that of B.

Conversely, suppose that B∞ is not controllable. Then it follows from The-
orem 5.2.5 that rankR(λ) is not constant over C. Consider the i/o form
(5.4). By Lemma 5.2.8 there exist matrices F (ξ), P̃ (ξ), Q̃(ξ) such that

F (ξ)[P̃ (ξ) Q̃(ξ)] = [P (ξ) Q(ξ)],

with rank[P̃ (λ) Q̃(λ)] = g for all λ ∈ C. As a consequence, there exists at
least one λ̄ ∈ C for which rankF (λ̄) < g. Since P̃−1(ξ)Q̃(ξ) = P−1(ξ)Q(ξ),
their respective partial fraction expansions coincide, so that the corre-
sponding initially-at-rest behaviors, see Theorem 3.5.2, are the same. Since
rankF (λ̄) < g and rank[P̃ (λ̄) Q̃(λ̄)] = g, there exists a nonzero vector
v ∈ Cp × Cm such that

[P (λ̄) −Q(λ̄)]v = 0 and [P̃ (λ̄) − Q̃(λ̄)]v 6= 0. (5.8)

Define the trajectory (ū, ȳ) as

(ū(t), ȳ(t)) := veλ̄t.

Then by (5.8)

P (
d

dt
)ȳ = Q(

d

dt
)ū and P̃ (

d

dt
)ȳ 6= Q̃(

d

dt
)ū. (5.9)

In other words, the pair (ū, ȳ) belongs to the behavior of P ( d
dt )y = Q( d

dt )u,

but not to that of P̃ ( d
dt )y = Q̃( d

dt )u. Suppose that there exists (u0, y0) ∈ B

such that

(u0(t), y0(t)) =

{
(0, 0) t ≤ 0,
(ū(t− 1), ȳ(t− 1)) t ≥ 1.
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Since the initial at rest behavior of P ( d
dt )y = Q( d

dt )u equals that of

P̃ ( d
dt ) = Q̃( d

dt )u, it follows that P̃ ( d
dt )y0 = Q̃( d

dt )u0. In particular, by
time-invariance,

P̃ (
d

dt
)ȳ = Q̃(

d

dt
)ū.

This contradicts the inequality in (5.9). The conclusion is that we cannot
steer the system from the zero trajectory to every other trajectory within
the behavior. Hence B is not controllable. �

Combining Theorems 5.2.5 and 5.2.9 immediately yields the following cen-
tral result:

Theorem 5.2.10 Let R(ξ) ∈ Rg×q[ξ]. The behavior B defined by
R( d

dt )w = 0 is controllable if and only if the rank of the (complex) matrix
R(λ) is the same for all λ ∈ C.

Corollary 5.2.11 Let p(ξ), q(ξ) ∈ R[ξ] with deg p(ξ) ≥ deg q(ξ). The
SISO system defined by p( d

dt )y = q( d
dt )u is controllable if and only if the

polynomials p(ξ) and q(ξ) have no common factor.

Proof This is a direct consequence of Theorem 5.2.10. To see this, define
w = col(u, y) and R(ξ) = [q(ξ) − p(ξ)]. The i/o behavioral equation is
now rewritten in the general form so that we can apply Theorem 5.2.10. It
is clear that R(λ) has constant rank (one) over C if and only if there does
not exist a λ ∈ C such that p(λ) = q(λ) = 0, equivalently, if and only if
p(ξ) and q(ξ) do not have common factors. �

To illustrate the obtained results on controllability, we apply them to the
two pendula mounted on a cart of Example 5.2.1 and to the RLC-network
of Example 1.3.5.

Example 5.2.12 Consider the two pendula mounted on a cart depicted in
Figure 5.1. In Example 5.2.1 we claimed that this system is controllable if
and only if the lengths of the rods are not identical. We want to prove this
claim by considering the linearized mathematical model and using Theorem
5.2.10. Denote by w4 the distance of the center of gravity of the cart with
respect to some reference point. The (nonlinear) equations describing the
relations among w1, w2, w3, w4 can be derived from the laws of mechanics
and are given by

(M +m1 +m2)(
d
dt )

2w4 =w3 +m1L1[(sinw1)(
d
dtw1)

2 − (cosw1)(
d
dt )

2w1]

+m2L2[(sinw2)(
d
dtw2)

2 − (cosw2)(
d
dt )

2w2],

miL
2
i (

d
dt )

2wi −migLi sinwi +miLi coswi(
d
dt )

2w4 = 0, i = 1, 2.
(5.10)
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For small values of the wis the equations (5.10) can be approximated by
their linearizations around the equilibrium (0, 0, 0, 0). This yields the fol-
lowing linear equations:

(M +m1 +m2)
d2

dt2
w4 = w3 −

d2

dt2
(m1L1w1 +m2L2w2)

−miLigwi +miL
2
i

d2

dt2
wi +miLi

d2

dt2
w4 = 0, i = 1, 2

(5.11)
Let us analyze the the controllability of (5.11). First we rewrite (5.11) in
the standard notation R( d

dt )w = 0. Define w = col(w1, w2, w3, w4). The
corresponding matrix R(ξ) is now given by

R(ξ) =





m1L1ξ
2 m2L2ξ

2 −1 (M +m1 +m2)ξ
2

m1L
2
1ξ

2 −m1L1g 0 0 m1L1ξ
2

0 m2L
2
2ξ

2 −m2L2g 0 m2L2ξ
2



 .

According to Theorem 5.2.10, the system is controllable if and only if the
rank of the complex matrix R(λ) is the same for all λ ∈ C. If L1 6= L2, then
obviously rankR(λ) = 3 for all λ ∈ C. Therefore, the system is controllable
in that case. If L1 = L2, then rankR(λ) equals two for λ = ±

√
g
L and is

three otherwise. This shows that the system is not controllable if the rods
are of equal lengths, just as claimed on intuitive grounds in Example 5.2.1.
Apparently, for controllability the masses m1,m2 are immaterial.

We have not been completely fair, since we tacitly identified controllability
of the nonlinear system with that of its linear approximation. For this
particular example it can be proved that this is justified. However, the
proof is well beyond the scope of this book. �

Example 5.2.13 Consider the RLC-network of Example 1.3.5. Let us
check whether the system describing the port behavior is controllable. Re-
call that for the case CRC 6= L

RL
the relation between V and I is given

by

(
RC

RL
+ (1 +

RC

RL
)CRC

d

dt
+ CRC

L

RL

d2

dt2

)

V = (1+CRC
d

dt
)(1+

L

RL

d

dt
)RCI,

(5.12)
while for the case CRC = L

RL
the relation is given by (see (1.12,1.13))

(
RC

RL
+ CRC

d

dt
)V = (1 + CRC

d

dt
)RCI. (5.13)

Corollary 5.2.11 reduces controllability to a common factor condition. First
consider (5.12). Since the roots of the right-hand side are apparent, we
should check whether λ = − 1

CRC
or λ = −RL

L can be roots of RC

RL
+
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(1 + RC

RL
)CRCξ + CRC

L
RL
ξ2. It is easy to see that this is not possible,

see Exercise 5.1, and hence the port behavior is controllable in the case
CRC 6= L

RL
. If CRC = L

RL
, then the port behavior is described by (5.13).

Obviously, RC

RL
+ CRCξ and 1 + CRCξ have a common factor if and only

if RC = RL. We conclude that the port behavior of the RLC-network is
controllable unless CRC = L

RL
and RC = RL. �

We now prove that every behavior contains a controllable part and an
autonomous part. In fact, as we show next, every behavior defined by
R( d

dt )w = 0 can be written as a direct sum of a controllable and an
autonomous subbehavior.

Theorem 5.2.14 Let R(ξ) ∈ Rg×q[ξ] be of full row rank and let B be the
behavior defined by

R(
d

dt
)w = 0.

Then there exist subbehaviors Baut and Bcontr of B such that

B = Baut ⊕Bcontr,

where Bcontr is controllable and Baut is autonomous, and the characteristic
values of Baut are exactly those numbers λ ∈ C for which rankR(λ) < g.

Proof As in the proof of Theorem 5.2.5, choose unimodular matrices
U(ξ), V (ξ) that transform R(ξ) into Smith form:

R̃(ξ) := U(ξ)R(ξ)V (ξ) =
[
D(ξ) 0

]
(5.14)

with det(D(ξ)) 6= 0. Define the transformed behavior as B̃
∞

:=

V −1( d
dt )B

∞. Then B̃
∞

= {(w̃1, w̃2) | D( d
dt )w̃1 = 0}, where, of course, the

partition of w̃ is made in accordance with the partition of R̃(ξ). If detD(ξ)
is a constant, then B

∞ is controllable, and we may take Bcontr = B and
Baut = {0}. Suppose deg detD(ξ) ≥ 1. Then the behavior B̃

∞
can easily

be written as the direct sum of a controllable part and an autonomous
part:

B̃aut := {w̃ ∈ C∞(R,Rq) | D(
d

dt
)w̃1 = 0, w̃2 = 0},

B̃contr := {w̃ ∈ C∞(R,Rq) | w̃1 = 0}.
Then B̃

∞
= B̃aut ⊕ B̃contr. Note that B̃aut and B̃contr are described by

R̃aut(ξ) =

[
D(ξ) 0
0 I

]

and R̃contr(ξ) =
[
I 0

]

respectively. By transforming back we obtain the desired partition of B∞:

B
∞
aut := V (

d

dt
)B̃aut and B

∞
contr := V (

d

dt
)B̃contr (5.15)
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Of course B
∞ = B

∞
aut ⊕ B

∞
contr is a partition in an autonomous and a

controllable part of the C∞ part of B. The equations that describe (5.15)
are obtained by transforming R̃aut(ξ) and R̃contr(ξ):

Raut(ξ) = R̃aut(ξ)V
−1(ξ) and Rcontr(ξ) = R̃contr(ξ)V

−1(ξ) (5.16)

and define

Baut := {w ∈ L
loc
1 (R,Rq) | Raut(

d

dt
)w = 0, weakly}

and

Bcontr := {w ∈ L
loc
1 (R,Rq) | Rcontr(

d

dt
)w = 0, weakly} (5.17)

It follows from Theorem 2.4.13 that B = Baut⊕Bcontr and from Theorem
5.2.9 that Bcontr is controllable. Finally, since det(Raut(ξ)) = detD(ξ) 6= 0,
Baut is indeed autonomous. The characteristic values of Baut are the roots
of det(Raut(ξ)). Since det(Raut(ξ)) = detD(ξ) and by (5.14), it follows that
these characteristic values are indeed those complex numbers λ for which
rankR(λ) < g. �

Remark 5.2.15 The decomposition of a behavior into a direct sum of a
controllable and an autonomous part is not unique. This can be concluded
by observing that the unimodular matrices U(ξ) and V (ξ) that transform
R(ξ) into Smith form are not unique. It can be shown that the controllable
part, however, is unique. The details are worked out in Exercise 5.6. �

Example 5.2.16 Consider the i/o system defined by

y − d

dt
y − d2

dt2
y +

d3

dt3
y = −2u+

d

dt
u+

d2

dt2
u. (5.18)

The corresponding polynomial matrix is given by

R(ξ) =
[
1− ξ − ξ2 + ξ3 2− ξ − ξ2

]
.

The unimodular matrix V (ξ) that transforms R(ξ) into Smith form is given
by

V (ξ) =







1

3
2 + ξ

−2
3

+
1

3
ξ −1 + ξ2






.

Indeed,

[
1− ξ − ξ2 + ξ3 2− ξ − ξ2

]







1

3
2 + ξ

−2
3

+
1

3
ξ −1 + ξ2






=
[
−1 + ξ 0

]
.
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The inverse of V (ξ) is given by

V −1(ξ) =






−1 + ξ2 −2− ξ

2

3
− 1

3
ξ

1

3






The polynomials that define the controllable part and the autonomous part
are, according to (5.16), given by

Raut(ξ) =

[
−1 + ξ 0

0 1

]






−1 + ξ2 −2− ξ

2

3
− 1

3
ξ

1

3






=






1− ξ − ξ2 + ξ3 2− ξ − ξ2

2

3
− 1

3
ξ

1

3






and

Rcontr(ξ) =
[
1 0

]






−1 + ξ2 −2− ξ

2

3
− 1

3
ξ

1

3




 = [−1 + ξ2 − 2− ξ].

The corresponding differential equations are

y − d

dt
y − d2

dt2
y +

d3

dt3
y + 2u− d

dt
u− d2

dt2
u= 0,

2
3y − 1

3

d

dt
y + 1

3u= 0

for the autonomous part and

−y + d2

dt2
y = 2u+

d

dt
u (5.19)

for the controllable part. Notice that (5.19), the controllable part of (5.18),
is obtained by just canceling the common factor −1 + ξ in the entries of
R(ξ). �

5.2.1 Controllability of input/state/output systems

5.2.1.1 Controllability of i/s systems

In Chapter 4 we have introduced i/s/o models. Part of an i/s/o model
is the i/s model defined by the input-state equation d

dtx = Ax + Bu. In
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this section we study the problem of to what extent the state-trajectory
can be controlled by means of a proper choice of the input function. More
specifically, we consider the following question: Given two states x1 and
x2, does there exist an input function u such that (u, x) satisfies the i/s
equation and such that x(t′) = x1 and x(t′′) = x2 for some t′, t′′ ∈ R? If
such an input function exists for all possible choices of x1 and x2, then we
call the system state controllable. It will turn out that for the system given
by d

dtx = Ax+Bu that controllability is equivalent to state controllability.

Let (A,B) ∈ Rn×n × Rn×m and consider the i/s behavior defined by

d

dt
x = Ax+Bu. (5.20)

We have seen in Theorem 5.2.10 that controllability can be checked by
means of a rank test of a (potentially) infinite number of matrices, namely
R(λ), λ ∈ C. For the system (5.20) this rank test turns out to be equivalent
to a rank test of a single matrix, the controllability matrix , directly defined
in terms of the matrices A and B. The controllability matrix of the pair
(A,B) is defined as follows:

Definition 5.2.17 Let (A,B) ∈ Rn×n × Rn×m. Define the matrix C ∈
Rn×nm as

C =
[
B AB · · · An−1B

]
. (5.21)

C is called the controllability matrix of the pair (A,B). �

Theorem 5.2.18 Consider the system d
dtx = Ax + Bu. The system is

controllable if and only if its controllability matrix C has rank n.

Theorem 5.2.18 provides a simple and elegant criterion for the controllabil-
ity of an i/s system. Because of the nature of the criterion, we often speak
about the controllability of the pair of matrices (A,B) rather than of the
system defined by (A,B) through (5.20).

For the proof of Theorem 5.2.18 we use a result whose proof uses the concept
of invariant subspace.

Definition 5.2.19 (A-invariant subspace) Let A ∈ Rn×n and let V be
a linear subspace of Rn. We call V an A-invariant subspace if for all v ∈ V,
Av ∈ V. Notation: AV ⊂ V. �

See Exercise 5.24 for an example of an A-invariant space.

Lemma 5.2.20 Let (A,B) ∈ Rn×n × Rn×m and assume that there exists
a nonzero vector v0 ∈ Cn such that vT0 A

kB = 0, k = 0, . . . , n − 1. Define
the linear subspace V of Cn as

V := span
k≥0
{(AT )kv0}.
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Then there exists a nonzero vector v1 ∈ V and λ1 ∈ C such that

vT1 A = λ1v
T
1 and vT1 B = 0.

Proof Let p(ξ) := det(Iξ − A) = p0 + p1ξ + · · · + pn−1ξ
n−1 + ξn be

the characteristic polynomial of A. According to the theorem of Cayley–
Hamilton, every matrix satisfies its own characteristic equation, and hence
p(A) = 0. Therefore, we can express An in lower powers of A:

An = −(p0I + p1A+ · · ·+ pn−2A
n−2 + pn−1A

n−1). (5.22)

By induction on k it follows easily from (5.22) that for every k ∈ N, Ak can
be written as a linear combination of I, A, . . . , An−1. By expressing Ak in
terms of I, A, . . . , An−1, it follows that vT0 A

kB = 0 for all k, and hence for
all v ∈ V we have that vTB = 0. Note that v ∈ V implies that AT v ∈ V,
and hence V is AT -invariant. Therefore, V contains an eigenvector v1 of
AT , say AT v1 = λ1v1, so that vT1 A = λ1v

T
1 . Since v1 ∈ V, it follows that

vT1 B = 0. �

Proof of Theorem 5.2.18 Define for every λ ∈ C the complex matrix
H(λ) as

H(λ) := [Iλ−A B]. (5.23)

In view of Theorem 5.2.101 we have to prove that H(λ) has constant rank
if and only if C, the controllability matrix of the pair (A,B), (5.21), has
rank n. Notice that rankH(λ) = n whenever λ is not an eigenvalue of A.
This implies that we have to prove that rankH(λ) = n for all λ ∈ C if and
only if rankC = n.

Assume that rankH(λ1) < n for some λ1 ∈ C. This implies that there exists
a nonzero vector v1 ∈ Cn such that vT1 H(λ1) = 0. Therefore, vT1 A = λ1v

T
1

and vT1 B = 0. From that it follows that vT1 A
kB = 0 for all k, and hence

vT1 C = 0. It follows that rankC < n.

Now suppose rankC < n. Then there exists v ∈ Cn such that vTC = 0.
Define the linear subspace V as

V := span
k≥0
{(AT )kv}.

From Lemma 5.2.20 it follows that V contains a left eigenvector of A con-
tained in the left kernel of B, say vT1 A = λ1v

T
1 and vT1 B = 0. This implies

that vT1 H(λ1) = 0, and hence rankH(λ1) < n. This completes the proof.
�

1Actually, Theorem 5.2.10 refers to R(λ), which in our case is essentially equal to

H(λ), except that B should then be replaced by −B. For historical reasons, and since
the rank of the matrix does not depend on whether we take B or −B, we use H(λ)
rather than R(λ).
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Example 5.2.21 Assume that A and B are given by

A =








λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn







, B =








b1
b2
...
bn







. (5.24)

For what values of the λks and the bks is the pair (A,B) controllable? It is
easy to interpret this question in terms of the associated linear scalar i/s
systems, which are given by

d

dt
xk = λkxk + bku, k = 1, 2, . . . , n.

It is trivial to see that bk = 0 for some k implies that this system is not
controllable. Also, when λk = λℓ, observe that z = bℓxk − bkxℓ is then
governed by

d

dt
z = λkz,

which also shows lack of controllability. Hence (A,B) is controllable only if

bk 6= 0 for all k and λk 6= λℓ for all k 6= ℓ. (5.25)

Thus it is easy to see that conditions (5.25) are necessary for controllability
of the pair (5.24). That they are also sufficient is more difficult to see
directly, but Theorem 5.2.18 provides the answer for this converse. To see
this, we compute the controllability matrix C, see (5.21), and observe that
it equals

C =








b1 0 · · · 0
0 b2 · · · 0
...

...
. . .

...
0 0 · · · bn















1 λ1 λ21 λn−1
1

1 λ2 λ22 λn−1
2

...
...

...
...
...

...
1 λ1n λ2n λn−1

n







.

Thus C is the product of a diagonal matrix and a Vandermonde matrix.
For C to be nonsingular it is necessary and sufficient that both factors be
nonsingular. Of course, see Exercise 3.16, this requirement is equivalent to
(5.25). �

Theorem 5.2.22 Controllability of d
dtx = Ax+Bu implies state control-

lability.

Proof Suppose that the i/s system defined by d
dtx = Ax + Bu is con-

trollable, and let (u1, x1) and (u2, x2) be two possible input/state trajecto-
ries. We know that there exists an input/state trajectory (u, x) and a time
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instant t1 > 0 such that

(u(t), x(t)) =







(x1(t), u1(t)) t ≤ 0,

(x2(t− t1), u2(t− t1)) t ≥ t1.
(5.26)

This implies in particular that we can find an input function u that drives
the system from state x1(0) at time t = 0 to state x2(0) at time t = t1.
This input function is, of course, only partially defined by (5.26), and in
fact it is highly nonunique, even on the interval [0, t1]. However, we can find
an explicit expression for a particular input function. Define z1 := x1(0)
and z2 := x2(0). Then, in order for (5.26) to hold, by the variation of the
constants formula (4.29) we should have that

z2 = eAt1z1 +

t1∫

0

eA(t1−τ)Bu(τ)dτ.

Define the matrix K by

K :=

t1∫

0

e−AτBBT e−AT τdτ.

We claim that by the assumed controllability of the pair (A,B), K is a
nonsingular matrix. To see this, assume that Ka = 0 for some a ∈ Rn.
Then also aTKa = 0, and hence

aTKa =

t1∫

0

aT e−AτBBT e−AT τadτ = 0. (5.27)

Since the integrand is nonnegative and continuous, it follows from (5.27)
that for all t ∈ [0, t1],

aT e−AtBBT e−AT ta = 0. (5.28)

Since (5.28) is equal to the square of the Euclidean norm of aT e−AtB, it
follows that for all t ∈ [0, t1]

aT e−AtB = 0. (5.29)

Now differentiate (5.29) n− 1 times and evaluate the derivatives at t = 0:

aT e−AtB = 0
aTAe−AtB = 0
aTA2e−AtB = 0

...
aTAn−1e−AtB = 0







⇒

aTB = 0,
aTAB = 0,
aTA2B = 0,

...
aTAn−1B = 0.
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This implies that aTC = 0, where C denotes the controllability matrix of
the pair (A,B). This means that a is orthogonal to the image of C. Since
by assumption the pair (A,B) is controllable, C has full rank. It follows
that a = 0, which indeed implies that K is nonsingular.

Define u as follows:
u(t) := BT e−AT tx, (5.30)

where x ∈ Rn will be chosen later. The state at time t1 resulting from the
input (5.30) is

x(t1) = eAt1z1 +
t1∫

0

eA(t1−τ)Bu(τ)dτ = eAt1z1 +
t1∫

0

eA(t1−τ)BBT e−AT τxdτ

= eAt1z1 + eAt1Kx.

It is obvious how we should choose x so as to achieve that x(t1) = z2,
namely

x = K−1(e−At1z2 − z1). (5.31)

This shows that the input u defined by (5.30, 5.31) drives the state from
z1 at t = 0 to z2 at t = t1. �

Remark 5.2.23

• We have constructed one input function that drives the system from
z1 to z2. There are many other input functions that achieve this. In
certain applications this freedom of choice can be used to optimize
certain criteria. In other words, we may want to find the best input
function that carries the state from z1 to z2. The problems arising
from this possibility for optimization forms the subject of optimal
control and are well beyond the scope of this book.

• If m = 1, the single-input case, then C is a square matrix and con-
trollability is equivalent to the condition that detC is nonzero.

�

The image of the controllability matrix has the following nice geometric
interpretation.

Theorem 5.2.24 imC is the smallest A-invariant subspace of Rn that con-
tains imB. Therefore, (5.20) is controllable if and only if Rn is the smallest
A-invariant subspace that contains imB.

Proof Note that

A imC = A im[B · · ·An−1B] = im[AB · · ·AnB] ⊂ im[B . . . An−1B].
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The last equality follows from the Cayley–Hamilton theorem, which implies
that An can be written as a linear combination of lower powers of A. This
shows that imC is A-invariant. That imC contains imB is obvious.

It remains to prove that imC is the smallest subspace with these two prop-
erties. Let V be any A-invariant subspace containing the image of B. Since
V is A-invariant and since imB ⊂ V , we conclude that A imB ⊂ AV ⊂ V .
This implies that imAB ⊂ V . This in turn implies that imA2B ⊂ imAV ⊂
V . Applying the same argument several times finally yields imAn−1B ⊂ V .
From that it follows that imC ⊂ V , which completes the proof. �

Using Theorem 5.2.14 yields a decomposition of the behavior of d
dtx =

Ax + Bu into a controllable and an autonomous part. Theorem 5.2.24
allows us to bring it into a form that displays this decomposition explicitly.

Corollary 5.2.25 Let (A,B) ∈ Rn×n×Rn×m. There exists a nonsingular
matrix S ∈ Rn×n such that

S−1AS =

[
A11 A12

0 A22

]

, S−1B =

[
B1

0

]

, (5.32)

with (A11, B1) controllable.

Proof Let k be the rank of the controllability matrix C corresponding to
(A,B). Choose a basis s1, . . . , sk, sk+1, . . . , sn of the state space Rn such
that s1, . . . , sk is a basis of imC. Define S as the matrix that has s1, . . . , sn as
its columns. Since imC is A-invariant, we conclude that there exist matrices
A11 ∈ Rk×k, A12 ∈ Rk×n−k, and A22 ∈ Rn−k×n−k such that

AS = S

[
A11 A12

0 A22

]

,

which proves the first equality in (5.32). Furthermore, since imB ⊂ imC,
there exists a matrix B1 ∈ Rk×m such that

B = S

[
B1

0

]

.

This proves the second equality in (5.32). Note, moreover, that

S−1
C =

[
B1 A11B1 . . . An−1

11 B1

0 0 . . . 0

]

.

Since the rank of C is equal to k it follows that the rank of the upper part
of S−1C is also k. It follows that the rank of [B1 · · ·Ak−1

11 B1] is equal to k;
see Exercise 5.16c, which shows that (A11, B1) is indeed controllable. �

The special form (5.32) immediately yields the following result.
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Corollary 5.2.26 Consider

d

dt
x = Ax+Bu (5.33)

with (A,B) of the form (5.32). Let the initial state be x(0) = 0. Then for
all inputs u and for all t, the resulting state-trajectory lies in the subspace
imC. Moreover, starting from the zero state, every state in imC can be
reached. The subspace imC is therefore often called the reachable subspace
of (5.33).

Combining Theorem 5.2.18, Theorem 5.2.22, and Corollary 5.2.26, we ob-
tain the following result.

Theorem 5.2.27 Consider the system defined by

d

dt
x = Ax+Bu. (5.34)

The following statements are equivalent:

1. The system (5.34) is controllable.

2. rank[Iλ−A B] = n for all λ ∈ C.

3. rank
[
B AB · · · An−1B

]
= n.

4. The system (5.34) is state controllable.

Proof The equivalence of (1) and (2) was proven in Theorem 5.2.10, the
equivalence of (1) and (3) in Theorem 5.2.18. The fact that (1) implies (4)
is the content of Theorem 5.2.22 and the converse follows from Corollary
5.2.26. �

5.2.1.2 Controllability of i/s/o systems

Up to now we have analyzed the controllability of the i/s part of i/s/o
systems. The question remains as to when the i/s/o representation itself is
controllable. This is now a triviality: An i/s/o representation is controllable
if and only if its i/s part is controllable. This statement follows immediately
from the observation

rank

[
Iλ−A B 0
−C 0 I

]

= p+ rank
[
Iλ−A B

]
, (5.35)

where p is the number of outputs. Equation (5.35) shows that whether or
not the polynomial matrix that defines the i/s/o behavior has constant
rank, independent of λ ∈ C, depends on the matrix [Iλ−A B] only.
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5.2.2 Stabilizability

If a system is controllable, then it is in principle possible to steer from
any trajectory in the behavior to a desired trajectory. In applications the
desired trajectory is often an equilibrium point, i.e., a trajectory that does
not depend on time. Controllability is not always needed to steer the system
to a constant trajectory, as the following example shows.

Example 5.2.28 (Example 5.2.1 continued.) Consider again the two
pendula mounted on a cart depicted in Figure 5.1. As argued in Example
5.2.1, this system is uncontrollable if the lengths of the rods are equal.
In particular, the difference between the angles of the pendula, w1 − w2,
behaves autonomously and is not affected by the input. In Example 5.2.1,
we neglected the effect of friction in the joints of the rods. Suppose that
we incorporate these in the model. Then the linearized equations (5.11)
become

(M +m1 +m2)(
d
dt )

2w4 = w3 − ( d
dt )

2(m1L1w1 +m2L2w2),

(ki −miLig)wi + di
d
dtwi +miL

2
i

d2

dt2
wi +miLi

d2

dt2
w4 = 0, i = 1, 2.

(5.36)
for some positive constants di and ki, i = 1, 2. For simplicity take M =
m1 = m2 = 1, L1 = L2 = 1, d1 = d2 = 1, and k := k1 = k2. Recall that
we took w = col(w1, w2, w3, w4). The polynomial matrix representing the
equations (5.36) becomes

R(ξ) =





ξ2 ξ2 −1 3ξ2

k − g + ξ + ξ2 0 0 ξ2

0 k − g + ξ + ξ2 0 ξ2



 .

It is easy to see that rankR(λ) = 2 if λ =
1

2
(−1 ±

√
1 + 4g − 4k) and

rankR(λ) = 3 otherwise. Therefore, the system is not controllable. As
argued in Example 5.2.1, this may be explained by observing that w1−w2

behaves autonomously. To make this more apparent, we rewrite the system
equations in terms of the variables col(w1, w3, w4) and w1 − w2:








d2

dt2
−1 3

d2

dt2

k − g + d

dt
+
d2

dt2
0

d2

dt2












w1

w3

w4



 = 0,

(k − g)(w1 − w2) +
d

dt
(w1 − w2) +

d2

dt2
(w1 − w2) = 0.

(5.37)

From (5.37) it follows that the behavior of (w1, w3, w4) is controllable if
k 6= g, whereas that of w1 − w2 is completely autonomous. Physically
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speaking, this means that by applying the appropriate force, we can make
the first rod reach every possible trajectory that satisfies (5.36) while the
second rod is just following the first. Notice that the characteristic values of
the second equation in (5.37) are the uncontrollable modes, i.e., the values

for which the rank of R(λ) drops, λ1,2 =
1

2
(−1 ±

√
1 + 4g − 4k). They

give rise to trajectories of the form w1(t) − w2(t) = C1e
λ1t + C2e

λ2t. It
is interesting to notice that if k > g, then the λ1 and λ2 have real part
smaller than zero. This implies that w1(t) − w2(t) converges to zero as t
tends to infinity. The conclusion is that if k > g, then the system may be
controlled to trajectories in the behavior for which w1 − w2 goes to zero
asymptotically. In particular, it is possible to bring the two rods to an
upright position and keep them there. �

Example 5.2.28 indicates that a notion weaker than controllability can
sometimes be useful. We call a system stabilizable if every trajectory in
the behavior can be steered asymptotically to a desired trajectory. The
formal definition is given below.

Definition 5.2.29 Let B be the behavior of a time-invariant dynamical
system. This system is called stabilizable if for every trajectory w ∈ B,
there exists a trajectory w′ ∈ B with the property

w′(t) = w(t) for t ≤ 0 and lim
t→∞

w′(t) = 0.

�

An effective test for stabilizability, analogous to Theorem 5.2.10, is provided
in the following theorem.

Theorem 5.2.30 Let R(ξ) ∈ Rg×q[ξ]. The behavior B defined by
R( d

dt )w = 0 is stabilizable if and only if the rank of the (complex) ma-
trix R(λ) is the same for all λ ∈ C+, where C+ = {s ∈ C | Re s ≥ 0}.

Proof Without loss of generality we may assume that R(ξ) has full row
rank. By Theorem 5.2.14, B may be written as the direct sum of an au-
tonomous and a controllable behavior. Let B = Baut ⊕Bcontr be such a
decomposition. Denote the corresponding polynomial matrices by Raut(ξ)
and Rcontr(ξ) respectively. The characteristic values of Baut are precisely
those λs for which rankR(λ) < g. Denote these by λ1, . . . , λN . Thus, by
Theorem 3.2.16, all w ∈ Baut are linear combinations of functions of the
form Bijt

ieλjt.

“If” part. By assumption, Reλi < 0, i = 1, . . . N . This implies that

w ∈ Baut ⇒ lim
t→∞

w(t) = 0.
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Choose w ∈ B. Let w = w1 + w2 with w1 ∈ Baut and w2 ∈ Bcontr. Since
Bcontr is controllable, there exists w′

2 ∈ Bcontr and t1 ≥ 0 such that

w′
2(t) = 0, t ≥ t1 and w2(t) = w′

2(t) for t ≤ 0.

Since w1 ∈ Baut, it vanishes asymptotically, and by defining w′ := (w1, w
′
2),

we have constructed a trajectory w′ ∈ B such that

lim
t→∞

w′(t) = 0 and w(t) = w′(t) for t ≤ 0.

This shows that the system is stabilizable.

“Only if” part. Suppose that the system is stabilizable and that Reλi ≥ 0
for some 1 ≤ i ≤ N . Choose Bi ∈ Cq such that w1(t) := Bie

λit belongs
to Baut. Since the system is stabilizable, there exists w2 ∈ Bcontr such
that if we define w ∈ B as w = w1 + w2, we have that limt→∞ w(t) = 0.
Since w2 ∈ Bcontr, we conclude that Rcontr(

d
dt )w = Rcontr(

d
dt )Bie

λit =

Rcontr(λi)Be
λit =: B̃eλit. Notice that B̃ 6= 0, since w1 /∈ Bcontr. Next

integrate the differential equation Rcontr(
d
dt )w = B̃eλit to obtain the integral

equation

R∗
contr(

∫
)w + c0 + c1t+ · · ·+ cL−1t

L−1 = R∗
contr(

∫
)B̃eλit; (5.38)

see Definition 2.3.7. Since limt→∞ w(t) = 0, we conclude that the left-hand
side of (5.38) grows at most polynomially in t, whereas the right-hand
side grows exponentially. This is absurd, and therefore the system is not
stabilizable. �

An immediate consequence of Theorem 5.2.30 is the following result.

Corollary 5.2.31 Let (A,B) ∈ Rn×n × Rn×m be in the form (5.32). The
system d

dtx = Ax+Bu, or simply the pair (A,B), is stabilizable if and only
if the matrix A22 has all its eigenvalues in the open left half-plane.

In Chapter 9 we will use the notion of stabilizability in the context of
feedback stabilization.

5.3 Observability

In this section we introduce the notion of observability. This notion is intu-
itively explained as follows. Suppose that we have a behavior of which the
variables are partitioned as (w1, w2). We call w2 observable from w1 if w1,
together with the laws of the system, determines w2 uniquely. That means
that for each w1 there exists at most one w2 such that (w1, w2) belongs to
the behavior. A direct implication of w2 being observable from w1 is that
in fact all the information of a trajectory w is already contained in its first
component w1.
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Example 5.3.1 Assume that we can observe the forces acting on a me-
chanical system. Can we deduce its position from these observations? If the
system is a simple point-mass, governed by Newton’s law

M
d2

dt2
q = F, (5.39)

then it is obvious that knowledge of F tells us only what the acceleration
is, and we are unable to deduce the position (unless, of course, we know
the initial position and velocity, but this is not assumed to be the case).
Therefore, q is not observable from F in (5.39). This lack of observability
in this simple example has important implications for inertial navigation
systems. Since on-board a space vehicle we can only measure forces and
accelerations, we have to integrate these twice in order to compute the
position, and therefore we have to put the initial position and the initial
velocity as starting conditions into the computation. Once an error is made,
it is impossible to correct this using on-board measurements only, and
therefore regular communication with a ground station is unavoidable in
order to keep track of the position in inertial navigation.

�

Definition 5.3.2 Let (R,W1×W2,B) be a time-invariant dynamical sys-
tem. Trajectories in B are partitioned as (w1, w2) with wi : R → Wi, i =
1, 2. We say that w2 is observable from w1 if for all (w1, w2), (w1, w

′
2) ∈ B

implies w2 = w′
2. �

Definition 5.3.2 formalizes the intuitive description given in the introduc-
tion to this section. Notice that if the behavior is specified by polynomial
matrices as R(

d
dt )w1 = R2(

d
dt )w2, then w2 is observable from w1, then w2 is

uniquely determined by w1 and the polynomial matrices R1(ξ) and R2(ξ).
So, given w1, we should in principle be able to determine the correspond-
ing w2. Algorithms that do this are called observers. However, to find a
means by which we actually can deduce w2 from w1 is in general not at all
straightforward. We will treat a special case of this problem in Chapter 10.

The following rank test allows us to check observability of w2 from w1 in
behaviors defined by R1(

d
dt )w1 = R2(

d
dt )w2.

Theorem 5.3.3 Let R1(ξ) ∈ Rg×q1 [ξ] and R2(ξ) ∈ Rg×q2 [ξ]. Let B be
the behavior defined by R1(

d
dt )w1 = R2(

d
dt )w2. Then the variable w2 is

observable from w1 if and only if rankR2(λ) = q2 for all λ ∈ C.

Proof Let (w1, w2), (w1, w
′
2) ∈ B. Then by linearity of B, also (0, w2 −

w′
2) ∈ B, and hence R2(

d
dt )(w2 − w′

2) = 0. It follows that w2 is observable

from w1 if and only if R2(
d
dt )w2 = 0 implies that w2 = 0. Define B2 :=

{w2 ∈ Lloc
1 (R,Rq2) | R2(

d
dt )w2 = 0}. By the previous remark it suffices
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to prove that B2 = {0} if and only if rankR2(λ) = q2 for all λ ∈ C. By
Theorem 2.5.23 there exists a unimodular matrix U(ξ) ∈ Rg×g[ξ] such that

U(ξ)R2(ξ) =

[
R′

2(ξ)
0

]

and R′
2(ξ) ∈ Rg′×q2 [ξ] of full row rank.

By Theorem 2.5.4 we have that B2 = {w2 ∈ Lloc
1 (R,Rd) | R′

2(
d
dt )w2 = 0}.

Moreover, rankR2(λ) = rankR′
2(λ), so that we have to prove thatB2 = {0}

if and only if rankR′
2(λ) = q2 for all λ ∈ C. Since R′

2(ξ) is of full row rank,
g′ ≤ q2.
Suppose that B2 = {0}. If g′ < q2, then it follows from Theorem 3.3.22
and Corollary 3.3.23 that B2 6= {0}, which is a contradiction. Therefore,
g′ = q2. If deg detR

′
2(ξ) ≥ 1, then again it follows from Theorem 3.2.16 that

B2 6= {0}, and therefore detR′
2(ξ) must be equal to a nonzero constant;

i.e., R′
2(ξ) is unimodular. Equivalently, rankR′

2(λ) = q2, and therefore also
rankR2(λ) = q2 for all λ ∈ C.

Conversely, suppose that rankR′
2(λ) = q2 for all λ ∈ C. Then g′ = q2, and

hence detR′
2(ξ) = c for some nonzero constant c. That implies that R′

2(ξ)
is unimodular, and therefore B2 = {0}. �

Remark 5.3.4 Observability is particularly interesting for behaviors with
latent variables described by

R(
d

dt
)w =M(

d

dt
)ℓ. (5.40)

Usually, we consider w as the observed variable and ℓ as the to-be-observed
variable. See Section 4.2 where the behavioral equation (5.40) was intro-
duced and Section 6.2 where the elimination of ℓ from (5.40) is studied.
The problem is then to check whether the latent variable ℓ is observable
from w. By replacing w1 by w and w2 by ℓ, we can just apply Definition
5.3.2 and Theorem 5.3.3. If in (5.40) ℓ is observable from w in this sense,
then we call the latent variable system simply observable. �

Example 5.3.5 Consider the electrical circuit of Example 1.3.5. The vec-
tor of latent variables is col(VRC

, IRC
, VL, IL, VC , IC , VRL

, IRL
), while the

vector of manifest variables is w = col(V, I). To convert the equations (1.1,
1.2, 1.3) into the standard notation R( d

dt )w =M( d
dt )ℓ, we define the poly-
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nomial matrices R(ξ) and M(ξ) as follows:

R(ξ) =





















0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 1
1 0
1 0
0 0





















, M(ξ) =





















1 −RC 0 0 0 0 0 0
0 0 0 0 0 0 1 −RL

0 0 0 0 Cξ −1 0 0
0 0 −1 Lξ 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
1 0 −1 0 1 0 −1 0





















,

To see whether ℓ is observable from w, we have, following Theorem 5.3.3,
to determine the rank of M(λ). To that end we bring M(ξ) into a more
transparent form by means of elementary row and column operations. De-
note the rows of M(ξ) by r1, . . . , r11 and the columns by c1, . . . , c8. Apply
the following sequence of row operations:

r11 ← r11 − r9, r11 ← r11 + r10, r5 ← r5 − r6, r5 ← r5 − r7,
r5 ← r5 − r8, r6 ← r6 + r8, r1 ← r1 − r9, r1 ← r1 +RCr6,

r4 ← r4 + r10, r4 ← r4 − Lξr7, r3 ← r3 + Cξr1, r9 ← r9 + r1,

r3 ← r3 + r8, r2 ← r2 − r4, r10 ← r10 − r4.
Next, apply the following column operation:

c8 := c8 +RCc5 − Lξc7 − c2 + c4 − c6 −RCc1 + Lξc3. (5.41)

The result of these row and column operations is




















0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −RL − Lξ
0 0 0 0 0 0 0 1 + CRCξ
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0





















=: M̃(ξ). (5.42)

It follows immediately from (5.42) that rank M̃(λ) = 8 if and only if L
RL
6=

CRC , and therefore also rankM(λ) = 8 for all λ ∈ C if and only if L
RL
6=

CRC . By Theorem 5.3.3 it follows that ℓ is observable from w if and only
if L

RL
6= CRC . �
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In the next example we derive a necessary condition for w2 to be observable
from w1.

Example 5.3.6 Consider the system described by

R1(
d

dt
)w1 +R2(

d

dt
)w2 = 0. (5.43)

Assume that R(ξ) = [R1(ξ) R2(ξ)] is of full row rank. Let q1 be the dimen-
sion of w1 and q2 the dimension of w2. From Corollary 3.3.23 and Remark
3.3.26 we conclude that this system hasm := q1+q2−rankR(ξ) inputs. Re-
call that the input variables are not constrained by the laws of the system,
in this case (5.43). Therefore, for w2 to be observable from w1 it stands to
reason that w1 must somehow measure, directly or indirectly, all the input
variables. More precisely, suppose that we want to reconstruct w2 from w1.
In particular, we want to reconstruct the free variables, u2 say, contained
in w2. The free part of w1, call it u1, contains no information about u2.
Therefore, u2 should be constructed on the basis of the output part of w1,
namely y1. Since u2 is free, it seems inevitable that the dimension of y1
should at least be equal to the dimension of u2. Since w1 also contains
u1, this means that the dimension of w1 should at least be equal to the
number of inputs; i.e., q1 ≥ m. Can we deduce this inequality rigorously
from Theorem 5.3.3?

Note that it follows from Theorem 5.3.3 that w2 is observable from w1

if and only if rank(R2(λ)) = q2 for all λ ∈ C. This requirement implies
that q2 ≤ rank(R(λ)) must hold, and therefore m = q1 + q2 − rankR(ξ) ≤
q1 + q2 − q2 = q1 so that indeed q1 ≥ m.

Note that on the other hand, m ≤ q1 is not a sufficient condition for
observability. For example, in the SISO system

p(
d

dt
)y = q(

d

dt
)u,

y is not observable from u whenever p(ξ) is of degree ≥ 1. �

5.3.1 Observability of i/s/o systems

We apply the results of the previous subsection to i/s/o systems. The state
is considered to be the latent variable, and the input and output jointly form
the manifest variables. Observability then means that the state trajectory
can be deduced from the input and output trajectories. This is the standard
situation considered in classical system theory, where observability of x from
(u, y) is often referred to as state observability , or just observability. The
relevance of this problem stems from the fact that in many applications the
state is not directly measurable, whereas knowledge of the state is needed
for purposes of control, prediction, detection, etc.
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Consider the i/s/o system

{
d

dt
x = Ax+Bu,

y = Cx+Du.
(5.44)

Denote the associated behavior by Bi/s/o.

Applying Theorem 5.3.3 to the situation at hand immediately yields the
following rank test.

Theorem 5.3.7 The state x is observable from (u, y) if and only if the
matrix [

Iλ−A
C

]

has rank n for all λ ∈ C.

Proof Define R(ξ) and M(ξ) as

R(ξ) :=

[
B 0
−D I

]

, M(ξ) =

[
Iξ −A
C

]

. (5.45)

Then (5.44) can be written as R( d
dt )w = M( d

dt )x, where w
T = (uT , yT )T .

Now apply Theorem 5.3.3. �

Notice that there is a remarkable similarity between Theorem 5.2.18 and
Theorem 5.3.7. Often it is referred to as duality . Although much can be said
about duality, we will not go more deeply into it. However, we use duality
in order to obtain results about observability from their counterparts about
controllability.

As was the case for controllability, observability can be checked by a simple
rank criterion. It turns out that the criterion is of the same nature as that
for controllability, but now in terms of the pair (A,C). Analogously to the
controllability matrix of a pair (A,B), we define the observability matrix
of the pair of matrices (A,C).

Definition 5.3.8 Let (A,C) ∈ Rn×n × Rp×n. Define the matrix O ∈
Rpn×n by

O :=












C
CA
CA2

...
CAn−2

CAn−1












.

O is called the observability matrix of the system (5.44) or of the matrix
pair (A,C). �
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The counterpart of Theorem 5.2.18 is the following:

Theorem 5.3.9 The system defined by the equations (5.44) is observable
if and only if its observability matrix O has rank n.

Proof From Theorem 5.2.18 we conclude that OT has rank n if and only
if the matrix [Iλ − AT CT ] has rank n for all λ ∈ C. Since the rank of
a matrix equals that of its transpose, the result now follows immediately
from Theorem 5.3.7. �

Example 5.3.10 Consider the linear system

d

dt
x =

[
0 1
−a0 −a1

]

x, y = [b0 b1]x. (5.46)

For what values of a0, a1, b0, b1 is it observable? The observability matrix
equals

O =

[
b0 b1
−a0b1 b0 − a1b1

]

.

The matrix O is nonsingular if and only if

b20 − a1b0b1 + a0b
2
1 6= 0,

in other words, if and only if the root − b0
b1

of q(ξ) = b0 + b1ξ is not a

root of p(ξ) = a0 + a1ξ+ ξ2, the characteristic polynomial of the A-matrix
associated with (5.46).

�

The following corollary expresses that in an observable system, knowledge
of (u, y) on a given time interval of positive length determines x restricted
to that time interval.

Corollary 5.3.11 Consider the behavior defined by (5.44) and suppose x
is observable from (u, y). Suppose that for some (u1, x1, y1), (u2, x2, y2) ∈
Bi/s/o and for some t1, it holds that for all t ∈ [0, t1],

u1(t) = u2(t) and y1(t) = y2(t). (5.47)

Then x1(t) = x2(t) for t ∈ [0, t1].

Proof Since x is observable from (u, y), it follows from Theorem 5.3.9 that
O has rank n. From (5.47) we conclude that for 0 ≤ t ≤ t1,

CeAtz1+

t∫

0

CeA(t−τ)Bu(τ)dτ+Du(t)=CeAtz2+

t∫

0

CeA(t−τ)Bu(τ)dτ+Du(t),
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where u is any input function that is equal to u1 and u2 on [0, t1]. Therefore,
we have that for all t ∈ [0, t1],

CeAt(z1 − z2) = 0. (5.48)

Differentiating (5.48) n− 1 times and evaluating the result at t = 0 yields

CeAt(z1 − z2) = 0
CAeAt(z1 − z2) = 0
CA2eAt(z1 − z2) = 0

...
CAn−1eAt(z1 − z2) = 0







⇒

C(z1 − z2) = 0,
CA(z1 − z2) = 0,
CA2(z1 − z2) = 0,

...
CAn−1(z1 − z2) = 0.

This implies that z1−z2 ∈ kerO. SinceO has rank n, it follows that z1 = z2.
The state trajectories hence satisfy

x1(t) = eAtz1 +
t∫

0

eA(t−τ)Bu(τ)dτ +Du(t)

= eAtz2 +
t∫

0

eA(t−τ)Bu(τ)dτ +Du(t) = x2(t).

This proves that x1(t) = x2(t) for t ∈ [0, t1]. �

Remark 5.3.12

• Observability depends only on the matrices A and C, although from
the original definition it was not immediately clear that B and D play
no role. Observability of x from (u, y) is often identified with the rank
condition on O. We call the pair (A,C) observable if the associated
observability matrix has full rank. Notice that (A,B) is controllable
if and only if (AT , BT ) is observable. This expresses the duality of
controllability and observability.

• We call the rank tests on the matrices H(ξ) in (5.23) and on M(ξ)
in (5.45) the Hautus tests for controllability and observability respec-
tively. They are sometimes useful when the calculation of the matrices
C or O is cumbersome.

• Note that t1 in Corollary 5.3.11 could be an arbitrary positive num-
ber. This means that in observable systems, the initial state x(0)
is determined by the input and output on an arbitrarily small time
interval containing 0.

• If p = 1, the single-output case, then O is a square matrix, and hence
observability is equivalent to detO 6= 0.
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�

Similar to the image of the controllability matrix C, there is an elegant
geometric interpretation for the kernel of O.

Theorem 5.3.13 The kernel of O is the largest A-invariant subspace con-
tained in the kernel of C. Therefore, (5.44) is observable if and only if 0
is the largest A-invariant subspace contained in kerC.

Proof Choose x ∈ kerO. Then Cx = CAx = · · · = CAn−1x = 0. By the
Cayley–Hamilton theorem, it follows that also CAnx = 0, and hence Ax ∈
kerO, which implies that kerO is A-invariant. Furthermore, Ox = 0 implies
that Cx = 0, and hence kerO ⊂ kerC. Therefore, kerO is an A-invariant
subspace contained in kerC. To show that it is the largest such subspace,
assume that V is an A-invariant subspace contained in the kernel of C.
Choose x ∈ V. Then, since V is A-invariant, also Ax,A2x, . . . , An−1x ∈ V,
and since V is contained in kerC, we conclude that Cx = CAx = · · · =
CAn−1x = 0. This implies that x ∈ kerO, and hence V ⊂ kerO, as claimed.

�

From Theorem 5.3.13 we obtain a partitioning of the state space into an
observable and a nonobservable part.

Corollary 5.3.14 Let (A,C) ∈ Rn×n × Rp×n. There exists a nonsingular
matrix S ∈ Rn×n such that

S−1AS =

[
A11 A12

0 A22

]

and CS =
[
0 C2

]
, (5.49)

with (C2, A22) observable.

Proof Let k be the the dimension of the kernel of the observability matrix
O corresponding to (A,C). Choose a basis s1, . . . , sk, sk+1, . . . , sn of the
state space Rn such that s1, . . . , sk is a basis of kerO. Define S as the
matrix that has s1, · · · , sn as its columns. Since kerO is A-invariant, there
exist matrices A11 ∈ Rk×k, A12 ∈ Rk×n−k, and A22 ∈ Rn−k×n−k such that

AS = S

[
A11 A12

0 A22

]

, (5.50)

which proves the first equality in (5.49). Furthermore, since kerO ⊂ kerC,
there exists a matrix C2 ∈ Rp×(n−k) such that

CS =
[
0 C2

]
.
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This proves the second equality in (5.49). It remains to show that (A22, C2)
is an observable pair. From (5.49) it follows that

OS =








0 C2

0 C2A22

...
...

0 C2A
n−1
22







. (5.51)

Since dimkerO = k, we have that rankO = n− k, and by (5.51) it follows
that

rank








C2

C2A22

...
C2A

n−1
22







= n− k. (5.52)

Using the Cayley–Hamilton theorem in (5.52) yields

rank








C2

C2A22

...

C2A
n−k−1
22







= n− k.

This shows that the pair (A22, C2) is observable. �

Combining Theorems 5.3.7 and 5.3.9 and Corollary 5.3.11, we obtain the
following result.

Theorem 5.3.15 Consider the system defined by

d

dt
x = Ax+Bu, y = Cx+Du. (5.53)

The following statements are equivalent:

1. The system (5.53) is observable.

2. rank

[
Iλ−A
C

]

= n for all λ ∈ C.

3. rank








C
CA
...

CAn−1







= n.

4. The input/output trajectory determines the state uniquely: if t1 >
0 and (u1, y1) and (u2, y2) satisfy (5.53) and for all t ∈ [0, t1],
(u1(t), y1(t)) = (u2(t), y2(t)), then also x1(t) = x2(t) for all t ∈ [0, t1].
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Proof The equivalence of (1) and (2) was proven in Theorem 5.3.7, the
equivalence of (1) and (3) in Theorem 5.3.9. The fact that (1) inplies (4)
is the content of Corollary 5.3.11. To see that (4) implies (1), suppose
that the system is not observable. It follows from Corollary 5.3.14 that the
component of the state that corresponds to A11 does not influence u and y
and is therefore not uniquely determined by col(u, y). �

5.3.2 Detectability

If in a behavior the variable w2 is observable from w1, then w1 together with
the laws of the system determine w2 uniquely. For linear time-invariant sys-
tems this is equivalent to the property that if w1 is the zero trajectory, then
w2 is also the zero trajectory. A slightly weaker, but still useful, property
would be that if w1 is the zero trajectory, then w2(t) converges to zero as t
tends to infinity. The trajectory w2 is then no longer uniquely determined
by w1 and the laws of the system, but we can nevertheless determine the
asymptotic value(s) of the corresponding trajectory w2. That means that to
one trajectory w1 there could correspond two trajectories, w2 and w′

2, say,
but since w2(t)−w′

2(t) converges to zero as t tends to infinity, we have what
we could call asymptotic uniqueness. A system in which w1 determines w2

asymptotically in this sense is called detectable. The formal definition is
given below.

Definition 5.3.16 Let (R,W1 × W2,B) be a time-invariant dynamical
system. Trajectories in B are partitioned as (w1, w2) with wi : R → Wi,
i = 1, 2. We say that w2 is detectable from w1 if (w1, w2), (w1, w

′
2) ∈ B

implies lim
t→∞

w2(t)− w′
2(t) = 0. �

Theorem 5.3.3 states that w2 is observable from w1 if and only if R2(λ) has
full column rank for all λ ∈ C. Detectability requires this rank condition
only for λ ∈ C+, where C+ = {s ∈ C | Re s ≥ 0}.

Theorem 5.3.17 Let R1(ξ) ∈ Rg×q1 [ξ] and R2(ξ) ∈ Rg×q2 [ξ]. Let B be
the behavior defined by R1(

d
dt )w1 = R2(

d
dt )w2. Then the variable w2 is

detectable from w1 if and only if rankR2(λ) = q2 for all λ ∈ C+, where
C+ = {s ∈ C | Re s ≥ 0}.

Proof The proof follows the proof of Theorem 5.3.3 almost verbatim.

Let (w1, w2), (w1, w
′
2) ∈ B. Then, by linearity of B, also (0, w2 −w′

2) ∈ B,
and hence R2(

d
dt )(w2 − w′

2) = 0. It follows that w2 is detectable from

w1 if and only if R2(
d
dt )w2 = 0 implies that limt→∞ w2(t) = 0. Define

B2 := {w2 ∈ Lloc
1 (R,Rq2) | R2(

d
dt )w2 = 0}. By the previous remark it

suffices to prove that all trajectories in B2 asymptotically converge to zero
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if and only if rankR2(λ) = q2 for all λ ∈ C with nonnegative real part. By
Theorem 2.5.23 there exists a unimodular matrix U(ξ) ∈ Rg×g[ξ] such that

U(ξ)R2(ξ) =

[
R′

2(ξ)
0

]

and R′
2(ξ) ∈ Rg′×q2 [ξ] of full row rank.

By Theorem 2.5.4 we have that B2 = {w2 ∈ Lloc
1 (R,Rd) | R′

2(
d
dt )w2 = 0}.

Moreover, rankR2(λ) = rankR′
2(λ), so that we have to prove that B2

consists of asymptotically vanishing trajectories if and only if rankR′
2(λ) =

q2 for all λ ∈ C with nonnegative real part.

Suppose that B2 contains asymptotically vanishing trajectories only. Then
B2 should be autonomous, since otherwise it would contain free variables
that do not necessarily converge to zero. Therefore, by Theorem 3.3.22,
R′

2(ξ) should have the same number of rows as the number of columns; i.e.,
g′ = q2. The roots of detR′

2(ξ) are precisely the singular values, i.e., the
values for which R2(ξ) loses rank, and by Theorem 3.2.16 it follows that
these roots should all have real part strictly less than zero.

Conversely, suppose that rankR′
2(λ) = q2 for all λ ∈ C with nonnegative

real part. Then, since R′
2(ξ) is of full row rank, g′ = q2, and hence detR′

2(ξ)
can only have roots with strictly negative real part, and by Theorem 3.2.16
it follows that B2 can only contain trajectories that converge to zero. �

Example 5.3.18 In Example 5.3.5 we concluded that ℓ is not observable
from w if L = CRCRL, for in that case M(λ) has a rank deficiency for
λ = −1

RC
. By inspection of the matrix (5.42) it follows that M(λ) has full

column rank for all λ ∈ C+ and hence ℓ is always detectable from w, even
in the case that L = CRCRL. �

An immediate consequence of Theorem 5.3.17 is the following result.

Corollary 5.3.19 Let (A,B,C,D) ∈ Rn×n×Rn×m×Rp×n×Rp×m, with
(A,C) in the form (5.49), and consider the system d

dtx = Ax + Bu, y =
Cx+Du. Then x is detectable from (u, y) if and only if the matrix A11 has
all its eigenvalues in the open left half-plane. In that case we call the pair
(A,C) a detectable pair.

In Chapter 10 we will use the notion of detectability in the context of output
feedback stabilization.

5.4 The Kalman Decomposition

Consider the i/s/o system

d
dtx = Ax+Bu,
y = Cx+Du.

(5.54)
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In Corollary 5.2.25 we have seen how the state space of an input/state
system may be decomposed in a controllable part and an autonomous
part, whereas in Corollary 5.3.14 we derived a similar decomposition for
state/output systems, namely into an observable and a nonobservable part.
In this section we combine these two decompositions to obtain what is
known as the Kalman decomposition of input/state/output systems.

Theorem 5.4.1 Let (A,B,C,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m, and
consider the system (5.54). There exists a nonsingular matrix S ∈ Rn×n

such that

S−1AS =







A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44






, S−1B =







B1

B2

0
0






,

CS =
[
0 C2 0 C4

]
,

(5.55)

and such that ([
A11 A12

0 A22

]

,

[
B1

B2

])

(5.56)

is controllable and
([

A22 A24

0 A44

]

,
[
C2 C4

]
)

(5.57)

is observable.

Proof Let C be the controllability matrix of (A,B) and O the observ-
ability matrix of (A,C). Denote by k1, k1 + k2, k1 + k3 the dimensions
of imC ∩ kerO, imC, kerO respectively, and let k4 = n − (k1 + k2 + k3).
Choose vectors a1, . . . , ak1

, b1, . . . , bk2
, c1, . . . , ck3

, and d1, . . . , dk4
such

that (a1, . . . , ak1
) is a basis of imC ∩ kerO, (a1, . . . , ak1

, b1, . . . , bk2
)

is a basis of imC, (a1, . . . , ak1
, c1, . . . , ck3

) is a basis of kerO, and
(a1, . . . , ak1

, b1, . . . , bk2
, c1, . . . , ck3

, d1, . . . , dk4
) is a basis of Rn. Let S be

the matrix that has a1, . . . , ak1
, b1, . . . , bk2

, c1, . . . , ck3
, d1, . . . , dk4

as its
columns. Since imC and kerO are A-invariant, so are imC ∩ kerO and
imC+ kerO. Hence with this definition of S, (5.55) is satisfied. Controlla-
bility of the pair (5.56) follows in the same way as in the proof of Corollary
5.2.25, and observability of the pair (5.57) in the same way as in the proof
of Corollary 5.3.14. �

Theorem 5.4.1 allows a nice visualization in terms of a flow diagram. Define
four subspaces of Rn according to the partition of (S−1AS, S−1B,CS,D)
in (5.55): X1 = span(a1, . . . , ak1

), X2 = span(b1, . . . , bk2
), X3 =

span(c1, . . . , ck3
), and X4 = span(d1, . . . , dk4

). The flow diagram expressing
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how the input u reaches the output y via the subspaces Xi and the inter-
actions among the components of the state space is depicted in Figure 5.3.
The interpretation of the four subspaces is as follows. The subspace X1⊕X2

y

D

X1

X2

X3

X4

u

FIGURE 5.3. Flow diagram of the Kalman decomposition.

is the controllable part of the state space, and X1⊕X3 is the nonobservable
part of the state space. Furthermore, X1 is the nonobservable part of the
controllable part of the system. The three spaces X1, X1⊕X2, and X2⊕X4

are uniquely defined, independent of the choice of bases. The subspaces
X2, X3, and X4 are nonunique.

The flow diagram indicates that only the feedthrough part D and the part
processed by X2 contribute to the way the input u influences the output y.
The following result formalizes this.

Corollary 5.4.2 Consider the system (5.54) represented in the form
(5.55), with x(0) = 0 and the controllable and observable subsystem de-
fined by

d

dt
x2 = A22x2 +B2u, x2(0) = 0,

y = C2x2 +Du.
(5.58)

Then the responses y to any u ∈ Lloc
1 (R,Rm) in (5.54) and (5.58) are the

same.

Proof From Corollary 4.5.5 it follows that for (5.54),

y(t) = Du(t) +

t∫

0

CeA(t−τ)Bu(τ)dτ,
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while for (5.58) we have,

y(t) = Du(t) +

t∫

0

CeA22(t−τ)B2u(τ)dτ.

Using Proposition 4.5.12, parts 3 and 2, we obtain

CeAtB =
[
0 C2 0 C4

]







eA11t ∗ ∗ ∗
0 eA22t ∗ ∗
0 0 eA33t ∗
0 0 0 eA44t













B1

B2

0
0







= C2e
A22tB2,

from which the statement immediately follows. �

Example 5.4.3 Consider the triple of matrices (A, b, c) given by

A =







−2 3 4 1
1 6 6 3
5 6 6 4
0 −17 −19 −8






, b =







0
−1
0
1






, c =

[
3 3 2 2

]
.

The controllability matrix C of the pair (A, b) and the observability matrix
O of (A, c) are given by

C =







0 −2 −4 −6
−1 −3 −5 −7
0 −2 −4 −6
1 9 17 25






, O =







3 3 2 2
7 5 4 4
11 7 6 6
15 9 8 8






.

It is easily checked that

imC ∩ kerO=span













1
1
1
−4













, imC=span













1
1
1
−4






,







0
1
0
−1













,

kerO=span













1
1
1
−4






,







1
1
0
−3













, Rn=span













1
1
1
−4






,







0
1
0
−1






,







1
1
0
−3






,







0
0
0
1













.

(5.59)
With respect to the basis of Rn in (5.59), the triple (A, b, c) takes the form

Ã =







1 2 −1 4
0 1 0 2
0 0 −1 −3
0 0 0 1






, b̃ =







0
−1
0
0






, c̃ =

[
0 1 0 2

]
.
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�

5.5 Polynomial Tests for Controllability and
Observability

We now give some interesting alternative tests for controllability and ob-
servability for the single-input/single-output case. These tests will be used
in Chapter 6, Theorem 6.3.1.

Theorem 5.5.1

1. Let (A, c) ∈ Rn×n × R1×n and define p(ξ) ∈ R[ξ] and r(ξ) ∈ R1×n[ξ]
as

p(ξ) := det(Iξ −A), r(ξ) = [r1(ξ), . . . , rn(ξ)] := p(ξ)c(Iξ −A)−1.

Then (A, c) is observable if and only if the n + 1 polynomials p(ξ),
r1(ξ),. . .,rn(ξ) have no common roots.

2. Let (A, b) ∈ Rn×n × Rn×1 and define p(ξ) ∈ R[ξ] and s(ξ) ∈ Rn×1[ξ]
as

p(ξ) := det(Iξ −A), s(ξ) = [s1(ξ), . . . , sn(ξ)]
T
:= (Iξ −A)−1bp(ξ).

Then (A, b) is controllable if and only if the n + 1 polynomials p(ξ),
s1(ξ),. . .,sn(ξ) have no common roots.

Proof For n = 1 the statement is trivially true, so assume that n ≥ 2.

Part 1. First we prove that if (A, c) is not observable, then p(ξ), r1(ξ), . . . , rn(ξ)
should have a common factor. Consider the complex matrix

M(λ) =

[
Iλ−A

c

]

.

Suppose that (A, c) is not observable. By Theorem 5.3.7 there exists λ0 ∈ C
such that M(λ0) loses rank. Hence there exists an eigenvector v of A such
that cv = 0. Consequently, there exists a nonsingular matrix S ∈ Rn×n

such that

SAS−1 =

[
λ0 Ã12

0 Ã22

]

and cS−1 =
[
0 c̃2

]
.
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This implies that

r(ξ)

p(ξ)
= c(Iξ −A)−1 = cS−1(S(Iξ −A)S−1)−1S

=
[
0 c̃2

]
[
ξ − λ0 −Ã12

0 Iξ − Ã22

]−1

S

=
[
0 c̃2

]





1
ξ−λ0

1
ξ−λ0

Ã12(Iξ − Ã22)
−1

0 (Iξ − Ã22)
−1



S

=
[

0 c̃2(Iξ − Ã22)
−1
]
S =

r̃(ξ)

p̃(ξ)

(5.60)

for some polynomial vector r̃(ξ) and p̃(ξ) = det(Iξ − Ã22). Since deg p̃(ξ)
is obviously less than n, the degree of p(ξ), (5.60) implies that the n + 1
polynomials p(ξ) and r1(ξ), . . . , rn(ξ) have a common factor.

Next we show that if p(ξ), r1(ξ), . . . , rn(ξ) have a common factor, then (A, c)
cannot be observable. Suppose that p(ξ) and r1(ξ), . . . , rn(ξ) have a common
factor. Then there exists λ0 ∈ C such that p(λ0) = 0 and r(λ0) = 0. Define
the polynomial matrix F (ξ) by F (ξ) := p(ξ)(Iξ−A)−1. If A happens to be
equal to λ0I, i.e., if F (λ0) is the zero matrix, then it follows immediately
from Theorem 5.3.7 that (A, c) is not observable (recall that we assumed
that n ≥ 2). If F (λ0) 6= 0, then there exists v ∈ Cn such that F (λ0)v 6= 0.
Consequently,

M(λ0)F (λ0)v =

[
Iλ0 −A

c

]

F (λ0)v =

[
Ip(λ0)
r(λ0)

]

v = 0. (5.61)

By Theorem 5.3.7, (5.61) implies that (A, c) is not observable.

Part 2 follows from part 1 and the observation that (A, b) is controllable if
and only if (AT , bT ) is observable; see Exercise 5.19. �

5.6 Recapitulation

In this chapter we introduced and studied the notions of controllability and ob-
servability . The main points were:

• Controllability is defined as the possibility of switching from the past of one
trajectory to the future of another trajectory in the behavior of a system
by allowing a time delay during which this switch takes place (Definition
5.2.2).
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• The system defined by R( d
dt
)w = 0 is controllable if and only if the rank

of R(λ) is the same for all λ ∈ C (Theorem 5.2.10).

• An i/s system d
dt
x = Ax+Bu is controllable if and only if the rank of its

controllability matrix C = [B AB · · ·An−1B] is equal to the dimension n of
the state space (Theorems 5.2.18 and 5.2.27). This provides a convenient
explicit test for the controllability of such systems. The same test also
applies to i/s/o systems d

dt
x = Ax+Bu, y = Cx+Du.

• For i/o and i/s/o systems we introduced the notion of state controllability
as the possibility of driving the state of the system from an arbitrary initial
state to an arbitrary terminal state. State controllability is equivalent to
controllability (Theorem 5.2.27).

• A system is called stabilizable if every trajectory in the behavior can be
concatenated with a trajectory in the behavior that converges to zero as
time tends to infinity (Definition 5.2.29).

• The system defined by R( d
dt
)w = 0 is stabilizable if and only if the rank

of R(λ) is the same for all λ ∈ C with nonnegative real part (Theorem
5.2.30).

• In a behavior where the variable w is partitioned as w = (w1, w2), w2 is
called observable from w1 if w2 is uniquely determined by w1 and the laws
of the system (Definition 5.3.2).

• In the behavior of R1(
d
dt
)w1 = R2(

d
dt
)w2, observability of w2 from w1 is

equivalent to the condition that the rank of R2(λ) is equal to the number
of columns of R2(ξ) for all λ ∈ C (Theorem 5.3.3).

• Observability of the state from the input and the output in an i/s/o system
is usually referred to as just observability. An i/s/o system d

dt
x = Ax+Bu,

y = Cx + Du is observable if and only if the rank of its observability
matrix O = col(C,CA, . . . , CAn−1) is equal to the dimension n of the
state space (Theorem 5.3.9). This provides a convenient explicit test for
the observability of such systems.

• In a behavior where the variable w is partitioned as w = (w1, w2), w2 is
called detectable from w1 if w2 is determined by w1 and the laws of the
system up to an asymptotically vanishing trajectory. By that we mean
that if (w1, w2) and (w1, w

′
2) belong to the behavior, then w2(t) − w′

2(t)
converges to zero as t tends to infinity (Definition 5.3.16).

• In the behavior of R1(
d
dt
)w1 = R2(

d
dt
)w2, detectability of w2 from w1 is

equivalent to the condition that the rank of R2(λ) is equal to the number
of columns of R2(ξ) for all λ ∈ C with nonnegative real part (5.3.17).

• By appropriately choosing the basis in the state space, the controllability
and/or observability structure of an i/s/o system may be brought into
evidence. This is referred to as the Kalman decomposition (Theorem 5.4.1).

5.7 Notes and References

The notion of controllability and observability and the tests in terms of the

controllability and observability matrices were introduced for input/state/output
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systems by Kalman [27]. They were soon to become some of the very central

notions in systems theory. They have been treated in numerous texts, for example

in [15] and [25]. This last reference treats these topics in considerably more detail

than we do here. The natural generalizations of these concepts to general behaviors

was first presented in [59]. The Hautus test appeared in [20] and is sometimes

referred to as the PBH (Popov–Belevich–Hautus) test, since it was independently

derived also in [46] and [8]. More historical details about these notions may be

found in [25, 29].

5.8 Exercises

As a simulation exercise illustrating the material covered in this chapter
we suggest A.4.

5.1 Prove that the RLC-network of Example 5.2.13, described by (5.12), is
controllable.

5.2 Consider the mechanical system depicted in Figure 5.4. Let q1 and q2 denote

q2

M1 M2

k1 k2 k1

F2F1

q1

FIGURE 5.4. Mass–spring system.

the displacements of the masses M1 and M2 away from their equilibria.
Assume that the system parameters M1,M2, k1, k2 are all positive.

(a) Derive a differential equation for the behavior of (q1, q2) in the absence
of external forces.

(b) Assume that an external force F1 is exerted on M1. Obtain the be-
havioral differential equations for (q1, q2, F1).

(c) Is this system controllable?

(d) For which values of the parameters M1,M2, k1, k2 is q1 observable
from q2?

(e) Assume also that a force F2 is exerted on M2. Obtain the behavioral
differential equations for (q1, q2, F1, F2).

(f) Is this system controllable?
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(g) For which values of the parameters M1,M2, k1, k2 is q1 observable
from q2?

5.3 Let the polynomials a(ξ), b(ξ) ∈ R[ξ] be given by

a(ξ) = a0 + a1ξ + · · ·+ anξ
n, b(ξ) = b0 + b1ξ + · · ·+ bmξ

m. (5.62)

It follows immediately from Theorem 5.2.10 that the system

a(
d

dt
)w1 + b(

d

dt
)w2 = 0

in the scalar variables w1 and w2 is controllable if and only if the polyno-
mials a(ξ) and b(ξ) are coprime. Coprimeness of polynomials occurs very
naturally in the context of controllability and observability, as well as in
many other problems in mathematics. In this exercise we want to derive
a necessary and sufficient condition on the coefficients of a(ξ) and b(ξ) for
the coprimeness of a(ξ) and b(ξ).

From Exercises 2.23 and 2.24 we know that the polynomial equation

a(ξ)p(ξ) + b(ξ)q(ξ) = 1 (5.63)

has a solution (p(ξ), q(ξ)) with deg p(ξ) < m and deg q(ξ) < n if and only
if a(ξ) and b(ξ) are coprime.

(a) Show that by equating the terms of equal degree on both sides of
(5.63) we obtain a system of linear equations with the coefficients of
p(ξ) and q(ξ) as unknowns:

[
p0 · · · pm−1 qn−1 · · · q0

]
S =

[
1 0 · · · 0

]
,

with S given by

S =




a0 a1 · · · an
a0 · · · an−1 an

. . .
. . .

a0 a1 · · · an
b0 b1 · · · bm

b0 b1 · · · bm
. .
.

. .
.

b0 b1 · · · · · · bm








m rows





n rows

(5.64)

S is called the Sylvester resultant of a(ξ) and b(ξ).

(b) Prove that the polynomials a(ξ), b(ξ) are coprime if and only if the
Sylvester resultant S defined by (5.64) has rank n+m.

5.4 In Theorem 5.2.18 we have seen that the first-order system d
dt
x = Ax+Bu

is controllable if and only if the controllability matrix C defined by (5.21)
has rank n. Similar tests can be derived for higher-order systems (see for
example Exercise 5.3), but often these tend to become rather unwieldy.
However, in some special cases controllability tests can be derived that are
as simple as the result obtained for the first-order case.
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(a) Let r(ξ) ∈ R[ξ], w = col(w1, w2), where w1 is q1-dimensional and w2

is q2-dimensional, A ∈ Rq1×q1 and B ∈ Rq1×q2 . Assume that r(ξ) is
a polynomial of degree at least one. Prove that

r(
d

dt
)w1 +Aw1 = Bw2

is controllable if and only if rank[B AB · · · Aq1−1B] = q1. Hint:
Mimic the proof of Theorem 5.2.18 and use (or prove) the fact that
every polynomial of degree at least one defines a surjective function
from C to C.

(b) Mechanical systems are often described by second-order differential
equations. In the absence of damping, they lead to models of the form

M
d2q

dt2
+Kq = BF

with q the vector of (generalized) positions, assumed n-dimensional; F
the external forces; and M,K, and B matrices of suitable dimension;
M is the mass matrix and K the matrix of spring constants. Assume
thatM is square and nonsingular. Prove that with w = col(q, F ), this
system is controllable if and only if

rank[B KM−1B · · · (KM−1)n−1B] = n.

5.5 Consider the i/o behavior B defined by

−y + d2

dt2
y = −u+

d

dt
u.

(a) Is this system controllable?

(b) Write B as the direct sum of an autonomous part and a controllable
part by applying the proof of Theorem 5.2.14 to this system.

(c) Define Baut := {(u, y) | −y+ d

dt
y = 0, u = 0} and Bcontr := {(u, y) |

y +
d

dt
y = u}. Prove that B = Baut ⊕Bcontr.

5.6 (a) Consider the behavior B of R( d
dt
)w = 0 with R(ξ) = [ξ2 − 1 ξ + 1].

Provide two different decompositions of B as a direct sum of a con-
trollable and an autonomous part. Hint: Carefully examine the proof
of Theorem 5.2.14 to see where the nonuniqueness in the construction
of Baut occurs.

(b) Let R(ξ) ∈ Rg×q[ξ] be of full row rank and let B be the behavior of
R( d

dt
)w = 0. Let U(ξ) ∈ Rg×g[ξ] and V (ξ) ∈ Rq×q[ξ] be unimodular

matrices that transform R(ξ) into Smith form:

U(ξ)R(ξ)V (ξ) =
[
D(ξ) 0

]
.

As we have seen in Theorem 5.2.14, a decomposition of the behavior
B into a controllable and an autonomous part is obtained by defining

Rcontr(ξ) =
[
I 0

]
V −1(ξ), Raut(ξ) =

[
D(ξ) 0
0 I

]
V −1(ξ).
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Let W (ξ) ∈ Rq×q[ξ] be a unimodular matrix with the property that

[
D(ξ) 0

]
W (ξ) =

[
D(ξ) 0

]
,

and define

R′
aut(ξ) =

[
D(ξ) 0
0 I

]
W−1(ξ)V −1(ξ).

Prove that Rcontr(ξ), R
′
aut(ξ) also provides a decomposition of B into

a direct sum of a controllable and an autonomous part.

(c) In order to classify all possible decompositions of B into a direct sum
of a controllable and an autonomous part, we first classify all such
decompositions of B̃, the behavior of [D(ξ) 0]. Let R̃contr(ξ), R̃aut(ξ)
define such a decomposition. Assume that both R̃contr(ξ) and R̃aut(ξ)
are of full row rank. Prove that there exist unimodular matrices
U(ξ) ∈ Rg×g[ξ], U ′(ξ) ∈ Rq×q[ξ] and W (ξ) ∈ Rq×q[ξ] such that

R̃contr(ξ) = U(ξ)
[
I 0

]
,

[
D(ξ) 0

]
W (ξ) =

[
D(ξ) 0

]
,

R̃aut(ξ) = U ′(ξ)

[
D(ξ) 0
0 I

]
W (ξ).

(d) Let B = Bcontr ⊕Baut be a decomposition into a controllable part
and an autonomous part defined by polynomial matrices R′

contr(ξ)
and R′

aut(ξ). Assume that both R̃contr(ξ) and R̃aut(ξ) are of full row
rank. Prove that there exist unimodular matrices U(ξ) ∈ Rg×g[ξ],
U ′(ξ) ∈ Rq×q[ξ] and W (ξ) ∈ Rq×q[ξ] such that

R′
contr(ξ) = U(ξ)Rcontr(ξ),

[
D(ξ) 0

]
W (ξ) =

[
D(ξ) 0

]
,

R′
aut(ξ) = U ′(ξ)Raut(ξ)W

−1(ξ).

(e) Characterize all unimodular matrices W (ξ) ∈ Rq×q[ξ] with the prop-
erty that [

D(ξ) 0
]
W (ξ) =

[
D(ξ) 0

]
.

5.7 Consider the electrical circuit shown in Figure 5.5. Take as input u = V
and as output y = I.

(a) Choose, based on physical considerations, a state for this system.

(b) Derive the i/s/o equations.

(c) For which values of R1, R2, C1, C2 is this system controllable?

(d) For which values of R1, R2, C1, C2 is this system observable?

5.8 Consider the i/s system d
dt
x = Ax+Bu, with

A =

[
−1 0
0 −2

]
, B =

[
2
6

]
.

(a) Is this system controllable?
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V

−

+ ↑ I
R1

C1

R2

C2

FIGURE 5.5. Electrical circuit.

M1
w2

M3

k1

k1 k1

k1

M2

F

w1
w3

FIGURE 5.6. Mechanical system.

(b) Calculate an input function u that takes the state of the system in
log 2 time units from the zero state to [1 0]T .

5.9 Consider the mechanical system in Figure 5.6. Take all spring constants
to be equal to unity. Assume that an external force F acts on M1. All
displacements are in the horizontal direction only; rotations and vertical
movements are excluded.

(a) Derive the equations of motion.

(b) Show that if M2 =M3, then (w2, w3) is not observable from (w1, F ).

(c) Which motions (w2, w3) are compatible with w1 = 0 and F = 0?

(d) For which values of M2,M3 is w3 observable from (w1, w2); that is,
for which values of M2,M3 does w1 = w2 = 0 imply w3 = 0?

5.10 Consider the mechanical system depicted in Figure 5.7. The variables w1,
w2, and w3 denote the displacements from the respective equilibria. All
displacements are in the horizontal direction only; rotations and vertical
movements are excluded. Let M2 = 2, M3 = 1/2, and k1 = 1. Take as
the state x := [w2,

d
dt
w2, w3,

d
dt
w3]

T and as input u = w1. The input/state
equations are then given by

d

dt
x = Ax+Bu,
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w1M3

k1

k1 k1

k1

M2

w2

w3

FIGURE 5.7. Mechanical system.

with

A =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −4 0


 , B =




0
1/2
0
2


 .

(a) Determine eAt. Express the entries in simple trigonometric formulas.

(b) Assume that at time t = 0, the masses pass their respective equilib-
ria in opposite directions with velocity equal to one. Determine an
input function u that brings the masses to rest into their equilibrium
positions at t = 2π.

(c) Check without calculation whether or not there exists an input func-
tion u that drives the system from equilibrium at t = 0 to state
[1, 0,−1, 0]T at t = 1.

(d) Check without calculation whether or not there exists an input func-
tion u that drives the system from equilibrium at t = 0 to state
[1, 0,−1, 0]T at t = 1 and keeps it there for t ≥ 1.

(e) Characterize all states with the property that there exists an input
function u that drives the system from the equilibrium position to
that state and keeps it there.

5.11 (a) Let n > 1 and let A = Iλ ∈ Rn×n. Prove that for all b ∈ Rn×1, the
pair (A, b) is not controllable.

(b) Let B ∈ Rn×m and λ ∈ R. Show that a necessary condition for
controllability of (λI,B) is m ≥ n.

(c) Prove that if A ∈ Rn×n is such that (A, b) is controllable for all
nonzero b ∈ Rn×1, then n ≤ 2. Give an example of an A ∈ R2×2 with
this property.

5.12 (a) Let A ∈ Rn×n. Define Ã ∈ R2n×2n by

Ã :=

[
A 0
0 A

]
.

Prove that (Ã, b̃) is not controllable for any b̃ ∈ R2n×1.
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(b) Let Ai ∈ Rni×ni , i = 1, 2. Define Ã ∈ R(n1+n2)×(n1+n2) by

Ã :=

[
A1 0
0 A2

]
.

Suppose that A1 and A2 have a common eigenvalue. Prove that (Ã, b̃)
is not controllable for any b̃ ∈ R(n1+n2)×1.

5.13 Consider the mechanical system shown in Figure 5.8. The masses are

M3

k4

w4

M2

d2

M1

k3

d1

k1

k2

w2

w1

w3

FIGURE 5.8. Mechanical system.

M1,M2,M3; the spring constants are denoted by k1, k2, k3, k4; and d1, d2
are the damper constants. All these parameters are strictly positive. The
variables w1, w2, w3 denote the displacements from the respective equilib-
rium positions. All displacements are in the horizontal direction only; ro-
tations and vertical movements are excluded. On the third mass we can
exert a force w4. The system equations are

M1
d2

dt2
w1 = −k1w1 − d1

d

dt
w1 + k3w3 − k3w1,

M2
d2

dt2
w2 = −k2w2 − d2

d

dt
w2 + k4w3 − k4w2,

M3
d2

dt2
w3 = w4 + k3w1 + k4w2 − k3w3 − k4w3.

(a) Determine a matrix R(ξ) ∈ R3×4[ξ] such that with w =
col(w1, w2, w3, w4), the system is described by R( d

dt
)w = 0.

(b) Define polynomials ri(ξ) = ki+ki+2+diξ+Miξ
2, i = 1, 2. Show that

the system is controllable if and only if r1(ξ) and r2(ξ) are coprime.
Give a physical interpretation of this coprimeness condition.
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(c) According to Corollary 2.5.12, r1(ξ) and r2(ξ) are coprime if and only
if the equation

a(ξ)r1(ξ) + b(ξ)r2(ξ) = 1 (5.65)

has a solution (a(ξ), b(ξ)). Write a(ξ) = a0 + a1ξ and b(ξ) = b0 + b1ξ.
Rewrite (5.65) as a system of linear equations with a0, a1, b0, b1 as
the unknowns and the various physical parameters as coefficients.

(d) Show that (5.65) has a solution if and only if the coefficient matrix
of the linear equations that you derived in the previous question is
nonsingular.

(e) Show that the values of the parameters Mi, di, ki, ki+2, i = 1, 2, for
which the system is not controllable satisfy an algebraic equation, i.e.,
an equation that involves polynomial expressions in the parameters
Mi, di, ki, ki+2, i = 1, 2.

(f) Assume that all parameters are equal to one. Show that (w1, w2) is not
observable from (w3, w4). Give a physical interpretation explaining
which motions of (w1, w2) are possible when w3 and w4 are zero.

(g) Take as input u := w4 and as output y := (w1, w2). Determine an
i/s/o representation of the system with this input and output.

5.14 Let (A,B,C) ∈ Rn×n × Rn×1 × R1×n be given by

A =




0 . . . 0 . . . . . . −p0
1 0 0 . . . . . . −p1
0 1 0 . . . . . . −p2
...

. . .
...

0 0 0 1 0 −pn−2

0 0 0 0 1 −pn−1



, B =




q0
q1
...
...

qn−2

qn−1




,

C =
[
0 . . . . . . . . . 0 1

]
.

Define p(ξ) := det(Iξ −A) and q(ξ) := p(ξ)C(Iξ −A)−1B.

(a) Show that p(ξ) = p0 + p1ξ + · · · + pn−1ξ
n−1 + ξn and q(ξ) = q0 +

q1ξ + · · ·+ qn−1ξ
n−1.

(b) Prove that p(ξ) and q(ξ) have no common factors if and only if (A,B)
is controllable. Hint: Use the Hautus test for controllability.

5.15 In this exercise all matrices are assumed to be of appropriate sizes.

(a) Let S be a nonsingular matrix. Prove that (A,B) is controllable if
and only if (SAS−1, SB) is.

(b) Prove that (A,B) is controllable if and only if (A + BF,B) is con-
trollable.

(c) Let R be nonsingular. Prove that (A,B) is controllable if and only if
(A,BR) is controllable.
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(d) Let S and R be nonsingular. Prove that (A,B) is controllable if and
only if (S(A+BF )S−1, SBR) is controllable.

5.16 (a) Let (A,B) ∈ Rn×n × Rn×m and ℓ ∈ N. Prove that if

rank
[
B AB · · · Aℓ−1B

]
= rank

[
B AB · · · AℓB

]

then

rank
[
B AB · · · AℓB

]
= rank

[
B AB · · · Aℓ+1B

]

(b) Let (A,B) ∈ Rn×n × Rn×m with rankB = r. Prove that (A,B) is
controllable if and only if

rank
[
B AB · · · An−rB

]
= n.

(c) Refer to the proof of Corollary 5.2.25. To be consistent with the
notation in the proof of Corollary 5.2.25, let (A,B) ∈ Rk×k ×
Rk×m and let n ≥ k. Prove that rank[B AB · · ·An−1B] = k ⇒
rank[B AB · · ·Ak−1B] = k (this implies that (A,B) is controllable).
Hint: Use the Cayley–Hamilton theorem.

5.17 Consider the linearized equations (5.11) for the two-pendulum system of
Example 5.2.12. Is w2 observable from w3 and w1 − w3?

5.18 Let (A,B,C) ∈ R1×n × Rn×n × R1×n be given by

A =




0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . . . . 0 1

−p0 −p1 . . . . . . . . . −pn−1




, B =




0
...
...
0
1



,

C =
[

q0 q1 . . . . . . . . . qn−1

]
.

Define p(ξ) := det(Iξ −A) and q(ξ) := p(ξ)C(Iξ −A)−1B.

(a) Show that p(ξ) = p0 + p1ξ + · · · + pn−1ξ
n−1 + ξn and q(ξ) = q0 +

q1ξ + · · ·+ qn−1ξ
n−1.

(b) Prove that p(ξ) and q(ξ) have no common factors if and only if (A,C)
is observable. Hint: Use the Hautus test for observability.

5.19 Prove that (A,B) is controllable if and only if (AT , BT ) is observable.

5.20 Let (A,C) ∈ Rn×n × Rp×n. Let V be the linear subspace of C∞(R,Rp)
defined by {CeAtx | x ∈ Rn}. Prove that (A,C) observable if and only if
dimV = n. Interpret this result as linear independence in C∞(R,Rp) of the
columns of CeAt.
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5.21 Let A,B,C be given by

A =




0 1 −2
1 1 1
0 0 2


 , B =




1
0
0


 , C =

[
0 1 0

]
,

(a) Is (A,B) controllable?

(b) Is (A,C) observable?

(c) Determine a basis of R3 with respect to which (A,B,C) takes the
form
[
A11 A12

0 A22

]
,

[
B1

0

]
,
[
C1 C2

]
with (A11, B1) controllable.

Determine A11, A12, A22, B1, C1, and C2.

(d) Determine a basis of R3 with respect to which (A,B,C) takes the
form
[
A′

11 A′
12

0 A′
22

]
,

[
B′

1

B′
2

]
,
[
0 C′

2

]
with (A′

22, C
′
2) observable.

Determine A′
11, A

′
12, A

′
22, B

′
1, B

′
2, and C

′
2.

(e) Determine a basis of R3 with respect to which (A,B, c) takes the
Kalman form (5.55). Determine the various matrices in (5.55).

5.22 In the proof of Theorem 5.2.5 we tacitly used the fact that C∞(R,Rq) forms
a controllable behavior. In this exercise we check this for the case q = 1.
Let w1, w2 ∈ C∞(R,R) and t1 > 0. Prove that there exists w ∈ C∞(R,R)
such that

w(t) =

{
w1(t) t ≤ 0,
w2(t− t1) t ≥ t1.

Hint: Prove this first with w2 = 0, and use the function (2.18) given in
Definition 2.4.5 as a starting point for your construction.

5.23 Consider the i/s/o system

d

dt
x =

[
0 2
1 1

]
x+

[
1
0

]
u, y =

[
0 1

]
x.

Assume that during the time interval [0, 1] the input u was identically equal
to 1, and the output turned out to be identically equal to − 1

2
. Determine

the state at time t = 0 and t = 1.

5.24 Let A ∈ Rn×n and v ∈ Rn. Define the subspace V as V := span{Akv | k ≥
0}, (V is the smallest subspace containing the vectors Akv, k = 0, 1, 2, . . .).
Prove that V is A-invariant. In particular, the state trajectory xk of the
discrete-time system xk+1 = Axk spans an A-invariant subspace.

5.25 Consider the discrete-time i/s/o system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), k ∈ Z.

Derive tests for controllability and observability for this system.
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Elimination of Latent Variables and
State Space Representations

6.1 Introduction

In this chapter we take a closer look at dynamical systems with latent
variables as introduced in Chapter 1 and briefly discussed in Chapter 4.

As we have repeatedly observed in this book, latent variables show up nat-
urally in modeling systems from first principles. We consider two problems
that occur in the context of latent variables. The first one has to do with the
elimination of latent variables. The second has to do with the introduction
of a convenient class of manifest variables, specifically state variables.

We have already encountered the elimination problem in Chapter 1, in the
context of Examples 1.3.5 and 1.3.6. In the first of these examples, we
saw that a mathematical model for a linear electrical circuit can readily
be written down from the constitutive law of the electrical devices in the
branches, and Kirchhoff’s current and voltage laws. This leads to a model
that contains, in addition to the manifest variables, the current and voltage
at the external port, as well as many latent variables, notably the currents
and the voltages in the external branches. For the case at hand, we were
actually able to eliminate—in an ad hoc fashion—these latent variables
and obtain a differential equation describing the manifest behavior that
contains only the manifest variables. In Example 1.3.6, however, such an
elimination could not be done. The main result of this chapter shows that
elimination of latent variables in linear time-invariant differential systems
is indeed always possible. We also provide a systematic algorithm for how
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to do this. This leads to a general theory of eliminating latent variables in
linear systems. This is treated in Section 6.2.2.

State models form an especially important class of latent variable models.
The general procedure for eliminating latent variables can, of course, be ap-
plied to this case. However, for state space systems, the converse problem,
the one of introducing variables, is also of paramount importance. Indeed,
very general analysis and synthesis techniques for state models are avail-
able. We study the question of introducing state variables in the context
of i/o systems. This leads to the input/state/output representation problem
treated in Section 6.4.

Section 6.5 is devoted to equivalent and minimal state space representations.
In Chapter 4 we already formulated sufficient conditions for two state space
representations to be equivalent. Here we present necessary conditions. Min-
imality of state space representations refers to the dimension of the state
space representation of a given behavior. It turns out that minimality is
equivalent to observability.

The last section of this chapter is concerned with what we call image repre-
sentations. Up to now, we have studied systems whose behavior is specified
by the solution set of a system of differential equations. We call such rep-
resentations kernel representations. Such systems need not be controllable,
of course. We shall see that it is exactly the controllable systems that also
admit an image representation.

6.2 Elimination of Latent Variables

6.2.1 Modeling from first principles

As argued in Chapter 1 and further elaborated in Chapter 4, models ob-
tained from first principles invariably contain latent variables, in addition
to the manifest variables, which our model aims at describing. In the con-
text of behaviors described by differential equations as studied in Chapters
2 and 3, this leads to the following class of dynamical systems with latent
variables:

R(
d

dt
)w =M(

d

dt
)ℓ. (6.1)

Here w : R → Rq is the trajectory of the manifest variables, whereas
ℓ : R → Rd is the trajectory of the latent variables. The equating space is
Rg, and the behavioral equations are parametrized by the two polynomial
matrices R(ξ) ∈ Rg×q[ξ] and M(ξ) ∈ Rg×d[ξ].

The question that we want to consider is, What sort of behavioral equation
does (6.1) imply about the manifest variable w alone? In particular, we
wonder whether the relations imposed on the manifest variable w by the
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full behavioral equations (6.1) can themselves be written in the form of
a system of differential equations. In other words, we would like to know
whether or not the set

B = {w ∈ L
loc
1 (R,Rq) | ∃ ℓ ∈ L

loc
1 (R,Rd) s.t. R(

d

dt
)w =M(

d

dt
)ℓ weakly}

(6.2)
can be written as the (weak) solution set of a system of linear differential
equations. We will see that (in a sense) it can indeed be expressed in this
way. Actually, in Chapter 1, we already informally worked out an example.
The RLC network of Example 1.3.5 was modeled using the constitutive
equations of the components and Kirchhoff’s laws. This led to the differ-
ential equations (1.1, 1.2, 1.3). We set out to model the port behavior of
this circuit, and indeed, after some ad hoc manipulations we arrived at
(1.12,1.13). The question is, Was the fact that the manifest behavior is also
described by a differential equation a coincidence? If it is not, how can we
find such a differential equation in a systematic way? Before we answer that
question, we examine two more examples.

Example 6.2.1 Consider a mechanical system consisting of three masses
and four springs; see Figure 6.1. Let w1, w2, w3 denote the displacements of
the masses from their respective equilibria. Denote the spring constants by
k1, k2, k3, k4, and the masses bym1,m2,m3. Suppose that we are interested

w1

k1

m1

k2

m2

k3

m3

k4

w2 w3

FIGURE 6.1. Mechanical system.

in a mathematical model relating the displacement w1 of the first mass to
the displacement w3 of the third mass. The relations between the variables
w1, w2, w3 are given by

m1
d2

dt2w1 = −k1w1 + k2(w2 − w1),

m2
d2

dt2w2 = k2(w1 − w2) + k3(w3 − w2),

m3
d2

dt2w3 = k3(w2 − w3)− k4w3.

(6.3)

The relation that we are after is that between w1 and w3. The equations
(6.3) determine this relation only implicitly. Implicitly, because a third vari-
able, w2, is also involved in (6.3). The variables w1 and w3 are the variables
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we are interested in, whereas w2 is just an auxiliary variable. Therefore, we
call w1 and w3 the manifest variables and w2 a latent variable.

If we are not satisfied with an implicit relation, in other words, if we want
to obtain a differential equation in which only w1 and w3 appear, then we
have to eliminate w2 from (6.3). For the case at hand this can be done
as follows. For simplicity, assume that all constants (masses and spring
constants) are unity. From the first equation in (6.3) we obtain

w2 = 2w1 +
d2

dt2
w1,

d2

dt2
w2 = 2

d2

dt2
w1 +

d4

dt4
w1, (6.4)

where the second expression is obtained by differentiating the first twice.

Substituting this expression for w2 and
d2

dt2w2 in the second and third equa-
tions of (6.3) yields

3w1 + 4
d2

dt2
w1 +

d4

dt4
w1 − w3 = 0,

2w1 +
d2

dt2
w1 − 2w3 −

d2

dt2
w3 = 0.

(6.5)

Notice that (6.5) does not contain w2. It is clear that for any triple
(w1, w2, w3) that satisfies (6.3), the corresponding pair (w1, w3) satisfies
(6.5). The converse is less obvious, yet for any pair (w1, w3) that satisfies
(6.5) there indeed exists a w2 such that (6.3) is satisfied. Otherwise stated,
we claim that the relations imposed implicitly on (w1,w3) by (6.4) are given
explicitly by (6.5). Later in this chapter we will see how we could have ar-
rived at these equations in a systematic way, and also it will also become
clear that the relation between w1 and w3 is indeed determined by (6.5).

�

Example 6.2.2 Consider the electrical circuit consisting of a resistor, a
capacitor, an inductor, and an external port shown in Figure 6.2. Suppose

(I, V )

✻+

− q

q
R

C
☎
✆

☎
✆

☎
✆
L

FIGURE 6.2. Electrical circuit.

that we want to model the relation between the voltage V across and the
current I through the external port. Introduce the voltages across and
the currents through the other elements as latent variables. The equations
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describing the full behavior are, in the obvious notation (see also Example
4.3.2),

V = VR = VC = VL, I = IR + IC + IL,

VR = IRR, IC = C
d

dt
VC , VL = L

d

dt
IL.

(6.6)

This is again a set of equations that implicitly determines the relation
between the manifest variables V and I, but it contains the latent variables
VR, VC , VL, IR, IC and IL. An explicit relation can readily be obtained.
First note that d

dtV can be expressed in terms of I and IL by proceeding
as follows:

C
d

dt
V = C

d

dt
VC = IC = I − IR − IL = I − VR

R
− IL = I − V

R
− IL, (6.7)

and hence

C(
d

dt
)2V =

d

dt
I − d

dt

V

R
− d

dt
IL =

d

dt
I − d

dt

V

R
− V

L

=
d

dt
I − d

dt

V

R
− V

L
.

(6.8)

From (6.7) we obtain the desired equation:

1

L
V +

1

R

d

dt
V + C

d2

dt2
V =

d

dt
I. (6.9)

Again, it is easy to see that (6.6) implies that that (V, I) satisfies (6.9).
The converse is also true. We claim that the manifest behavior, in this case
the behavior of the pair (I, V ), is modeled by equation (6.9). Also, this
example may be treated more systematically. See Exercise 6.2. �

Examples 6.2.1 and 6.2.2 confirm what we already argued extensively in
Chapters 1 and 4, namely that in order to obtain a model of the relation
between certain variables in a system of some complexity, it is natural
to first model the relation among many more variables. Subsequently, the
equations are then manipulated so as to eliminate the variables in which
we are not interested.

Examples 6.2.1 and 6.2.2 indicate that the manifest behavior of a given
full behavior described by linear differential equations with constant coef-
ficients is described by relations of the same type. The suggestions made
by the examples will be justified shortly. However, before we proceed with
the linear dynamic case, we give a motivating example of the elimination
problem and the difficulties that may be encountered for a nonlinear static
mathematical model with latent variables.



210 6. Elimination of Latent Variables and State Space Representations

Example 6.2.3 Consider in the context of Definition 1.2.9 the static
model in R2 with Bf := {(w, ℓ) ∈ R2 | wℓ = 1}. Then B, the manifest
behavior, is given by B = {w ∈ R | ∃ ℓ ∈ R such that (w, ℓ) ∈ Bf}. The
problem that we want to address is, Can B be described in a similar “nice”
way as Bf? What do we mean by nice in this context? Well, Bf is the zero
set of a polynomial equation (it is therefore called an algebraic set , or in
this case, an algebraic curve). What we would like to know is whether the
manifest behavior is also the zero set of an algebraic equation. It is trivial
to see that in this case B = {w ∈ R | w 6= 0}, which is not an algebraic set,
since an algebraic set in R consists of finitely many points, or it coincides
with R. So in this example the answer is in a sense negative: the full be-
havior was described nicely, whereas the manifest behavior was described
less nicely, namely by an inequality rather than by an equation. �

An appealing and insightful way of thinking about the problem of describing
the manifest behavior B is the observation that B is just the projection
of Bf onto Lloc

1 (R,Rq), the space where the manifest variables live, along
Lloc
1 (R,Rd), the space of latent variables. The problem with Example 6.2.3

is the fact that the projection of an algebraic set in a Euclidean space onto a
lower-dimensional subspace is not necessarily an algebraic set. The question
that arises is the following: Is there any chance that in the case of behaviors
described by linear time-invariant differential equations, the projection of
the full behavior on the signal space Lloc

1 (R,Rq) is also described by linear
time-invariant differential equations? An obvious necessary condition for
this to hold is that the manifest behavior be a linear shift-invariant subspace
of (Rq)R. That this condition is indeed satisfied is easy to prove.

Theorem 6.2.4 The manifest behavior B defined by (6.2) is linear and
shift-invariant.

Proof See Exercise 6.10. �

Remark 6.2.5 Theorem 6.2.4 reflects only a necessary condition for a
manifest behavior to be described by a set of linear differential equations.
It is not true that every linear shift-invariant subspace of (Rq)R is the
solution set of a system of linear time-invariant differential equations; see
Exercise 6.7. So there is still work to be done in order to arrive at the result
that the manifest behavior (6.2) is described by a set of linear differential
equations. �

6.2.2 Elimination procedure

We now describe a general procedure for obtaining a description of the
manifest behavior.
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Theorem 6.2.6 Let R(ξ) ∈ Rg×q[ξ], M(ξ) ∈ Rg×d[ξ], and denote by Bf

the full behavior of (6.1):

Bf = {(w, ℓ) ∈ L
loc
1 (R,Rq × Rd) | R( d

dt
)w =M(

d

dt
)ℓ, weakly }. (6.10)

Let the unimodular matrix U(ξ) ∈ Rg×g[ξ] be such that

U(ξ)M(ξ) =

[
0

M ′′(ξ)

]

, U(ξ)R(ξ) =

[
R′(ξ)
R′′(ξ)

]

, (6.11)

with M ′′(ξ) of full row rank. By Theorem 2.5.23 such a unimodular matrix
U(ξ) exists. Then the C∞ part of the manifest behavior B, defined by B ∩
C∞(R,Rq) with B given by (6.2), consists of the C∞ solutions of

R′(
d

dt
)w = 0.

Proof The partition of U(ξ)R(ξ) and U(ξ)M(ξ) in (6.11) provides the
following equivalent description of Bf :

R′(
d

dt
)w = 0, (6.12)

R′′(
d

dt
)w = M ′′(

d

dt
)ℓ, (6.13)

with R′(ξ) ∈ Rg′×q[ξ], R′′(ξ) ∈ Rg′′×q[ξ], and M ′′(ξ) ∈ Rg′′×d. Now, exam-
ine these equations. Equation (6.12) entails some genuine constraint on the
manifest variables w. Indeed, if w is such that (w, ℓ) ∈ Bf for some ℓ, then
certainly w itself already has to satisfy (6.12). Let us now look at (6.13).
We claim that this equation entails at most some smoothness constraints
on w. In other words, if w needed only to satisfy (6.13) for some ℓ, then the
components of w would need to be sufficiently differentiable, but no further
constraints would have to be imposed. In particular, any w ∈ C∞(R,Rq)
would be permitted. In order, to see this, let M̃ ′′(ξ) ∈ Rg′′×g′′

be a square
submatrix ofM ′′(ξ) such that det(M̃ ′′(ξ)) is nonzero. Such a submatrix ex-
ists, since M ′′(ξ) has full row rank. Assume for simplicity that M̃ ′′(ξ) con-
sists of the first g′′ columns of M ′′(ξ). Otherwise, permute the components
of ℓ so as to achieve this. Consider the matrix of rational functions

(M̃ ′′(ξ))−1R′′(ξ).

This matrix of rational functions need not be proper. Let k ∈ Z+ be such
that

1

ξk
(M̃ ′′(ξ))−1R′′(ξ)
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is proper. Write the system of equations (6.13) as

R′′(
d

dt
)w = M̃ ′′(

d

dt
)ℓ1 +

˜̃M ′′(
d

dt
)ℓ2

and consider the related system

R′′(
d

dt
)w = M̃ ′′(

d

dt
)
dk ℓ̃1
dtk

. (6.14)

Note that (ξkM̃ ′′(ξ))−1R′′(ξ) is proper. Consequently, as shown in Section
3.3, w, as constrained by (6.14), is a free variable, implying that for each
w ∈ Lloc

1 (R,Rq) there exists an ℓ̃1 ∈ Lloc
1 (R,Rq) such that (6.14) is satisfied.

Let w be such that dkw
dtk
∈ Lloc

1 (R,Rq). Then as we have just seen, there

exists ℓ̃1 such that (6.14) is satisfied. From the proof of Theorem 3.3.13 it
follows that since the “input” w to (6.14) is k times differentiable, so will

be the “output” ℓ̃1. Hence for ws such that dkw
dtk
∈ Lloc

1 (R,Rq) there exists
ℓ1 such that

R′′(
d

dt
)w = M̃ ′′(

d

dt
)ℓ1.

This implies that (w1, (ℓ1, 0)) ∈ Bf , and we conclude that for each w :

R → Rq such that dkw
dtk
∈ Lloc

1 (R,Rq), there exists an ℓ such that (w, ℓ)
satisfies (6.13) weakly. Consequently, for each w : R→ Rq such that (6.12)

is satisfied and such that dkw
dtk
∈ Lloc

1 (R,Rq), there exists an ℓ such that
(w, ℓ) ∈ Bf . �

A close examination of the above proof shows that (6.1) imposes only dif-
ferentiability conditions on w in addition to the constraints imposed by the
differential equation (6.12).

In the sequel we ignore these differentiability conditions and simply declare
the manifest behavior of (6.1) to be described by the differential equation
(6.12). In other words, we impose that (6.12) is the result of eliminating
the latent variables: it describes the laws induced on the manifest variables
by the behavioral equations (6.10).

Ignoring the smoothness constraints can be justified as follows. From
a mathematical point of view it is often natural to use the closure in
Lloc
1 (R,Rq) of the manifest behavior of (6.10) instead of the manifest be-

havior as defined in a set theoretic way. The procedure of taking the closure
can be brought into connection with Example 6.2.3. By Theorem 2.4.4, the
full behavior Bf is a closed subspace of Lloc

1 (R,Rq ×Rd). Then why is the
projection of Bf not closed? This is because projection is not a closed map;
i.e., projections need not map a closed set to a closed set. To see this, take
the full behavior of Example 6.2.3. This is obviously a closed subset of R2.
However, the projection onto the w space is not closed in R. Analogously,
the projection of, for instance, the full behavior of d

dtw = ℓ as a subspace
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of Lloc
1 (R,R2) on the space of w-variables Lloc

1 (R,R) consists of the abso-
lute continuous functions in Lloc

1 (R,R). This is not all of Lloc
1 (R,R): it is a

dense, but not a closed, subspace of Lloc
1 (R,R). An example of a function

w ∈ Lloc
1 (R,R) that does not belong the projection, is the step function:

w(t) = 0 for t negative and w(t) = 1 for t positive. Indeed we have seen in
Exercise 3.25 that there does not exist an ℓ such that d

dtw = ℓ, weakly.

Motivated by the above discussion, we define the manifest behavior as
follows.

Definition 6.2.7 Under the conditions and in the notation of Theorem
6.2.6, the manifest behavior B ⊂ Lloc

1 (R,Rq) is defined as the set of weak
solutions of

R′(
d

dt
)w = 0. (6.15)

�

Note that the behavioral equation (6.15) for the C∞ part of the manifest
behavior was obtained by means of a theorem, whereas the manifest be-
havior viewed as a subset of Lloc

1 (R,Rq) is just defined to be the set of
weak solutions of the same behavioral equation. As a consequence, the no-
tation (6.2) is not completely consistent with the above definition of the
manifest variable. Since the behavior defined by (6.15) is the closure of the
behavior defined by (6.2) and thus only slightly larger, this mild inconsis-
tency should not cause confusion. In the case that M ′′( d

dt )ℓ = R′′( d
dt )w

does not impose additional smoothness conditions, which means that for
every w ∈ Lloc

1 (R,Rq) that satisfies R′( d
dt )w = 0 weakly, there exists an

ℓ such that M ′′( d
dt )ℓ = R′′( d

dt )w, the manifest behavior is closed and is

therefore exactly described by R′( d
dt )w = 0. In that case we say that exact

elimination is possible.

Let us now come back to Example 6.2.1 and see how we can eliminate the
latent variable using the general procedure discussed above.

Example 6.2.8 (Example 6.2.1 continued) Consider once more the
mechanical system consisting of four springs and three masses, as depicted
in Figure 6.1. Consider again w2 as a latent variable. The problem is to
eliminate w2. We describe the solution to this problem in terms of Theorem
6.2.6.

In this example the polynomial matrices R(ξ) ∈ R3×2[ξ] and M(ξ) ∈
R3×1[ξ] are given by

R(ξ) =





2 + ξ2 0
1 1
0 2 + ξ2



 , M(ξ) =





1
2 + ξ2

1



 .
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Redefine w := col(w1, w3) and ℓ := w2, so that (6.3) can be written as

R(
d

dt
)w =M(

d

dt
)ℓ.

In order to bring these equations into the form (6.12, 6.13), subtract the
first row of M(ξ) from the third row and multiplied by ξ2 + 2 from the
second row. Call the resulting matrix M̃(ξ). Treat R(ξ) analogously to
obtain R̃(ξ). Then

R̃(ξ) =





2 + ξ2 0
3 + 4ξ2 + ξ4 −1
−2− ξ2 2 + ξ2



 , M̃(ξ) =





1
0
0



 . (6.16)

It is clear that the first row of M̃(ξ) is of full row rank. According to
Theorem 6.2.6 and Definition 6.2.7, the last two rows of R̃(ξ) therefore
yield the desired equations for the manifest behavior:

3w1 + 4
d2

dt2
w1 +

d4

dt4
w1 − w3 = 0,

−2w1 −
d2

dt2
w1 + 2w3 +

d2

dt2
w3 = 0.

(6.17)

The first row of (6.16) yields

2w1 +
d2

dt2
w1 = w2. (6.18)

As remarked before, (6.18) poses only a smoothness condition on w1, and
therefore we ignore it. However, in the case at hand, the smoothness im-
posed by (6.18) is already guaranteed by (6.17), so that ignoring it is com-
pletely justified. See Exercise 6.9. As a consequence, the manifest behavior
is described by (6.17). This is the answer that we found in Example 6.2.1,
but now we understand much better why it is indeed the correct answer.

�

6.2.3 Elimination of latent variables in interconnections

Often, dynamical systems can be thought of as interconnections of “simple”
subsystems. Intuitively speaking, the description of an interconnection of
two systems consists of behavioral equations that describe the individual
subsystems and equations relating the variables that connect the subsys-
tems. In this section we give an example of such an interconnection, and
we show how we can use the elimination procedure in order to obtain a
description of the external behavior from the equations that define the sub-
systems and those that define the interconnection. The example that we
are considering here is the series interconnection of two SISO systems.
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Example 6.2.9 Let pi(ξ), qi(ξ) ∈ R[ξ], i = 1, 2. Consider the i/o systems

Σ1 : p1(
d

dt
)y1 = q1(

d

dt
)u1, Σ2 : p2(

d

dt
)y2 = q2(

d

dt
)u2. (6.19)

The series interconnection of the associated i/o behaviors is defined by the
interconnecting equation

y1 = u2. (6.20)

The interpretation of this interconnection is that the input of the second
i/o system is the output of the first. See Figure 6.3. Suppose that we are

Σ1 Σ2

y2u1 y1 u2

FIGURE 6.3. Series interconnection of Σ1 and Σ2.

interested in the relation between the “external” variables u1 and y2. This
relation can be determined by eliminating y1 and u2 from (6.19) and (6.20).
Define R(ξ) and M(ξ) as follows:

R(ξ) :=





q1(ξ) 0
0 p2(ξ)
0 0



 , M(ξ) :=





p1(ξ) 0
0 q2(ξ)
−1 1



 .

Equations (6.19), (6.20) can now be written as

R(
d

dt
)

[
u1
y2

]

=M(
d

dt
)

[
y1
u2

]

.

In order to find equations for the behavior of (u1, y2), extract the greatest
common divisor from p1(ξ) and q2(ξ): Suppose that p1(ξ) = c(ξ)p̄1(ξ) and
q2(ξ) = c(ξ)q̄2(ξ), where p̄1(ξ) and q̄2(ξ) have no further common factors.
By Corollary B.1.7, Bezout, there exist polynomials a(ξ), b(ξ) such that
a(ξ)p̄1(ξ) + b(ξ)q̄2(ξ) = 1. Define unimodular matrices U1(ξ), U2(ξ), U3(ξ)
as follows:

U1(ξ) =





1 0 p1(ξ)
0 1 0
0 0 1



 , U2(ξ) =





a(ξ) b(ξ) 0
−q̄2(ξ) p̄1(ξ) 0

0 0 1



 , U3(ξ) =





1 0 0
0 0 1
0 1 0



 .

One easily checks that

U3(ξ)U2(ξ)U1(ξ)M(ξ) =





0 c(ξ)
−1 1
0 0
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and

U3(ξ)U2(ξ)U1(ξ)R(ξ) =





a(ξ)q1(ξ) b(ξ)p2(ξ)
0 0

−q1(ξ)q̄2(ξ) p̄1(ξ)p2(ξ)



 .

It is clear that U3(ξ)U2(ξ)U1(ξ)M(ξ) has the required form; that is, the
nonzero part has full row rank. It follows that the relation between u1 and
y2 is described by the third row of U3(ξ)U2(ξ)U1(ξ)R(ξ):

p̄1(
d

dt
)p2(

d

dt
)y2 = q1(

d

dt
)q̄2(

d

dt
)u1.

�

Example 6.2.9 shows the power of the elimination procedure. It shows in a
precise way how to treat common factors. It is important to observe that
because of common factors, the series interconnection of Σ1 and Σ2 may
have a different manifest behavior than the series interconnection of Σ2 and
Σ1.

Other examples of interconnections are given in the Exercises 6.4 (feedback
interconnection) and 6.5 (parallel interconnection).

6.3 Elimination of State Variables

In Chapter 4 we have introduced input/state/output models. We view the
state as a special latent variable. In this section we study the problem of
determining the relation between the input and output of an i/s/o model. It
turns out that for SISO systems we can find a complete answer by applying
the general elimination procedure presented in Section 6.2.2. We present
the analysis in two steps: first for i/s/o systems of the form (4.16) with
D = 0. Subsequently,we treat the general case.

Theorem 6.3.1 Consider the system

d

dt
x = Ax+ bu,

y = cx,
(6.21)

with (A, b, c) ∈ Rn×n×Rn×1×R1×n. Define p̄(ξ) ∈ R[ξ] and r̄(ξ) ∈ R1×n[ξ]
by

p̄(ξ) := det(Iξ −A) r̄(ξ) := p̄(ξ)c(Iξ −A)−1.

Let g(ξ) be the greatest common divisor of (p̄(ξ), r̄1(ξ), . . . , r̄n(ξ)). Define
the polynomials p(ξ) and q(ξ) by

p(ξ) :=
p̄(ξ)

g(ξ)
and q(ξ) :=

r̄(ξ)

g(ξ)
b. (6.22)
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Then the i/o behavior of the i/s/o representation (6.21) is given by

p(
d

dt
)y = q(

d

dt
)u. (6.23)

Proof In view of the discussion following Definition 4.6.1 and by Corollary
5.3.14, we may without loss of generality assume that (A, b, c) has the form

A =

[
A11 A12

0 A22

]

, b =

[
b1
b2

]

, c =
[
0 c2

]
(6.24)

with (A22, c2) observable. Using this form, (6.21) becomes

d

dt
x1 = A11x1 +A12x2 + b1u,

d

dt
x2 = A22x2 + b2u,

y = c2x2.

(6.25)

From (6.24) it appears logical to eliminate x in two steps. First eliminate x1,
the nonobservable component of the state, and then eliminate x2, the ob-
servable component. Elimination of x1 from (6.25) yields straightforwardly

d

dt
x2 = A22x2 + b2u,

y = c2x2.
(6.26)

In order to eliminate x2, define matrices R(ξ) and M(ξ) by

R(ξ) :=

[
b2 0
0 1

]

, M(ξ) :=

[
Iξ −A22

c2

]

.

Then (6.26) can be written as

R(
d

dt
)

[
u
y

]

=M(
d

dt
)x2.

Obviously, the row rank of M(ξ) is n2, the dimension of A22, so that
we should be able to create exactly one zero-row in M(ξ) by means of
elementary row operations. Define the polynomials p̃(ξ), r̃(ξ) as follows
p̃(ξ) := det(Iξ−A22), and r̃(ξ) := p̃(ξ)c2(Iξ−A22)

−1. Since (c2, A22) is ob-
servable, it follows from Theorem 5.5.1 that p̃(ξ) and r̃(ξ) have no common
factor. Consequently, by Theorem 2.5.10, there exist matrices U11(ξ), U12(ξ)
of appropriate dimensions such that the matrix

U(ξ) :=

[
U11(ξ) U12(ξ)
r̃(ξ) −p̃(ξ)

]
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is unimodular. Now,

U(ξ)R(ξ) =

[
∗ ∗

r̃(ξ)b2 −p̃(ξ)

]

, U(ξ)M(ξ) =

[
∗
0

]

, (6.27)

where as usual, the ∗s denote polynomial expressions whose exact values
are immaterial. From Theorem 6.2.6 and Definition 6.2.7 it follows that the
manifest behavior of (6.26), and therefore of (6.25), is given by

r̃(
d

dt
)b2u− p̃(

d

dt
)y = 0.

It remains to show that p(ξ) = p̃(ξ) and r̃(ξ)b2 = q(ξ), where p(ξ) and q(ξ)
are given by (6.22). It easy to check that

p̄(ξ) = det(Iξ −A11) det(Iξ −A22),

r̄(ξ) = det(Iξ −A11) det(Iξ −A22)
[
0 c2(Iξ −A22)

−1
]
.

Obviously, det(Iξ −A11) divides both p̄(ξ) and r̄(ξ), and since (c2, A22) is
observable, it follows from Theorem 5.5.1 that g.c.d.(p̄(ξ), r̄(ξ)) = det(Iξ−
A11), and hence indeed p̃(ξ) = p(ξ) and r̃(ξ) = r(ξ). �

The above result can straightforwardly be generalized to SISO systems in
which d 6= 0.

Corollary 6.3.2 Consider the system

d

dt
x = Ax+ bu,

y = cx+ du,
(6.28)

where (A, b, c, d) ∈ Rn×n × Rn×1 × R1×n × R. Define p̄(ξ) ∈ R[ξ] and
r̄(ξ) ∈ R1×n[ξ] by

p̄(ξ) := det(Iξ −A), r̄(ξ) := p̄(ξ)c(Iξ −A)−1. (6.29)

Let g(ξ) be the greatest common divisor of (p̄(ξ), r̄(ξ)). Define

p(ξ) :=
p̄(ξ)

g(ξ)
and q(ξ) :=

r̄(ξ)

g(ξ)
b+ dp(ξ). (6.30)

Then the i/o behavior of the i/s/o representation (6.28) is given by

p(
d

dt
)y = q(

d

dt
)u.

Proof Define ỹ := y − du. Then ỹ = cx. Define q̃(ξ) := q(ξ) − dp(ξ).
According to Theorem 6.3.1 the relation between u and ỹ is given by
p( d

dt )ỹ = q̃( d
dt )u. This implies that

p(
d

dt
)y = p(

d

dt
)ỹ + dp(

d

dt
)u = (q̃(

d

dt
) + dp(

d

dt
))u = q(

d

dt
)u.
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�

For observable systems the i/o behavior is particularly easy to describe.
This case is treated in the next corollary.

Corollary 6.3.3 Consider the i/s/o system (6.28). Assume that (A, c) is
an observable pair. Define p(ξ) ∈ R[ξ] and q(ξ) ∈ R[ξ] by

p(ξ) := det(Iξ −A) q(ξ) := p(ξ)c(Iξ −A)−1b+ dp(ξ).

Then the i/o behavior of the i/s/o representation (6.28) is given by

p(
d

dt
)y = q(

d

dt
)u.

Proof Since (A, c) is observable, it follows from Theorem 5.5.1 that p(ξ)
and r(ξ) have no common factors. The statement now follows from Theorem
6.3.1. �

Remark 6.3.4 As remarked in Section 6.2.2, the equation defined by the
first row of U(ξ)R(ξ) and U(ξ)M(ξ) in (6.27) could impose a smoothness
condition on w. It can be proved that for this particular problem, the
elimination of the state, this is not the case. That means that the i/o
behavior defined by (6.21) is exactly equal to the i/o behavior defined by
(6.23). In other words, exact elimination is possible; see Exercise 6.25. �

Remark 6.3.5 The common factor g(ξ) of p̄(ξ) and r̄(ξ) corresponds to
the nonobservable part of the state space and is canceled in the elimination
procedure. In the final i/o description (6.23) it could very well be the case
that p(ξ) and q(ξ) still have a common factor. This factor corresponds to
a noncontrollable part of the state space and should not be canceled. See
also Exercise 6.20. �

Example 6.3.6 Consider the i/s/o system

d

dt
x = Ax+ bu,

y = cx.
(6.31)

with

A =





2 4 −5
−1 −3 15
0 0 3



 , b =





4
1
1



 , c =
[
0 1 −2

]
.
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Note that this system is neither controllable nor observable. Straightfor-
ward calculations yield

det(Iξ −A) = 6− 5ξ − 2ξ2 + ξ3,

[det(Iξ −A)] (Iξ −A)−1 =









−9 + ξ2 −12 + 4ξ 45− 5ξ

3− ξ 6− 5 + ξ2 −25 + 15ξ

0 0 −2 + ξ + ξ2









,

so that p̄(ξ) = 6 − 5ξ − 2ξ2 + ξ3 = (ξ − 3)(ξ + 2)(ξ − 1), and r̄(ξ) =
[ 3− ξ 6− 5ξ + ξ2 −21 + 13ξ − 2ξ2 ] = (ξ − 3) [−1 −2 + ξ 7− 2ξ ] . It
follows that the greatest common divisor of p̄(ξ) and r̄(ξ) is given by
g(ξ) = ξ − 3. Define p(ξ) and q(ξ) by

p(ξ) :=
p̄(ξ)

g(ξ)
= −2 + ξ + ξ2, q(ξ) :=

r̄(ξ)

g(ξ)
b = 1− ξ.

According to Theorem 6.3.1, the i/o behavior of the system (6.31) is there-
fore described by

−2y + d

dt
y +

d2

dt2
y = u− d

dt
u. (6.32)

Notice that the polynomials p(ξ) and q(ξ) still have a factor ξ − 1 in com-
mon. This factor corresponds to a noncontrollable but observable part of
the behavior, and therefore this factor should not be canceled. The com-
mon factor ξ− 3 in p̄(ξ) and r̄(ξ) corresponds to the nonobservable part of
the system, and this factor is canceled by the elimination procedure.

�

6.4 From i/o to i/s/o Model

In the previous section we have seen how to obtain the i/o behavior of
an i/s/o model. The last question to be answered is that of finding an
i/s/o representation for a given i/o behavior. Otherwise stated, rather than
eliminating a latent variable, we want to introduce a latent variable, but a
special one: the state. We treat only the SISO case.

Let the polynomials p(ξ) and q(ξ) be given by

p(ξ) = p0 + p1ξ + · · ·+ pn−1ξ
n−1 + ξn,

q(ξ) = q0 + q1ξ + · · ·+ qn−1ξ
n−1 + qnξ

n,
(6.33)
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and consider the i/o system described by

p(
d

dt
)y = q(

d

dt
)u. (6.34)

The problem under consideration is the following: Given an i/o system of
the form (6.34), does there exist an i/s/o representation of it, and if the
answer is affirmative, how can we obtain this i/s/o representation?

The i/o behavior is defined by

Bi/o := {(u, y) ∈ L
loc
1 (R,R× R) | p( d

dt
)y = q(

d

dt
)u, weakly }. (6.35)

In mathematical terms, the state representation problem is this:

Definition 6.4.1 State Representation Problem Given Bi/o, defined

by (6.35), find n′ ∈ N and four matrices A, b, c, d ∈ Rn′×n′×Rn′×1×R1×n′×
R1×1 such that the i/o behavior of

d

dt
x = Ax+ bu,

y = cx+ du
(6.36)

is exactly Bi/o. �

We present two methods for obtaining such an i/s/o representation. Both
are based on Corollary 6.3.2. There it was shown what i/o equations cor-
respond to a given quadruple (A, b, c, d). The state representation problem
can therefore be rephrased as, Given polynomials p(ξ) and q(ξ), find ma-
trices (A, b, c, d) of appropriate dimensions such that the correspondence
between (A, b, c, d) and (p(ξ), q(ξ)) is given by (6.29, 6.30).

6.4.1 The observer canonical form

The first solution to the state representation problem yields what is called
the observer canonical form.

Let p(ξ), q(ξ) be given by (6.33). Let d ∈ R and q(ξ) ∈ R[ξ] be such that
q(ξ) = dp(ξ) + q̃(ξ) and deg q̃(ξ) < deg p(ξ). Note that q̃(ξ) is given by
q̃(ξ) = q(ξ) − qnp(ξ). Denote the coefficients of the polynomial q̃(ξ) by
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q̃0, . . . , q̃n−1 and define (A, b, c, d) ∈ Rn×n × Rn×1 × R1×n by

A :=












0 . . . . . . . . . 0 −p0
1 0 . . . . . . . . . −p1
0 1 0 . . . . . . −p2
...

. . .
. . .

...
0 . . . 0 1 0 −pn−2

0 . . . . . . 0 1 −pn−1












, b :=













q̃0
q̃1
...
...

q̃n−2

q̃n−1













,

c :=
[
0 . . . . . . . . . 0 1

]
, d := qn.

(6.37)

Theorem 6.4.2 Let (A, b, c, d) be defined by (6.37). Then

d

dt
x = Ax+ bu,

y = cx+ du
(6.38)

is an i/s/o representation of (6.34).

Proof Using the notation of Corollary 6.3.2, define p̄(ξ) := det(Iξ − A)
and r̄(ξ) := p̄(ξ)c(Iξ − A)−1. In order to determine an explicit expression
for p̄(ξ), we apply the following sequence of elementary row operations to
(Iξ − A). Multiply the last row by ξ and add it to the last but one row.
Then, multiply in the resulting matrix the (n − 1)th row by ξ and add to
the (n− 2)th row. Etc., etc. Finally, multiply the second row by ξ and add
it to the first row. The resulting matrix is











0 · · · 0 · · · · · · p0 + p1(ξ) + · · ·+ pn−1ξ
n−1 + ξn

−1 0 0 · · · · · · p1 + p2ξ + · · ·+ pn−1ξ
n−2 + ξn−1

0 −1 0 · · · · · · p2 + p3ξ + · · ·+ pn−1ξ
n−3 + ξn−2

...
. . .

...
0 0 0 −1 0 pn−2 + pn−1ξ + ξ2

0 0 0 0 −1 pn−1 + ξ












. (6.39)

From (6.39) we conclude that

p̄(ξ) = p(ξ). (6.40)

By direct calculation it is easily seen that

r̄(ξ) =
[
1 ξ ξ2 · · · ξn−1

]
. (6.41)

Obviously, p̄(ξ) and r̄(ξ) have no common factors. It follows from Corollary
6.3.2 that the i/o behavior of (6.38) is described by p( d

dt )y = q( d
dt )u, where

q(ξ) := r̄(ξ)b+ dp(ξ). This proves the theorem. �

The following theorem explains why the i/s/o representation (6.38) is called
the observer canonical form. The adjective “canonical” will be explained
in Section 6.5.
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Theorem 6.4.3 The representation (6.38) is observable. It is also control-
lable if and only if p(ξ) and q(ξ) have no common factors. In other words,
the state space model (6.38) is controllable if and only if the i/o model
(6.34) is controllable.

Proof According to Theorem 5.3.9, (6.38) is observable if and only if the
rank of the associated observability matrix O is n. It is easily verified that
in this case O is of the form

O =








c
cA
...

cAn−1







=












0 · · · · · · 0 1
... 0 1 ∗
... . .

.
. .
.

. .
. ...

0 1 . .
. ...

1 ∗ · · · · · · ∗












.

Obviously, O has rank n. Of course, the observability could also have been
determined from the fact that r̄(ξ) and p̄(ξ) have no common factors and
from Theorem 5.5.1, Part 1.

The second part of the statement is left to the reader as Exercise 5.14. �

Remark 6.4.4 The observer canonical form admits a nice visualization in
terms of a signal flow diagram, as depicted in Figure 6.4. �

d

u

y
+

x1

∫∫∫∫

q̃0 q̃1

p0 p1

x2 xn−1 xn
pn−1

− − −

+ +
++++

q̃n−1

FIGURE 6.4. Signal flow diagram of the observer canonical form (6.37).

Remark 6.4.5 It is of interest to relate the state vector constructed in
(6.38) directly in terms of u and y and their derivatives. If we confine
ourselves to the C∞ trajectories, this can be done as follows.
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Denote the components of the state vector x by x1, . . . , xn. From (6.37,
6.38) it follows that

xn = y − du,
xn−1 =

d
dt (y − du) + pn−1(y − du)− q̃n−1u,

xn−2 =
d2

dt2 (y − du) + d
dt (pn−1(y − du)− q̃n−1u) + pn−2(y − du)− q̃n−2u,

...

x2 = dn−2

dtn−2 (y − du) + dn−3

dtn−3 (pn−1(y − du)− q̃n−1u) + · · ·+ p2(y − du),
−q̃2u

x1 = dn−1

dtn−1 (y − du) + dn−2

dtn−2 (pn−1(y − du)− q̃n−1u) + · · ·+ p1(y − du).
−q̃1u

(6.42)
These expressions show how state variables can be created from suitable
combinations of (u, y) and their derivatives up to order n− 1. The metic-
ulous reader may wonder how to interpret (6.42) in the case that u is not
sufficiently differentiable. Of course, if u (and y) are not sufficiently differ-
entiable, then (6.42) has no interpretation in the classical sense. In that
case, (6.42) should interpreted in the sense of weak solutions as discussed
in Chapter 2. �

Example 6.4.6 (Example 6.3.6 continued) In Example 6.3.6 we have
derived the i/o representation (6.32) of the i/s/o system (6.31). We could
again represent (6.32) in state space form. The observer canonical repre-
sentation of (6.32) is given by

d

dt
x̃ = Ãx̃+ b̃u,

y = c̃x̃,

with

Ã =

[
0 2
1 −1

]

, b̃ =

[
1
−1

]

, c̃ =
[
0 1

]
. (6.43)

The interesting feature of the representation (6.43) is that its order, the
dimension of its state space, is only two, whereas the original dimension of
(6.31) was three. Also, it is obvious that (c̃, Ã) in (6.43) is an observable
pair. It appears therefore that we have removed the nonobservable part.
In fact, that is exactly what has happened, whence the reduction of the
dimension of the state space. Notice that we could as well have done this
directly, without first deriving an i/o representation, by transforming the
i/s/o system into the form (5.49).

A natural question to ask is whether or not we could find an even lower-
dimensional i/s/o representation. We will prove in Section 6.5 that there
does not exist a lower-dimensional i/s/o representation of a given i/s/o
behavior if and only if it is observable; see Theorem 6.5.11. �
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6.4.2 The controller canonical form

Our second solution to the state representation problem yields what is
called controller canonical form. This representation exists only if the i/o
system is controllable.

Let p(ξ), q(ξ) be given by (6.33). Consider the i/o system

p(
d

dt
)y = q(

d

dt
)u. (6.44)

Let d ∈ R and q̃(ξ) ∈ R[ξ] be such that

q(ξ) = dp(ξ) + q̃(ξ), with deg q̃(ξ) < deg p(ξ). (6.45)

Note that q̃(ξ) is given by q̃(ξ) = q(ξ) − qnp(ξ). Denote the coefficients of
q̃(ξ) by q̃0, . . . , q̃n−1 and define (A, b, c, d) by

A =













0 1 0 · · · · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · · · · 0 1
−p0 −p1 · · · · · · · · · −pn−1













, b =











0
...
...
0
1











,

c =
[

q̃0 q̃1 · · · · · · · · · q̃n−1

]
, d = qn.

(6.46)

Theorem 6.4.7 Let (A, b, c, d) be defined by (6.45, 6.46). Consider the
i/s/o system defined by

d

dt
x = Ax+ bu,

y = cx+ du.
(6.47)

Assume that p(ξ) and q(ξ) have no common factors, i.e., that (6.44) is con-
trollable. Then the i/o behavior of (6.47) is described by p( d

dt )y = q( d
dt )u.

Proof Using the notation of Corollary 6.3.2, define

p̄(ξ) := det(Iξ−A), r̄(ξ) := p̄(ξ)c(Iξ−A)−1, s̄(ξ) := p̄(ξ)(Iξ−A)−1b.
(6.48)

It is easy to see, see also (6.40, 6.41), that

p̄(ξ) = p(ξ), s̄(ξ) = [1 ξ ξ2 · · · ξn−1]T . (6.49)

From (6.49) it follows that q̃(ξ) = cs̄(ξ), and hence, by (6.48), that q̃(ξ) =
r̄(ξ)b. Since by assumption p(ξ) and q(ξ) have no common factors, neither
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do p(ξ) and q̃(ξ), and as a consequence, p̄(ξ) and r̄(ξ) have no common
factors. It follows from Corollary 6.3.2 that the i/o behavior of (6.47) is
described by p( d

dt )y = q( d
dt )u, where q(ξ) := r̄(ξ)b + d. This proves the

theorem. �

Remark 6.4.8 Notice that in Theorem 6.4.7 we assumed that p(ξ) and
q(ξ) have no common factors. This is in contrast to the situation in Theorem
6.4.2, where this requirement was not needed. In Exercise 6.18 it is shown
that the result of Theorem 6.4.7 does not hold if p(ξ) and q(ξ) have a
common factor. �

Remark 6.4.9 The i/s/o representation (6.47) is called the controller
canonical form. The reason why it is called controller canonical form is
now explained. The adjective ”canonical” is explained in Section 6.5. �

Theorem 6.4.10 Assume that p(ξ) and q(ξ) have no common factor.
Then the system defined by the controller canonical form (6.47) is both
controllable and observable.

Proof According to Theorem 5.2.18, (6.47) is controllable if and only if
the rank of the associated controllability matrix C is n. It is easily verified
that in this case C is of the form

C =
[
b Ab · · · An−1b

]
=












0 · · · · · · 0 1
... 0 1 ∗
... . .

.
. .
.

. .
. ...

0 1 . .
. ...

1 ∗ · · · · · · ∗












.

Obviously, C has rank n.

The proof of observability is left to the reader as Exercise 5.18. �

Remark 6.4.11 As for the observer canonical form, we can express in the
representation (6.47) the state x in terms of u and y and their derivatives,
provided that we restrict our attention again to the C∞ trajectories.

Consider the i/o system

p(
d

dt
)y = q(

d

dt
)u, (6.50)

Where p(ξ), q(ξ) ∈ R[ξ] are of the form

p(ξ) = p0 + p1ξ + · · ·+ pn−1ξ
n−1 + ξn,

q(ξ) = q0 + q1ξ + · · ·+ qn−1ξ
n−1 + qnξ

n
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and have no common factors. Let (A, b, c, d) be given by (6.46). By Theorem
6.4.7 we know that d

dtx = Ax+ bu, y = cx+ du is a state representation of
(6.50). We want to express the state x in u, y, and their derivatives.

A latent variable representation of (6.50) is given by

y = q(
d

dt
)ℓ, u = p(

d

dt
)ℓ. (6.51)

This is easily proved by applying the elimination procedure, see Exercise
6.12. For our purposes, however, it is more convenient to prove the in-
put/output equivalence of (6.50) and (6.51) directly. Choose (u, y, ℓ) such
that (6.51) is satisfied. Then, p( d

dt )y = p( d
dt )q(

d
dt )ℓ = q( d

dt )p(
d
dt )ℓ = q( d

dt )u.
This shows that (u, y) satisfies (6.50).

To prove the converse, choose (u, y) such that (6.50) is satisfied. Since p(ξ)
and q(ξ) have no common factors, there exist, by Corollary B.1.7 (Bezout),
polynomials a(ξ) and b(ξ) such that

a(ξ)p(ξ) + b(ξ)q(ξ) = 1. (6.52)

Define

ℓ := b(
d

dt
)y + a(

d

dt
)u. (6.53)

Then

q(
d

dt
)ℓ = q(

d

dt
)b(

d

dt
)y + q(

d

dt
)a(

d

dt
)u = (q(

d

dt
)b(

d

dt
) + p(

d

dt
)a(

d

dt
))y = y.

(6.54)
In the same way one proves that

p(
d

dt
)ℓ = u. (6.55)

From (6.54) and (6.55) we conclude that (u, y, ℓ) satisfies (6.51).

Define the vector-valued function z as

z :=











ℓ
d

dt
ℓ

...
dn−1

dtn−1
ℓ











. (6.56)

It follows from (6.54, 6.55) and the definition of z that (u, y, z) also satisfies

d

dt
z = Az + bu,

y = cz + du,
(6.57)
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with (A, b, c) defined by (6.46). Since (u, y, x) also satisfies (6.57) and since
by Theorem 6.4.10, (A, c) is an observable pair, it follows that x = z.
Combining (6.53) and (6.56) we conclude that the state is given by

x =









b( d
dt )y + a( d

dt )u

d
dt [b(

d
dt )y + a( d

dt )u]
...

dn−1

dtn−1 [b(
d
dt )y + a( d

dt )u]









. (6.58)

It should be noted that the right-hand side in (6.58) is independent of the
choice of the polynomials a(ξ) and b(ξ) satisfying (6.52). See Exercise 6.6
for a proof of this statement. �

Thus in both the observer and controller canonical forms, the state can be
expressed in terms of u and y and their derivatives. In the observer canonical
form these expressions are readily obtained from the coefficients of the
polynomials p(ξ) and q(ξ), see (6.42), whereas in the controller canonical
form we first have to solve the Bezout equation (6.52).

Remark 6.4.12 Also the controller canonical form admits a nice visual-
ization in terms of a signal flow diagram, as depicted in Figure 6.5. �

pn−1

∫∫∫∫

p1

−
+

y

u

d q̃0

p0

xn xn−1 x2 x1

q̃1q̃n−1

FIGURE 6.5. Signal flow diagram of the controller canonical form (6.46).

Example 6.4.13 Consider the i/o system defined by

y +
d

dt
y +

d2

dt2
y = 2u+

d

dt
u. (6.59)

The corresponding polynomials are p(ξ) = 1+ξ+ξ2, q(ξ) = 2+ξ. Obviously,
p(ξ) and q(ξ) have no common factor so that we can form the controller
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canonical form. This yields

A =

[
0 1
−1 −1

]

, b =

[
0
1

]

, c =
[
2 1

]
.

According to Theorem 6.4.7 the controller canonical representation of
(6.59) is now given by d

dtx = Ax + bu, y = cx. In order to express the
state in terms of u and y, we need polynomials a(ξ) and b(ξ) such that
a(ξ)p(ξ)+ b(ξ)q(ξ) = 1. It follows by inspection that we may take a(ξ) = 1

3
and b(ξ) = 1

3 (1− ξ). By (6.58) it follows that x is given by:

x =








1

3
y − 1

3

d

dt
y +

1

3
u

1

3

d

dt
y − 1

3

d2

dt2
y +

1

3

d

dt
u







.

Using (6.59) we can eliminate d2

dt2 y from this expression and obtain

x =








1

3
y − 1

3

d

dt
y +

1

3
u

1

3
y +

2

3

d

dt
y − 2

3
u







. (6.60)

See Exercise 6.24 for an alternative calculation. �

Note that both the controller and observer canonical forms are of dimension
n, the degree of the polynomial p(ξ).

6.5 Canonical Forms and Minimal State Space
Representations

In Section 4.6 we have shown that the i/o behavior of an i/s/o representation
is invariant under state space transformations. This observation gives rise
to several questions. The first question that we study in this section is,
Given the set of all i/s/o representations of the same i/o system, do there
exist some natural representatives? It turns out that for general i/o systems
the observer canonical form provides such a representative, and so does the
controller canonical form for controllable i/o systems. The way to approach
this mathematically is through the notions of equivalence relations and
canonical forms. The second question is,When are two i/s/o representations
of the same i/o system equivalent in the sense that they can be transformed
into one another by means of a state space transformation? We show that
this is the case when both i/s/o representations are observable. The third
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result that we prove in this section is that among all possible state space
representations of a given i/o behavior, the observable ones require the
smallest dimension of the state space.

6.5.1 Canonical forms

Let us first discuss the notions of canonical forms and trim canonical forms.
Let A be a nonempty set. A binary relation ∼ on A is simply a subset of
A×A. It is called an equivalence relation if (i) for all a ∈ A: a ∼ a, (ii) for
all a, b ∈ A: a ∼ b implies that b ∼ a, and (iii) for all a, b, c ∈ A: a ∼ b and
b ∼ c implies that a ∼ c. If ∼ is an equivalence relation on A, then we define
for each a ∈ A the equivalence class of a as the set of all b ∈ A such that
a ∼ b. We denote this set by ā. The equivalence relation ∼ partitions A

into equivalence classes. The set of equivalence classes is denoted by A/ ∼.
A subset K ⊂ A is called a canonical form for ∼ if K contains at least one
element from each equivalence class. It is called a trim canonical form if K
contains precisely one element from each equivalence class.

Following the terminology in Section 4.6, we call two systems of
the type (4.52), or equivalently two quadruples (A1, B1, C1, D1),
(A2, B2, C2, D2), similar if there exists a nonsingular matrix S such that
(S−1A1S, S

−1B1, C1S,D1) = (A2, B2, C2, D2). Similarity defines an equiv-
alence relation on the set of quadruples (A,B,C,D). We now prove that
for SISO systems the observer canonical form provides a trim canonical
form on the set of (A,B,C,D)s for which (A,C) is observable.

We start with the following preliminary result.

Theorem 6.5.1 Let (A1, c1), (A2, c2) ∈ Rn×n × R1×n be observable pairs,
and assume that A1 and A2 have the same characteristic polynomial:
det(Iξ − A1) = det(ξI − A2) =: p0 + · · · + pn−1ξ

n−1 + ξn. Then there
exists exactly one nonsingular matrix S such that

(S−1A1S, c1S) = (A2, c2).

Proof (Existence) Denote by Oi the observability matrices of (Ai, ci),
i = 1, 2:

Oi =








ci
ciAi

...
ciA

n−1
i







.

Define the matrix S as S := O
−1
1 O2. Then c1A

k
1S = c2A

k
2 , for k = 0, . . . , n−

1. Since A1 and A2 have the same characteristic polynomial, it follows from
the Cayley–Hamilton theorem that also c1A

n
1S = c2A

n
2 . We conclude that

O1A1S = O2A2, and thereforeS−1A1S = A2.
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(Uniqueness) Suppose that (S−1A1S, c1S) = (A2, c2). Then it follows by
direct calculation that O1S = O2, and hence that S = O

−1
1 O2. �

A direct consequence of Theorem 6.5.1 is that every observable pair (A, c)
may be transformed into observer canonical form, as we show next.

Theorem 6.5.2 Let (A, c) ∈ Rn×n × R1×n be an observable pair and let
p(ξ) = p0+ · · ·+pn−1ξ

n−1+ξn be the characteristic polynomial of A. Then
there exists a unique nonsingular matrix S such that (S−1AS, cS) = (Ã, c̃),
with

Ã =












0 · · · 0 · · · · · · −p0
1 0 0 · · · · · · −p1
0 1 0 · · · · · · −p2
...

. . .
...

0 0 0 1 0 −pn−2

0 0 0 0 1 −pn−1












, c̃ =
[
0 · · · 0 1

]
(6.61)

Proof This is direct consequence of Theorem 6.5.1, using the observability
of the pair (Ã, c̃) and the fact that det(Iξ −A) = det(Iξ − Ã). �

An immediate consequence of Theorem 6.5.2 is the following result.

Corollary 6.5.3 The observer canonical form is a trim canonical form for
the observable SISO systems.

Remark 6.5.4 As we have shown in Section 6.4.1, every SISO system may
be represented by an observable state space representation. Corollary 6.5.3
formalizes that the observer canonical representation is in some sense a
natural choice. �

By duality, the controller canonical form yields a trim canonical form for
controllable i/s/o systems.

Corollary 6.5.5 The controller canonical form is a trim canonical form
for the controllable SISO systems.

Proof Let (A, b, c, d) represent a controllable SISO i/s/o system. Then
(AT , bT ) is an observable pair, and according to Theorem 6.5.2 there exists a
unique nonsingular matrix S that transforms (AT , bT ) into the form (6.61).
It follows that (ST )−1 transforms (A, b, c, d) into the controller canonical
form (6.46). �

Remark 6.5.6 As we have shown in Section 6.2, every controllable SISO
system may be represented by a controllable state space representation.
Corollary 6.5.5 formalizes that the controller canonical representation is in
some sense a natural choice. �
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6.5.2 Equivalent state representations

Using Theorem 6.5.1 we can now prove the converse of Theorem 4.6.2,
namely that two observable i/s/o representations of the same i/o behavior
are similar. In the proof we use a small technical lemma.

Lemma 6.5.7 Let (A, c) be an observable pair and let p(ξ) = det(Iξ−A).
Define the n-dimensional polynomial row vector r(ξ) := p(ξ)c(Iξ − A)−1.
Then there exist λ1, . . . , λn ∈ C such that the n vectors r(λi), i = 1, . . . , n,
are linearly independent.

Proof By Theorem 6.5.2 there exists a nonsingular matrix S such that
(Ã, c̃) = (S−1AS, cS) is as in (6.61). Define r̃(ξ) := p(ξ)c̃(Iξ − Ã)−1. It
follows from (6.41) that r̃(ξ) = [1 ξ ξ2 · · · ξn−1]. Choose n distinct complex
numbers λi, i = 1, . . . , n. Then the n vectors r̃(λi), i = 1, . . . , n, form a
nonsingular Vandermonde matrix and are hence independent. Since r(ξ) =
r̃(ξ)S, the vectors r(λi), i = 1, . . . , n, are also linearly independent. �

Theorem 6.5.8 Let (Ak, bk, ck, dk) ∈ Rn×n ×Rn×1 ×R1×n ×R, k = 1, 2,
be such that (Ak, ck) are observable pairs, k = 1, 2. Let Bi/s/o,k be defined
by

d

dt
xk = Akxk + bku,

yk = ckxk + dku,
k = 1, 2.

Then the state representations Bi/s/o,1 and Bi/s/o,2 define the same in-
put/output behavior if and only if there exists a nonsingular matrix S such
that

(S−1A1S, S
−1b1, c1S, d1) = (A2, b2, c2, d2).

Proof The “if” part is just Theorem 4.6.2.

“Only if” part. Since (A1, c1) and (A2, c2) are observable, we may apply
Corollary 6.3.3: the i/o behavior defined by Bi/s/o,k is given by

pk(
d

dt
)y = qk(

d

dt
)u, k = 1, 2,

with

pk(ξ) := det(Iξ −Ak), qk(ξ) := pk(ξ)ck(Iξ −Ak)
−1bk + dkpk(ξ), (6.62)

Since Bi/s/o,1 and Bi/s/o,2 define the same i/o behavior, we conclude that

p1(ξ) = p2(ξ) =: p(ξ), q1(ξ) = q2(ξ) =: q(ξ), (6.63)

and therefore d1 = d2. From (6.63) it follows that A1 and A2 have the same
characteristic polynomial, and by Theorem 6.5.1 it follows that there exists
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a nonsingular matrix S such that (S−1A1S, c1S) = (A2, c2). Combining this
with (6.62, 6.63), we conclude that p(ξ)c1(Iξ −A1)

−1S−1b1 = p(ξ)c1(Iξ −
A1)

−1b2. Using Lemma 6.5.7, we obtain that b2 = S−1b1. This concludes
the proof. �

A direct consequence of Theorem 6.5.8 is:

Theorem 6.5.9 Consider the i/o behavior B defined by p( d
dt )y = q( d

dt )u,
with p(ξ), q(ξ) ∈ R[ξ], p(ξ) monic of degree n, and deg q(ξ) ≤ n. Assume
that p(ξ) and q(ξ) have no common factors. Then the controller and ob-
server canonical i/s/o representations of B are equivalent.

6.5.3 Minimal state space representations

Let us now come back to the issue of state space representations of minimal
dimension. As claimed in the introduction to this section, minimality of the
dimension of the state space turns out to be equivalent to observability. This
statement follows immediately from the following theorem.

Theorem 6.5.10 Assume that d
dtxi = Aixi + biu, y = cixi + diu,

(Ai, bi, ci, di) ∈ Rni×ni ×Rni×1 ×R1×ni ×R, define the same i/o behavior
and that (A1, c1) is observable. Then n1 ≤ n2.

Proof According to Corollary 6.3.3 the i/o behavior corresponding to the
quadruple (A1, b1, c1, d1) is of the form

p1(
d

dt
)y = q1(

d

dt
)u, (6.64)

with p1(ξ) = det(Iξ −A1). By Corollary 6.3.2, the i/o behavior defined by
(A2, b2, c2, d2) is given by

p2(
d

dt
)y = q2(

d

dt
)u, (6.65)

where p2(ξ) divides det(Iξ−A2). Since the i/o behaviors defined by (6.64)
and (6.65) are the same, we conclude from Theorem 3.6.2 that p1(ξ) = p2(ξ).
This implies that det(Iξ−A1) divides det(Iξ−A2) and hence that n1 ≤ n2.

�

As an immediate consequence of Theorem 6.5.10 we obtain the following
result.

Theorem 6.5.11 Consider the SISO system (6.34). There exists an ob-
servable i/s/o representation, namely the observer canonical form (6.37).
All observable state space representations are of the same dimension. More-
over, this dimension is minimal among all possible state space representa-
tions.
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The above result also holds for multivariable i/o systems, as discussed in
Section 3.3. We do not provide the details. We call an i/s/o representation
of a given i/o behavior minimal if among all possible i/s/o representations
its state space has minimal dimension. It follows from Theorem 6.5.11 that
for systems of the form (6.36) minimality is equivalent to observability of
the pair (A, c). Note that a minimal i/s/o representation need not be con-
trollable (see Exercise 6.18). In fact, a minimal i/s/o representation is con-
trollable if and only if the i/o system that it represents is also controllable;
see Exercise 6.26.

6.6 Image Representations

Thus far we have studied several representations of linear time-invariant
differential systems:

1. R( d
dt )w = 0. This is the type of representation that is at the core of

this book. For obvious reasons we could call this a kernel representa-
tion.

2. R( d
dt )w = M( d

dt )ℓ. Such equations with latent variables are usually
obtained as a result of modeling from first principles. We have shown
in Section 6.2 that by eliminating the latent variable ℓ we obtain a
kernel representation for the manifest behavior.

3. P ( d
dt )y = Q( d

dt )u, with P
−1(ξ)Q(ξ) proper. Every kernel representa-

tion can be brought into such an input/output form by an appropriate
partition of w in u and y.

4. E
d

dt
x+Fx+Gw = 0. These state space representations form a special

class of latent variable models. The latent variable x has the property
of state.

5. d
dtx = Ax + Bu, y = Cx + Du. These input/state/output models
are state space models of a special structure. They are compatible
with both the input/output structure and the state space structure
of the behavior. All systems defined by a kernel representation can
be brought into this form, although we only proved this for SISO
systems.

In this section we want to take a brief look at latent variable models de-
scribed by R( d

dt )w =M( d
dt )ℓ. A special case is obtained when R(ξ) is just

the identity matrix:

w =M(
d

dt
)ℓ, M(ξ) ∈ Rq×m[ξ]. (6.66)
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Representations of the form (6.66) are, for obvious reasons, called im-
age representations. In (6.66), the manifest behavior is the image of
Lloc
1 (R,Rm) under the differential operator M( d

dt ). The question that we
want to address is under what conditions a system defined by a ker-
nel representation is equivalent to one defined by an image represen-
tation. More precisely, let R(ξ) ∈ Rg×q[ξ] and denote the correspond-
ing behavior by Bker. Denote the behavior of w induced by (6.66) by
Bim := {w ∈ Lloc

1 (R,Rq) | ∃ℓ ∈ Lloc
1 (R,Rm) such that w = M( d

dt )ℓ}.
We want to find conditions on R(ξ) under which there exists M(ξ) such
that Bker ∩ C∞(R,Rq) = Bim ∩ C∞(R,Rq).

Because the matrix [I M(λ)] has rank q for all λ ∈ C, image representa-
tions are always controllable. Hence a necessary condition on R(ξ) is that
it represents a controllable system, see Exercise 6.26. The somewhat sur-
prising result is that controllability of Bker is also a sufficient condition for
the existence of an image representation.

Theorem 6.6.1 Let R(ξ) ∈ Rg×q[ξ]. Then there exists an integer m and
a matrix M(ξ) ∈ Rq×m[ξ] such that Bker = Bim if and only if Bker is
controllable.

Proof The “only if” part is shown in Exercise 6.26. We therefore consider
only the “if” part. In view of Theorem 2.5.23, we may assume that R(ξ)
is of full row rank. Since R(ξ) represents a controllable behavior, we know
that for all λ ∈ C, rankR(λ) = g. We prove that there exists R′(ξ) ∈
R(q−g)×q[ξ] such that col(R(ξ), R′(ξ)) is unimodular. In order to see this,
choose unimodular matrices U(ξ) and V (ξ) such that U(ξ)R(ξ)V (ξ) is in
Smith form: U(ξ)R(ξ)V (ξ) =

[
D(ξ) 0

]
. Now R(λ) is of full rank for

all λ ∈ C, and therefore the diagonal matrix D(ξ) can be taken to be the
identity matrix. This implies that

R(ξ)V (ξ)

[
U(ξ) 0
0 I

]

︸ ︷︷ ︸

W (ξ)

=
[
U−1(ξ) 0

]
[
U(ξ) 0
0 I

]

=
[
I 0

]
.

(6.67)
It follows from (6.67) that there exists a unimodular matrixW (ξ) such that
R(ξ) =

[
I 0

]
W (ξ)−1. This means that R(ξ) forms the first g rows of

a unimodular matrix (for g = 1 this is Theorem 2.5.10, except that there
it forms the last row). Form R′(ξ) by the remaining q − g rows of W (ξ)−1

and define the latent variable system

[
R( d

dt )
R′( d

dt )

]

w =

[
0
I

]

ℓ. (6.68)
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According to Definition 6.2.7, (6.68) is a latent variable representation of
Bker. Finally, premultiplication of both sides of (6.68) by W ( d

dt ) yields

w =W (
d

dt
)

[
0
I

]

ℓ =:M(
d

dt
)ℓ.

Notice that M(ξ) ∈ Rq×(q−g)[ξ], so that m = q − g. �

In the subsection on the controller canonical form we have already used
an image representation of controllable SISO systems. Indeed, if p( d

dt )y =

q( d
dt )u is a controllable SISO system, then an image representation of this

SISO system is
y = q( d

dt )ℓ,
u = p( d

dt )ℓ.

See Remark 6.4.11 for details.

6.7 Recapitulation

In this chapter we discussed two related topics. First, the elimination of latent
variables and second the relation between i/o models and i/s/o representations.
The main points were:

• Disregarding smoothness issues, the manifest behavior of a behavior with
latent variables described by differential equations of the form R( d

dt
)w =

M( d
dt
)ℓ can be described by R′( d

dt
)w = 0 for a suitable polynomial matrix

R′(ξ). An algorithm was derived to calculate the polynomial matrix R′(ξ)
from M(ξ) and R(ξ) (Theorem 6.2.6).

• The elimination algorithm was applied to obtain the i/o behavioral equa-
tion p( d

dt
)y = q( d

dt
)u from the i/s/o equations d

dt
x = Ax+ bu, y = cx+ du

(Theorem 6.3.1).

• Two canonical i/s/o representation of a given i/o system were derived:
the observer canonical form and the controller canonical form. The latter
representation applies to controllable systems only (Theorems 6.4.2 and
6.4.7).

• We derived a complete characterization of equivalent observable i/s/o rep-
resentations of a given i/o system. The main result states that all observ-
able i/s/o representations of a given i/o system can be transformed into
each other by means of state space transformation (Theorem 6.5.8). More-
over, the dimension of the state space of an observable i/s/o representation
is minimal among all possible i/s/o representations (Theorem 6.5.11).

• In the last section, we studied representations of the form w = M( d
dt
)ℓ.

These are referred to as image representations. A behavior in kernel rep-
resentation with R( d

dt
)w = 0 admits an image representation if and only if

it is controllable (Theorem 6.6.1).
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6.8 Notes and References

The importance of latent variables and the relevance of the elimination theorem

in the context of differential systems originated in [59, 60]. However, not very

surprisingly in view of their natural occurrence in first principles modeling, there

were earlier attempts to incorporate latent variables in the description of dynam-

ical systems. In this context it is worth mentioning Rosenbrock’s notion of partial

state [48] and, of course, the state space theory of dynamical systems. Elimination

of latent variables was treated in depth, including the exact elimination question

and the related smoothness issue, in [44]. The construction of state space repre-

sentations originates in the work of Kalman [28, 31], where this problem area was

called realization theory. It is one of the basic problems in systems theory, with

many interesting and practical aspects, in particular the theory of approximate

realizations [18]. However, these ramifications fall far beyond the scope of this

book. The use of the controller and observer canonical forms belong to the early

state space theory. See [25] for a number of other canonical state space representa-

tions of SISO and multivariable systems. The treatment of these canonical forms

using the elimination theorem appears here for the first time. That controllable

systems allow an image representation was first proven in [59]. It is also shown

there that every controllable linear time-invariant differential systems allow an

observable image representation. In the literature on nonlinear systems, systems

that allow an observable image representation are called flat systems, [17].

6.9 Exercises

6.1 Consider the electrical circuit of Example 1.2.7. We want to derive the re-
lation between V and I. To that end take Vi, Ii, i = 1, . . . , 5 as latent vari-
ables and I and V as manifest variables. Write the equations describing the
relations among the manifest and latent variables in the form Rw =Mℓ (all
equations are static, therefore R and M are just real matrices). Apply the
elimination procedure to deduce the relation between I and V . In case the
calculations turn out to be too cumbersome, you can alternatively use the
Gauss elimination procedure in Maple applied to the matrix

[
R−M

]
.

6.2 Consider the electrical circuit of Example 6.2.2. Determine the relation
between V and I by applying the general elimination procedure.

6.3 Let R(ξ),M(ξ) ∈ R2×1[ξ] and consider

R(
d

dt
)w =M(

d

dt
)ℓ,

with R(ξ) = [R1(ξ) R2(ξ)]
T and M(ξ) = [M1(ξ) M2(ξ)]

T . We want to
eliminate ℓ.
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(a) Assume thatM1(ξ) andM2(ξ) have no common factor. Use Theorem
2.5.10 to prove that the manifest behavior is described by

(M2(
d

dt
)R1(

d

dt
)−M1(

d

dt
)R2(

d

dt
))w = 0.

(b) Determine the differential equation for the manifest behavior when
M1(ξ) and M2(ξ) may have a common factor.

6.4 Consider the SISO systems

Σ1 : p1(
d

dt
)y1 = q1(

d

dt
)u1, Σ2 : p2(

d

dt
)y2 = q2(

d

dt
)u2. (6.69)

Define the feedback interconnection of Σ1 and Σ2 by (6.69) and the inter-
connection equations u2 = y1, u1 = u + y2, and y = y1. Here u is the
external input and y is the external output; see Figure 6.6.

We are interested in the relation between u and y. To that end we have to
eliminate u1, u2, y1, and y2. Elimination of u2 and y1 is straightforward,
since u2 = y1 = y. In order to eliminate u1 and y2, define ℓ and w as

ℓ :=

[
u1

y2

]
, w :=

[
u
y

]
.

Σ1

Σ2

yu u1 y1

u2y2

FIGURE 6.6. Feedback interconnection of Σ1 and Σ2.

(a) Determine matrices R(ξ),M(ξ) of appropriate dimensions such that
the behavior with these latent variables is described by R( d

dt
)w =

M( d
dt
)ℓ.

(b) Eliminate ℓ from R( d
dt
)w = M( d

dt
)ℓ. Conclude that the relation be-

tween u and y is given by

(p1(
d

dt
)p̄2(

d

dt
)− q̄1(

d

dt
)q2(

d

dt
))y = p̄2(

d

dt
)q1(

d

dt
)u,

with p2(ξ) = c(ξ)p̄2(ξ) and q1(ξ) = c(ξ)q̄1(ξ), such that p̄2(ξ) and
q̄1(ξ) have no common factors.

6.5 Repeat 6.4 for the parallel interconnection p1(
d
dt
)y1 = q1(

d
dt
)u, p2(

d
dt
)y2 =

q2(
d
dt
)u, y = y1 + y2. See Figure 6.7. The answer in this case is

(p̄2(
d
dt
)q1(

d
dt
) + p̄1(

d
dt
)q2(

d
dt
))u = p̄1(

d
dt
)p2(

d
dt
)y, where p1(ξ) = c(ξ)p̄1(ξ)

and p2(ξ) = c(ξ)p̄2(ξ), such that p̄1(ξ) and p̄2(ξ) have no common factors.
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Σ1

Σ2
y2

y1

u y

FIGURE 6.7. Parallel interconnection of Σ1 and Σ2.

6.6 Refer to Remark 6.4.11. For given polynomials p(ξ) and q(ξ), the polyno-
mials a(ξ) and b(ξ) satisfying (6.52) are not unique. In fact, since (6.52) is
a linear equation, it follows that every pair (a(ξ), b(ξ)) satisfying (6.52) can
be written as (a(ξ), b(ξ)) = (ap(ξ), bp(ξ))+(ah(ξ), bh(ξ)), with (ap(ξ), bp(ξ))
a particular solution of (6.52) and (ah(ξ), bh(ξ)) an arbitrary pair of poly-
nomials that satisfies ah(ξ)p(ξ) + bh(ξ)q(ξ) = 0.

Prove that the expression for the state (6.58) is independent of the choice
of the pair (a(ξ), b(ξ)) satisfying (6.52). Hint: define v := ah(

d
dt
)u+bh(

d
dt
)y

and show that p( d
dt
)v = 0 and q( d

dt
)v = 0. Conclude that since p(ξ) and

q(ξ) are coprime, v must be zero.

6.7 Refer to Remark 6.2.5.

(a) Let B be given by

B={w∈L
loc
1 (R,R) |∃n ∈ N, ck, λk ∈ R, k = 1, . . . , n : w(t) =

n∑

k=0

cke
λkt}.

i. Prove that B is linear and time-invariant.

ii. Prove that B is an infinite-dimensional space. Hint: Assume that
dimB = N then there should exist λ1, . . . λN such that the func-
tions wi(t) = eλit form a basis ofB. Choose λ 6= λi, i = 1, . . . , N .
By assumption there exist αi ∈ R such that w =

∑n
k=1 αiwi.

Apply the differential operator
∏n

k=1(
d
dt

− λk) to w to arrive at
a contradiction. Alternatively, apply the appropriate results in
Chapter 3.

iii. Conclude, by invoking results from Chapter 3, that B is not de-
scribed by linear differential equations with constant coefficients.

(b) As a second example of a linear time-invariant behavior that is not
described by linear differential equations with constant coefficients,
consider

B = {w ∈ L
loc
1 (R,R) | w(t) = w(t− 1) ∀t ∈ R}.

i. Prove that B is linear time-invariant, and autonomous (see Def-
inition 3.2.1).

ii. Prove that B is infinite-dimensional.
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iii. Use an appropriate result from Chapter 3 to conclude that since
B is autonomous and infinite-dimensional, it cannot be the so-
lution set of a set of linear differential equations with constant
coefficients.

6.8 Consider the static latent variable model with U = R2 and Uℓ = R defined
as

Bf := {(w1, w2, ℓ) ∈ R3 | ℓ2 = w2
1 − 1 = w2

2 − 1, }
B := {(w1, w2) ∈ R2 | ∃ℓ ∈ R such that (w1, w2, ℓ) ∈ Bf}.

(a) Is Bf an algebraic subset of R3?

(b) Determine an explicit characterization of the manifest behavior B as
a subset of R2.

(c) Is B an algebraic subset of R2?

(d) Is the closure (in the sense of the Euclidean metric) of B in R2 an
algebraic set?

(e) Is B a semi-algebraic set?

Remark. A subset of Rn that is the solution set of a finite number of
polynomial equations is called an algebraic set. If it is the solution set of a
finite number of polynomial equations and polynomial inequalities then it
is a semi-algebraic set.

6.9 Consider equations (6.17) and (6.18) in Example 6.2.8. In principle, (6.18)
could impose a smoothness restriction on the solutions of (6.17). In this
specific example the smoothness of w1 is already guaranteed by (6.17).
Prove this and conclude that the manifest behavior is exactly described by
(6.17).

6.10 Prove Theorem 6.2.4

6.11 Assume that the scalar variables w1, w2 are governed by

[
r11(

d
dt
) r12(

d
dt
)

r21(
d
dt
) r22(

d
dt
)

] [
w1

w2

]
= 0,

with rij(ξ) ∈ R[ξ].

(a) Assume that r12(ξ) and r22(ξ) are coprime. Prove, by eliminating w2,
that the dynamics of w1 are governed by

[r11(
d

dt
)r22(

d

dt
)− r12(

d

dt
)r21(

d

dt
)]w1 = 0.

(b) What are the dynamics of w1 if r12(ξ) and r22(ξ) are not coprime?

(c) Prove that if r11(ξ)r22(ξ) − r12(ξ)r21(ξ) 6= 0, then the smoothness
conditions as discussed just after the proof of Theorem 6.2.6 that
could arise in the elimination procedure are automatically fulfilled;
i.e., show that exact elimination is possible in this case.
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6.12 Prove that (6.51) is a latent variable representation of (6.50) by eliminating
ℓ using the general elimination procedure.

6.13 Refer to Example 1.3.5. Consider I as input and V as output.

(a) Prove that (1.6, 1.7, 1.8) define an i/s/o representation.

(b) Derive the observer canonical form.

(c) Derive the controller canonical form for the case that the system is
controllable.

(d) Prove that in the case CRC 6= L

RL
these three i/s/o representations

are equivalent.

Repeat the above questions with V considered as the input and I as the
output.

6.14 For each of the following cases, determine an i/o representation of the i/s/o
representation by eliminating the state from the i/s/o equations

d

dt
x = Ax+ bu, y = cx.

(a) A =

[
1 3
0 2

]
, b =

[
0
1

]
, c =

[
1 0

]
.

(b) A =

[
1 0
0 2

]
, b =

[
1
0

]
, c =

[
1 0

]
.

(c) A =

[
1 0
0 2

]
, b =

[
1
0

]
, c =

[
1 1

]
.

(d) A =

[
0 1
−2 3

]
, b =

[
1
−1

]
, c =

[
1 2

]
.

(e) A =




8 −3 −3
−9 2 5
23 −7 −10


 , b =




0
1
−1


 , c =

[
4 1 −2

]
.

6.15 Consider the i/o system

−12y − 11
d

dt
y + 2

d2

dt2
y +

d3

dt3
y = −8u+ 2

d

dt
u+

d2

dt2
u.

(a) Determine the observer canonical representation.

(b) Is this representation controllable?

6.16 Consider the i/s/o system of Exercise 5.21. Eliminate the state so as to
obtain an i/o representation.

6.17 Consider the i/s/o representations

Σi

d

dt
xi = Aixi + biui,

yi = cixi,
i = 1, 2. (6.70)
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Just as in Example 6.2.9, the series interconnection of Σ1 and Σ2 is defined
by (6.70) and the equations u2 = y1, u = u1, y = y2. Assume that both sys-
tems are observable. An i/s/o representation of the series interconnection
is given by

d

dt
x = Ax+ bu,

y = cx,

with

A =

[
A1 0
b2c1 A2

]
, b =

[
b1
0

]
, c =

[
0 c2

]
. (6.71)

Define the following polynomial vectors:

pi(ξ) := det(Iξ −Ai), ri(ξ) := pi(ξ)ci(Iξ −Ai)
−1, qi(ξ) := ri(ξ)bi, i = 1, 2,

p(ξ) := det(Iξ −A), r(ξ) := p(ξ)c(Iξ −A)−1, q(ξ) := r(ξ)b.

(a) Show that r(ξ) =
[
q2(ξ)r1(ξ) p1(ξ)r2(ξ)

]
.

(b) Assume that p1(ξ) and q2(ξ) have no common factors. Prove that
(c, A), as defined by (6.71), is an observable pair.

6.18 Consider the the controller canonical form (6.46). Assume that p(ξ) and
q(ξ) have a common factor. Where does the proof of Theorem 6.4.7 break
down? Prove that in this case (6.44) is not the manifest behavior of (6.47)
by observing that (6.47) is controllable, whereas (6.44) is not controllable.

6.19 In Theorem 6.5.2 we have seen that every observable pair (A, c) may be
transformed into observer canonical form. Equivalently, there exists a basis
of the state space with respect to which (A, c) takes the observer canonical
form. The dual statement is, of course, that for every controllable pair (A, b)
there exists a basis with respect to which (A, b) is in controller canonical
form. We want to construct this basis. Let (A, b) ∈ Rn×n × Rn×1 be a
controllable pair. Define vectors d1, . . . , dn ∈ Rn as follows:

dn := b,
dn−1 := Ab+ pn−1b,
dn−2 := A2b+ pn−1Ab+ pn−2b,

...

dn−k := Akb+ pn−1A
k−1b+ · · ·+ pn−kb,

...
d2 := An−2b+ pn−1A

n−3b+ · · ·+ p2b,
d1 := An−1b+ pn−1A

n−2b+ · · ·+ p1b.

Here p0, . . . , pn−1 are the coefficients of the characteristic polynomial of A:
det(Iξ −A) = p0 + p1ξ + · · ·+ pn−1ξ

n−1 + ξn.

(a) Prove that d1, . . . , dn are linearly independent and hence that they
form a basis of Rn.

(b) Prove that dn−k = Adn−k+1 + pn−kdn, k = 1, . . . , n− 1.
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(c) Express Ad1 in terms of d1, . . . , dn. (Hint: use Cayley–Hamilton).

(d) Represent the matrix A in terms of the basis d1, . . . , dn.

(e) Prove that in the basis d1, . . . , dn, the vector b takes the form:
[0 · · · 0 1]T .

(f) Take

A =




1 2 1
−2 3 8
1 0 5


 , b =




1
0
0


 .

Determine the basis d1, d2, d3 for this case.

6.20 Let α and β be real numbers. Consider the system

d

dt
x =

[
1 0
0 −1

]
x+

[
1
α

]
u, y =

[
1 β

]
x.

(a) Eliminate the state from the above equations. Distinguish the cases
β = 0 and β 6= 0.

(b) Show that for α = 0 and β 6= 0 the i/o behavior is described by

(
d

dt
− 1)(

d

dt
+ 1)y = (

d

dt
+ 1)u

and hence is not controllable. Explain why β does not enter this
equation.

6.21 Consider

−2
d

dt
y +

d2

dt2
y +

d3

dt3
y = 2u+ 3

d

dt
u+

d2

dt2
u.

(a) Determine the observer canonical i/s/o representation.

(b) Is this representation controllable?

(c) Does there exist a controllable i/s/o representation of the given i/o
system?

6.22 Let (A, b, c) ∈ Rn×n×Rn×1×R1×n. Define p(ξ) := det(Iξ−A) and q(ξ) :=
p(ξ)c(Iξ−A)−1b. Prove that p(ξ) and q(ξ) have no common factors if and
only if (A, b) is controllable and (c, A) is observable. Hint: Use Theorem
5.5.1 for the proof “from left to right” and use Exercises 6.19, 5.18 for the
opposite direction.

6.23 Consider the matrix A in (6.37). Prove that det(Iξ−A) = p0 + p1ξ+ · · ·+
pn−1ξ

n−1 + ξn.

6.24 In Remarks 6.4.5 and 6.4.11 we showed how the state of the observer and
controller canonical form, respectively can be expressed in u and y. Con-
sider an observable SISO system d

dt
x = Ax+ bu, y = cx+ du.

(a) Prove that

dk

dtk
y = c(Akx+Ak−1bu+Ak−2b

d

dt
u+· · ·+Ab d

k−2

dtk−2
u+b

dk−1

dtk−1
u)+d

dk

dtk
u.

(6.72)
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(b) Use the observability of (A, c) to solve x from (6.72), and use the
result to derive (6.60).

6.25 Prove the claim made in Remark 6.3.4. Hint: An alternative way to elimi-
nate the state variables is given in Chapter 4, (4.31). From this expression
it follows easily that the i/o behavior is closed.

6.26 (a) Consider the full behavior Bf with latent variables defined by

R(
d

dt
)w =M(

d

dt
)ℓ.

Assume that the manifest behavior B is defined by

R′(
d

dt
)w = 0.

Prove, using the elimination theorem, that if the full behavior is con-
trollable, see Definition 5.2.2, then the manifest behavior is also con-
trollable.

(b) Consider the system

d

dt
x = Ax+Bu, y = Cx+Du.

Assume that (A,C) is observable. Prove that the manifest behav-
ior, i.e., the corresponding i/o behavior, is controllable if and only if
(A,B) is controllable.

6.27 Consider the SISO system defined by

p(
d

dt
)y = q(

d

dt
)u, (6.73)

with p(ξ), q(ξ) ∈ R[ξ] coprime polynomials and deg p(ξ) > deg q(ξ). Assume
that p(ξ) has only simple real roots λ1, . . . , λn. Let the partial fraction

expansion of q(ξ)
p(ξ)

be given by

q(ξ)

p(ξ)
=

n∑

k=1

γk
ξ − λk

.

(a) Prove that d
dt
x = Ax+ bu, y = cx with

A = diag(λ1, . . . , λn) b = col(γ1, . . . , γn) c = [1 · · · 1]

defines a state space representation for (6.73).

(b) Repeat the previous question for

A = diag(λ1, . . . , λn) b = col[1, . . . , 1] c = (γ1, . . . , γn).
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(c) In addition to the controller and observer canonical forms we have
now obtained two more state space representations. Prove that these
four state space representations are similar. What are the similar-
ity transformations that connect them? In principle we are asking
for twelve nonsingular matrices. However, if, e.g., S1 connects the
first two representations and S2 the second and the third, then the
transformation that connects the first and the third representations
is easily derived from S1 and S2.

6.28 Consider the system described by

Kw +M(
d

dt
)2w = 0, (6.74)

with K = KT and M = MT > 0. Such second-order models occur fre-
quently in mechanics.

(a) Prove that the system (6.74) is autonomous (see Section 3.2).

(b) Give a state space representation of (6.74) with state

x =

[
w
d
dt
w

]
.

(c) Define the momentum by p = M d
dt
w. Give a state space representa-

tion with state

x =

[
w
p

]
. (6.75)

(d) Provide a similarity transformation relating the two state space rep-
resentations.

(e) Define the function L as L(w, v) =
1

2
wTKw − 1

2
vTMv. Show that

(6.74) can be written as

d

dt

∂L

∂v
(w,

d

dt
w)− ∂L

∂w
(w,

d

dt
w) = 0. (6.76)

Define H(w, p) =
1

2
wTKw +

1

2
pTM−1p. Show that the state equa-

tions (6.75) can be written as

d

dt
w =

∂H

∂p
(w, p),

d

dt
p = −∂H

∂w
(w, p). (6.77)

Interpret L and H in terms of the potential and kinetic energy respec-
tively, and (6.76) and (6.77) in terms of Lagrangian and Hamiltonian
mechanics.

6.29 Consider the latent variable system defined by

R(
d

dt
)w =M(

d

dt
)ℓ. (6.78)
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Assume that the full behavior, i.e, the behavior of (w, ℓ), is controllable.
According to Theorem 6.6.1, the full behavior admits an image represen-
tation, say

w =M ′(
d

dt
)ℓ′ ℓ =M ′′(

d

dt
)ℓ′,

Prove that w =M ′( d
dt
)ℓ′ is an image representation of the manifest behav-

ior, i.e., the behavior of w, of (6.78). Use this result to obtain an alternative
solution to Exercise 6.26a.

6.30 This exercise is concerned with nonlinear systems. To avoid difficulties
with existence of solutions and smoothness we assume that all maps and
all trajectories are infinitely differentiable. Let f : (Rd)L+1 → Rq and
consider the latent variable representation

w = f(ℓ,
d

dt
ℓ, . . . , (

d

dt
)Lℓ).

Prove that the manifest behavior is controllable (in the sense of Definition
5.2.2). This shows that the existence of an image representation is a suffi-
cient condition for controllability. For the linear case this is also necessary
(Theorem 6.6.1). For the nonlinear case this equivalence does not hold in
general.



7

Stability Theory

7.1 Introduction

In this chapter we study the stability of dynamical systems. Stability is
a very common issue in many areas of applied mathematics. Intuitively,
stability implies that small causes produce small effects. There are several
types of stability. In structural stability, one wants small parameter changes
to have a similar small influence on the behavior of a system. In dynamic
stability, which is the topic of this chapter, it is the effect of disturbances in
the form of initial conditions on the solution of the dynamical equations that
matters. Intuitively, an equilibrium point is said to be stable if trajectories
that start close to it remain close to it. Dynamic stability is thus not in
the first instance a property of a system, but of an equilibrium point.
However, for linear systems we can, and will, view stability as a property of
the system itself. In input/output stability small input disturbances should
produce small output disturbances. Some of these concepts are intuitively
illustrated by means of the following example.

Example 7.1.1 In order to illustrate the stability concept, consider the
motion of a pendulum; see Figure 7.1. The differential equation describing
the angle θ is

d2

dt2
θ +

g

L
sin θ = 0. (7.1)

L denotes the length of the pendulum, and g the gravitational constant.
The system (7.1) has θ∗ = 0 and θ∗ = π as equilibria: if the pendulum
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M

θ

L

FIGURE 7.1. A pendulum.

starts with zero velocity in the initial position θ(0) = 0 or θ(0) = π, then
it remains in this initial state for all t ≥ 0. However, if we disturb θ(0)
slightly and keep d

dtθ(0) = 0, then two situations occur: if we disturb the
equilibrium θ∗ = 0, then the pendulum oscillates around θ = 0, and the
distance of θ(t) from θ∗ = 0 remains small. This property is called stability
of the equilibrium point θ∗ = 0. If, however, we disturb the equilibrium
θ∗ = π, then a small perturbation causes the pendulum to fall, leading to a
solution such that the distance from the equilibrium θ∗ = π becomes large.
The equilibrium θ∗ = π is therefore called unstable.

Equation (7.1) assumes that the pendulum moves without friction. If, how-
ever, there is friction (e.g., the unavoidable air friction, or friction in the
joint where the pendulum is suspended), then the equation for the motion
of the pendulum becomes

d2

dt2
θ +D

d

dt
θ +

g

L
sin θ = 0, (7.2)

where D is the friction coefficient. The solutions of this differential equation
show a different behavior for D 6= 0 than is the case when D = 0. If D > 0,
for example, it can be seen that small initial disturbances from θ∗ = 0 are
damped out, and the solution now approaches the equilibrium θ∗ = 0. This
is called asymptotic stability. Of course, for small initial disturbances from
θ∗ = π, the pendulum again falls, resulting in instability. Next, think of
the case of negative damping D < 0. This comes down to assuming that
the pendulum is accelerated by a term proportional to its velocity. It is not
easy to think up a simple physical mechanism that produces such an effect,
but one could think of an external force that is being applied and that
pushes the pendulum proportional to its velocity d

dtθ. Small disturbances
of the initial position away from θ∗ = 0 then lead to instability. This
sensitive dependence of the stability properties of an equilibrium on the
system parameters is an example of lack of structural stability . We do not
discuss this concept in depth in this book. Observe that the solutions in
the neighborhood of the equilibrium θ∗ = 0 have a completely different
behavior when D > 0 and D < 0. Thus the system (7.2) is not structurally
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stable around D = 0, and the parameter value D = 0 is called a bifurcation
point.

The trajectories of (7.2) for D = 0, D > 0, and D < 0 are shown in Figure
7.2. �

D > 0

D < 0

D = 0

d
dt
θ

d
dt
θ

d
dt
θ

θ

θ

θ

FIGURE 7.2. Phase portraits of the motion of a pendulum.

We first look at the stability properties of the linear autonomous system

P

(
d

dt

)

w = 0 (7.3)

studied in Section 3.2. This system is called stable if all the trajectories
in its behavior are bounded on the half line [0,∞), and asymptotically
stable if all its trajectories approach 0 as t→∞. Our purpose is to derive
conditions for (asymptotic) stability in terms of the polynomial matrix P (ξ).
We subsequently apply these results to the special case of autonomous state
models, i.e., systems of the form

d

dt
x = Ax. (7.4)
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A common theme in stability theory is the construction of energy-like func-
tions (called the Lyapunov functions) that are nonincreasing along solu-
tions and from which stability may be deduced. For systems as (7.4) such
functions can be constructed using a linear matrix equation, called the Lya-
punov equation. Lyapunov functions can also be used very effectively for the
determination of the stability of an equilibrium point of the autonomous
nonlinear system

d

dt
x = f(x), (7.5)

where f is a map from Rn to Rn.

A final issue on our agenda in this chapter is the input/output stability of
the system

P

(
d

dt

)

y = Q

(
d

dt

)

u.

7.2 Stability of Autonomous Systems

Let P (ξ) ∈ Rq×q[ξ], with detP (ξ) 6= 0; i.e., the polynomial detP (ξ) is
assumed not to be the zero polynomial. Consider the system of differential
equations (7.3). This defines, as explained in detail in Chapter 3, the dynam-
ical system Σ = (R,Rq,B) with B = {w : R→ Rq | w satisfies P

(
d
dt

)
w =

0 weakly}. Since we assume detP (ξ) 6= 0, the resulting system (7.3) is an
autonomous one, which implies that B is finite-dimensional and that each
weak solution of (7.3) is a strong one. Moreover, all solutions are infinitely
differentiable in this case, and the general form of the solution to (7.3) has
been given in Theorem 3.2.16. In fact, we showed that w ∈ B if and only
if w is of the following form: w = w1 + w2 + · · · + wN , where each of the
wks is associated with one of the distinct roots λ1, λ2, . . . , λN of detP (ξ).
This wk is given by

wk(t) =

(
nk−1∑

ℓ=0

Bkℓt
ℓ

)

eλkt, (7.6)

where nk is the multiplicity of the root λk of detP (ξ) and the Bkℓs are
suitable constant complex vectors. How these vectors are obtained is not
important at this point. It has been explained in Theorem 3.2.16. What is
important, however, is the fact that the set of admissible polynomials

nk−1∑

ℓ=0

Bkℓt
ℓ

obtained this way forms an nk dimensional linear space.
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In (7.6) we have assumed that we are considering complex solutions. The
real solutions are simply obtained by taking the real part in (7.6). Since the
distinction between the real and the complex case is not relevant in stability
considerations, we continue by silently assuming that we are considering
complex as well as real solutions.

As can be seen from Example 7.1.1, in nonlinear systems some equilibria
may be stable, others may be unstable. Thus stability is not a property of a
dynamical system, but of a trajectory, more specifically, of an equilibrium
of a dynamical system. However, for linear systems it can be shown (see
Exercise 7.26) that all equilibria have the same stability properties. For
simplicity of exposition, this fact has been incorporated in the definition
that follows.

Definition 7.2.1 The linear dynamical system Σ described by (7.3) is
said to be stable if all elements of its behavior B are bounded on the
half-line [0,∞), precisely, if (w ∈ B) ⇒ (there exists M ∈ R such that
‖w(t)‖ ≤M for t ≥ 0). Of course, this bound M depends on the particular
solution w ∈ B. It is said to be unstable if it is not stable; it is said to
be asymptotically stable if all elements of B approach zero for t → ∞
(precisely, if (w ∈ B)⇒ (w(t)→ 0 as t→∞)). �

In order to state stability conditions in terms of the polynomial P (ξ), we
need to introduce the notion of a semisimple root of the square polynomial
matrix P (ξ). The roots (or singularities) of P (ξ) are defined to be those of
the scalar polynomial detP (ξ). Hence λ ∈ C is a root of P (ξ) if and only
if the complex matrix P (λ) ∈ Cq×q has rank less than q. The root λ is
called simple if it is a root of detP (ξ) of multiplicity one, and semisimple
if the rank deficiency of P (λ) equals the multiplicity of λ as a root of P (ξ)
(equivalently, if the dimension of kerP (λ) is equal to the multiplicity of λ
as a root of detP (ξ)). Clearly, for q = 1 roots are semisimple if and only
if they are simple, but for q > 1 the situation is more complicated. For
example, 0 is a double root of both the polynomial matrices

[
ξ 0
0 ξ

]

and

[
ξ 1
0 ξ

]

. (7.7)

This root is semisimple in the first case, but not in the second.

With Theorem 3.2.16 at hand, it is very easy to decide on the stability of
(7.3).

Theorem 7.2.2 The system defined by (7.3) is:

(i) asymptotically stable if and only if all the roots of detP (ξ) have
negative real part;
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(ii) stable if and only if for each λ ∈ C that is a root of detP (ξ), there
must hold either (i) Re λ < 0, or (ii) Re λ = 0 and λ is a semisimple
root of P (ξ).

(iii) unstable if and only if detP (ξ) has a root with positive real part
and/or a nonsemisimple root with zero real part.

Proof (i) Let w ∈ B. Then w is given by an expression as given in Theorem
3.2.16, (3.19). Since (Re λ < 0 and ℓ ∈ Z+) ⇒ ( lim

t→∞
tℓeλt = 0), the “if”

part of part 1 of the theorem follows. To prove the “only if” statement,
observe that if λ ∈ C is a root of detP (ξ), then there exists a 0 6= B ∈ Cq

such that P (λ)B = 0, and hence the function t 7→ Beλt belongs to B. Now,
if Beλt is to go to zero as t→∞, Re λ must be < 0. This yields the “only
if” part.

(ii) To prove stability, the argument of part 1 needs to be refined in one
point only: by considering more closely what happens to the roots of P (ξ)
with zero real part. In particular, if λk is such a root, and if its multiplicity
nk is larger than one, then (7.6) shows that there may be elements w ∈ B

of the form

w(t) =

(
nk−1∑

ℓ=0

Bkℓt
ℓ

)

eλkt. (7.8)

We must show that Bk1 = Bk2 = · · · = Bk(nk−1) = 0 if and only if the root
λk is semisimple. We know on the one hand that the set of polynomials

nk−1∑

ℓ=0

Bkℓt
ℓ.

such that (7.8) yields a w ∈ B form an nk-dimensional space (see 3.2.16).
On the other hand, the function t 7→ Bke

λkt belongs to B if and only if
P (λk)Bk = 0. These Bks form an nk dimensional vector space if and only
if λk is a semisimple root of P (ξ). This shows that there are ws in B of the
form (7.8) that are unbounded if and only if λk is semisimple. This yields
part 2.

(iii) Follows from part 2. �

Example 7.2.3

1. Consider the scalar first-order system aw + d
dtw = 0. The associated

polynomial is P (ξ) = a + ξ. Its root is −a. Hence this system is
asymptotically stable if a > 0, stable if a = 0, and unstable if a < 0.
This, of course, is easily verified, since the solution set consists of the
exponentials Ae−at.
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2. Consider the scalar second-order system aw + d2

dt2w = 0. The asso-
ciated polynomial is P (ξ) = a + ξ2. Its roots are λ1,2 = ±

√
−a for

a < 0, λ1,2 = ±i√a for a > 0, and λ = 0 is a double, not semisim-
ple root when a = 0. Thus, according to Theorem 7.2.2, we have
(a < 0⇒ instability), (a > 0⇒ stability), and (a = 0⇒ instability).
These conclusions correspond to the results obtained in Theorem
3.2.5 and Corollary 3.2.13. Indeed, for a < 0 the solution set is
given by the time trajectories of the form Ae

√
−at + Be−

√
−at, and

hence (A = 1, B = 0) there are unbounded solutions; for a > 0 by
A cos

√
at+B sin

√
atA, and hence all solutions are bounded; for a = 0

by A+Bt, and hence (B 6= 0) there are unbounded solutions.

�

We now apply Theorem 7.2.2 to derive conditions on the stability of state
equations. Let A ∈ Rn×n, and consider the autonomous state system (7.4).
The roots of the polynomial det(Iξ −A) are the eigenvalues of A. Accord-
ingly, we call an eigenvalue λ of A semisimple if λ is a semisimple root of
det(Iξ−A), in other words, if the dimension of ker(λI −A) is equal to the
multiplicity of λ as a root of the characteristic polynomial det(Iξ−A) of A.
In Exercise 7.7 an equivalent condition for semisimplicity of an eigenvalue
of A is derived.

Corollary 7.2.4 The system defined by d
dtx = Ax is:

1. asymptotically stable if and only if the eigenvalues of A have negative
real part;

2. stable if and only if for each λ ∈ C that is an eigenvalue of A, either
(i) Reλ < 0, or (ii) Re λ = 0 and λ is a semisimple eigenvalue of A;

3. unstable if and only if A has either an eigenvalue with positive real
part or a nonsemisimple one with zero real part.

Proof Apply Theorem 7.2.2 with P (ξ) = Iξ −A. �

Example 7.2.5 The free motion in R3 of a particle with mass m is de-

scribed by m d2

dt2w = 0. Hence P (ξ) = mIξ2, with I the (3 × 3) identity
matrix. The determinant of P (ξ) is m3ξ6, and P (0) = 0. Hence the root
0 is not semisimple, since dimkerP (0) = 3 but 0 is a root of detP (ξ) of
multiplicity 6. In fact, the behavior of this system consists of all functions
of the form at+ b, with a, b ∈ R3. Whenever the initial velocity a 6= 0, this
leads to a function that is unbounded on R+, showing instability. �
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7.3 The Routh–Hurwitz Conditions

Let p(ξ) ∈ R[ξ], written out in terms of its coefficients

p(ξ) = p0 + p1ξ + · · ·+ pn−1ξ
n−1 + pnξ

n, (7.9)

with p0, p1, . . . , pn ∈ R. Now consider the problem of finding conditions on
the coefficients p0, p1, . . . , pn such that all the roots of p(ξ) have negative
real part. The question arises, Is it necessary to compute the roots of p(ξ) in
order to decide whether their real part is negative, or do there exist relatively
simple tests on the coefficients of p(ξ) for the roots to have negative real
part? Note that this question, when applied to detP (ξ) or to det(Iξ −A),
arises very naturally as a result of the asymptotic stability condition of
systems (7.3) and (7.4) as established in Theorem 7.2.2 and Corollary 7.2.4.

This question, nowadays called the Routh–Hurwitz problem, has a history
going back more than a century. Maxwell (indeed, he of the basic equa-
tions describing electromagnetic fields) was the first scientist who ran into
this problem, but he was unable to give a satisfactory answer. The ques-
tion itself may sound a bit quaint in the age of computers, where roots of
high-order polynomials can be evaluated to great accuracy in a matter of
seconds. Nevertheless, verifying that the roots of a high-order polynomial
have negative real part by actually computing them all explicitly certainly
feels like overkill. However, until a few decades ago, scientists did not suf-
fer the comfort of computers, and it was natural that the Routh–Hurwitz
question became a very belabored one in view of the importance of the
dynamic stability question.

In order to appreciate the difficulty of the Routh–Hurwitz problem, consider
the cases n = 1, 2. Assume for simplicity that pn = 1. Clearly, p0 + ξ has
its root −p0 in the left half of the complex plane if and only if p0 > 0. The
roots of p0+ p1ξ+ ξ

2 are given by −p1

2 ±
√
(p1

2 )2 − p0 and it is easy to sort
out that these have negative real part if and only if p0 > 0, and p1 > 0. We
invite the reader to try to do the case n = 3 without reading the sequel to
this chapter. The question is, can we come up with a test for any n? We
say that p(ξ) is a Hurwitz polynomial if all its roots have negative real part.
If all the eigenvalues of A ∈ Rn×n have negative real part, then A is called
a Hurwitz matrix. If P (ξ) ∈ Rq×q[ξ] has detP (ξ) 6= 0 and if detP (ξ) is a
Hurwitz polynomial, then we call P (ξ) a Hurwitz polynomial matrix.

Assume that the degree of p(ξ) is n; hence pn 6= 0. We are looking for
conditions on p0, p1, . . . , pn−1, pn for p(ξ) to be Hurwitz. Note that we may
as well assume that pn > 0; otherwise, consider the polynomial −p(ξ).

We now state two equivalent conditions on the coefficients p0, p1, . . . , pn−1, pn
for p(ξ) to be Hurwitz. The first condition is due to Routh. It is difficult to
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state, but straightforward to apply. The second condition is due to Hurwitz.
It is easier to state, but it requires the evaluation of large determinants.

7.3.1 The Routh test

In order to state the Routh test, consider first the following procedure for
forming from two sequences of real numbers a third one:

sequence 1 : a1 a2 a3 · · · ,
sequence 2 : b1 b2 b3 · · · ,
sequence 3 : c1 c2 c3 · · · ,

(7.10)

with ck = b1ak+1 − a1bk+1. Note that it easy to compute the cks in a
systematic way, since ck is simply minus the determinant of

[ a1 ak+1

b1 bk+1

]
. Now

form the sequences derived from, respectively, the coefficients of the even
and odd parts of the polynomial p(ξ):

row 1: p0 p2 p4 · · · ,
row 2: p1 p3 p5 · · · . (7.11)

When, while setting up these sequences, one meets coefficients beyond ξn,
take them to be equal to zero. Now compute a third sequence

row 3: c1 c2 c3 · · ·

from the rows (7.11), using the procedure explained above. Next, compute
the fourth row

row 4: d1 d2 d3 · · ·

from row 2 and row 3, also in the manner indicated above. Proceeding this
way yields the Routh table:

p0 p2 p4 · · ·
p1 p3 p5 · · ·
c1 c2 c3 · · ·
d1 d2 d3 · · ·
...

...
...

...
...
...

(7.12)

Simple bookkeeping shows that only the first (n + 1) rows of this table
contain elements that are not zero; see Exercise 7.12. Let (r0, r1, r2, . . . , rn)
denote the elements in the first column of the Routh table. This array is
called the Routh array. Of course, r0 = p0, r1 = p1, r2 = p1p2 − p0p3,
etc., but r3, r4, . . . are increasingly complicated functions of p0, p1, p2, . . ..
However, using the recursive procedure explained for the Routh table, they
are straightforward to compute.
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Theorem 7.3.1 (Routh test) Assume that pn > 0. Then all the roots of
p(ξ) have negative real part if and only if r0 > 0, r1 > 0, . . . , rn > 0, i.e.,
the elements of the Routh array are all positive.

Proof We do not give the proof of this result. However, Exercise 7.15 leads
the interested reader through an elementary inductive proof. �

The test of Theorem 7.3.1 is called the Routh test. It is an amazing result.
The following examples illustrate the construction of the Routh table and
the Routh array, and hence the determination of the asymptotic stability
of the associated differential equation.

Example 7.3.2 1. Determine whether p(ξ) = 1+2ξ+3ξ2 + ξ3 is Hur-
witz. Computation of the Routh table (blank elements are zero) yields

1 3
2 1
5
5

The Routh array equals (1, 2, 5, 5), and hence the polynomial is Hur-
witz.

2. Determine for what α ∈ R the polynomial p(ξ) = α+ ξ+2ξ2 +3ξ3 +
2ξ4 + ξ5 is Hurwitz. The Routh table becomes

α 2 2
1 3 1

2− 3α 2− α
4− 8α 2− 3α

4(2− α)2 − (2− 3α)2

(4(2− α)2 − (2− 3α)2)(2− 3α)

The Routh array equals (α, 1, (2 − 3α), 4 − 8α, 4(2 − α)2 − (2 −
3α)2, (4(2−α)2−(2−3α)2)(2−3α)). Hence this polynomial is Hurwitz
if and only if 0 < α < 2/3.

3. Determine for what p0, p1, p2, p3 the following polynomials are Hur-
witz:

(i) p(ξ) = p0 + ξ.
(ii) p(ξ) = p0 + p1ξ + ξ2.
(iii) p(ξ) = p0 + p1ξ + p2ξ

2 + ξ3.
(iv) p(ξ) = p0 + p1ξ + p2ξ

2 + p3ξ
3 + ξ4.

Using the Routh test, the following conditions are readily derived:

case (i): p0 > 0.
case (ii): p0 > 0, p1 > 0.
case (iii): p0 > 0, p1 > 0, p1p2 > p0.
case (iv): p0 > 0, p1 > 0, p1p2 − p0p3 > 0, p1p2p3 − p0p23 − p21 > 0.
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Note that the conditions of case (iv) are equivalent to p0 > 0, p1 >
0, p2 > 0, p3 > 0, and p1p2p3 − p0p23 − p21 > 0.

�

7.3.2 The Hurwitz test

We now state another necessary and sufficient condition for the roots of
a polynomial to have negative real part. Form the following n × n matrix
H ∈ Rn×n from the coefficients of p(ξ):

H =













p1 p0 0 0 0 0 · · · 0 0
p3 p2 p1 p0 0 0 · · · 0 0
p5 p4 p3 p2 p1 p0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · pn−3 pn−4

0 0 0 0 0 0 · · · pn−1 pn−2

0 0 0 0 0 0 · · · 0 pn













.

Now, let ∆1,∆2, . . . ,∆n−1,∆n denote the leading principal minors of H.
Recall that a minor of a matrix is the determinant of a square submatrix.
A principal minor is one obtained from a submatrix that is formed by
taking rows and columns with the same indices. The kth leading principal
minor is obtained from a submatrix that is formed the first k rows and the
first k columns. The determinants ∆1,∆2, . . . ,∆n are called the Hurwitz
determinants associated with p. The following result is due to Hurwitz.

Theorem 7.3.3 (Hurwitz test) Assume that pn > 0. Then all the roots
of p(ξ) have negative real part if and only if ∆1 > 0,∆2 > 0, . . . ,∆n > 0,
i.e., its Hurwitz determinants are all positive.

Proof We do not give the proof of this result. However, Exercise 7.16 leads
the reader through a proof of the Hurwitz test. �

A necessary condition for p(ξ) to be Hurwitz is that all its coefficients have
the same sign. Of course, this must be a consequence of the Routh–Hurwitz
conditions, but it is much more easily derived by factoring p(ξ) in terms of
its real and complex roots, yielding

p(ξ) = pn(
∏

k

(ξ − λk))(
∏

k′

((ξ − λk′)2 + ω2
k′)).

The first product in the above expression runs over the real roots λk of
p(ξ), the second over the complex roots λk′ ± iωk′ . Since for a Hurwitz
polynomial all the real numbers appearing in these factors are individually
positive, we obtain the following result.
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Theorem 7.3.4 If p(ξ) ∈ R[ξ] is a Hurwitz polynomial of degree n, then
its coefficients p0, p1, . . . , pn all have the same sign (and in particular, none
of these coefficients can be zero).

Example 7.3.2, part 3, demonstrates that this sign condition is also sufficient
when n ≤ 2, but not when n ≥ 3.

As already mentioned, the Routh–Hurwitz conditions have to some ex-
tent lost their appeal as a test for asymptotic stability because nowadays
it is easy to calculate the roots of a polynomial on a computer. How-
ever, there are other useful results that can be derived very nicely from
the Routh–Hurwitz conditions. As an illustration of this we prove that
asymptotic stability is a robustness property. Consider the system (7.3).
Write out the polynomial matrix P (ξ) in terms of its coefficient matrices:
P (ξ) = P0 + P1ξ + . . . + PLξ

L. In applications these coefficient matrices
are usually functions of the physical parameters of the system modeled.
We have seen earlier in this book examples of mechanical systems where
the values of the masses, spring constants, and damping coefficients de-
fine these coefficient matrices, and of electrical circuits where the values
of the resistors, capacitors, and inductors define these coefficient matrices.
Hence in many applications it is natural to view the matrices P0, P1, . . . , PL

as functions of a physical parameter vector α ∈ RN , yielding mappings
Pk : RN → Rq×q, k = 0, 1, . . . , L, that take α into the coefficient matrices
P0(α), P1(α), . . . , PL(α). This yields the system described by the differential
equations

P0(α)w + P1(α)
d

dt
w + · · ·+ PL(α)

dL

dtL
w = 0. (7.13)

Assume that for α = α0, the resulting system (7.13) is asymptotically
stable. Then the question arises whether (7.13) remains asymptotically
stable for all αs close to this α0. If this is the case, then we call (7.13)
robustly asymptotically stable at α0. There holds:

Theorem 7.3.5 Assume that the maps Pk : RN → Rq×q are continuous
in a neighborhood of α0 ∈ RN . Let Pα(ξ) ∈ Rq×q[ξ] be defined by

Pα(ξ) := P0(α) + P1(α)ξ + · · ·+ PL(α)ξ
L

and assume that detPα0
(ξ) is Hurwitz and that PL(α0) 6= 0, i.e., that its

degree is constant for α in a neighborhood of α0. Then (7.13) is robustly
asymptotically stable at α0.

Proof Of course, readers who are aware of the (somewhat tricky) result
that the roots of a polynomial are continuous functions of its coefficients
will immediately believe this theorem too. However, for these readers as well
it should be apparent that the following proof circumvents this continuity
argument.
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Consider the Hurwitz determinants associated with detPα(ξ). Note that
since the Pks are continuous functions of α, so are the Hurwitz determi-
nants. Now, in the neighborhood of α0, the number of such determinants
is equal to the degree of detPα0

(ξ). Furthermore, at α = α0 all the Hur-
witz determinants are positive. By continuity, they remain positive in a
neighborhood of α0. This proves the theorem. �

Now consider the system (7.4) in which the matrix A is assumed to be a
function of a parameter vector α ∈ RN , yielding

d

dt
x = A(α)x. (7.14)

Corollary 7.3.6 Assume that the map A : RN → Rn×n in (7.14) is con-
tinuous in a neighborhood of α0 ∈ RN . If A(α0) is Hurwitz, then (7.14) is
robustly asymptotically stable at α0 ∈ RN .

Proof Observe that the degree of det(Iξ −A(α)) is n for all α and apply
Theorem 7.3.5. �

The constant degree condition on detPα in Theorem 7.3.5 is important. In
Corollary 7.3.6 it was automatically satisfied. Examination of the asymp-
totic stability of the differential equation

w +
d

dt
w + α

d2

dt2
w = 0

around α = 0 shows that this degree condition is not superfluous.

7.4 The Lyapunov Equation

In this section we discuss Lyapunov functions. We first introduce the intu-
itive idea in the context of the system (7.5) and subsequently work out the
details in the case (7.4). For notational convenience, we assume that the
equilibrium of (7.5) for which we examine the stability is x∗ = 0.

Consider again (7.5)

d

dt
x = f(x), (7.15)

with f : Rn → Rn and f(0) = 0. Note that this implies that 0 is an
equilibrium point of (7.15). We would like to find conditions that ensure
that every solution x : R → Rn (or every solution starting close to 0)
of (7.15) goes to zero as t → ∞, without having to solve this differential
equation explicitly.



260 7. Stability Theory

Example 7.4.1 As an example to illustrate the idea of a Lyapunov func-
tion, consider the scalar (possibly nonlinear) system described by

w +D(w)
d

dt
w +

d2

dt2
w = 0. (7.16)

Think of (7.16) as describing the displacement from equilibrium of a mass
that is dragged by springs over a rough surface (see Figure 7.3). The de-
pendence on w of the friction coefficient D(w) signifies that the friction
exerted by the surface may depend on the place along the surface. Writing

Rough surface

Mass

FIGURE 7.3. Mass–spring system with friction.

(7.16) in state form with x = col(x1, x2), with x1 = w and x2 = d
dtw, yields

d

dt
x =

[
0 1
−1 −D(x1)

]

x. (7.17)

The energy stored in this mechanical system is V (x) = 1
2 ||x||2. When the

state is x then the rate of change of the stored energy equals the rate of
energy dissipated by the friction, i.e., −D(x1)x

2
2. This may be verified by

computing the derivative of V (x(·)) along a solution x(·) of (7.17). This is
given by d

dtV (x(t)) = d
dt

1
2 (x

2
1(t) + x22(t)) = x1(t)

d
dtx1(t) + x2(t)

d
dtx2(t) =

x1(t)x2(t) − x1(t)x2(t) −D(x1(t))x
2
2(t) = −D(x1(t))x

2
2(t). The important

thing is that we can determine what this derivative is without knowing
the solution x(·) explicitly. Note that when D(x1) ≥ 0 for all x1, then the
system dissipates energy, and hence the energy is nonincreasing in time.
Hence V (x(t)) ≤ V (x(0)) for t ≥ 0 along solutions. This implies ||x(t)||2 ≤
||x(0)||2 and demonstrates the stability of the equilibrium point. Hence
by examining the sign of the derivative of V along solutions, we are able
to infer stability without having computed the solution. This is the idea
behind a Lyapunov function.

�

We now generalize this idea to (7.15). Suppose for a moment that we come
up with a function V : Rn → R with V (0) = 0 and V (x) > 0 for x 6= 0,



7.4 The Lyapunov Equation 261

and having the property that its derivative along every solution of (7.15) is
nonpositive. Then V (x(t)) is nonincreasing, and it is reasonable to expect
that, perhaps under some additional requirements, V (x(t))→ 0 for t→∞.
If, on the other hand, V (x) < 0 for some x ∈ Rn and V (0) = 0, then
it simply cannot happen that x(t) → 0 as t → ∞, establishing lack of
asymptotic stability.

This reasoning can be justified intuitively by drawing the level sets of V . Let
us illustrate this graphically in the case n = 2. Draw the level sets of V in
R2, i.e., the contours where V (x) is constant. We may have elliptic-looking
level sets or hyperbolic-looking level sets. If V (x(t)) is nonincreasing, then
trajectories of (7.15) tend towards the origin in the case of elliptic contours,
but not in the case of hyperbolic contours (see Figure 7.4).

level sets

x2x2

V > 0

V < 0V < 0

x1x1

V > 0

typical trajectory

typical trajectory

FIGURE 7.4. Phase portraits and level sets.

A nonnegative function V that has the property that its derivative along
solutions of (7.15) is negative is called a Lyapunov function for (7.15). Two
questions arise: How do we establish that V (x(t)) is nonincreasing along
solutions? and How do we find such a Lyapunov function V ?

The first question is easy to answer. Indeed, by the chain rule of differen-
tiation the derivative of V (x(t)) at t is given by (grad V )(x(t)) · f(x(t)),
where grad V = ( ∂V

∂x1
, ∂V
∂x2

, . . . , ∂V
∂xn

). Hence if the function
•
V : Rn → R

defined by
•
V := grad V · f (7.18)

is nonpositive, then V (x(·)) is nonincreasing along solutions.

Definition 7.4.2 A differentiable function V : Rn → R is said to be a

Lyapunov function for the system (7.15) on the set S ⊂ Rn for (7.15) if
•
V ,

defined by (7.18), satisfies
•
V (x) ≤ 0 for all x ∈ S. �
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The second question is more difficult. In physical systems that dissipate
energy, the stored energy is a good candidate for a Lyapunov function. In
thermodynamic systems the negative of the entropy is a good candidate. For
nonlinear systems the choice of a good Lyapunov function remains much a
matter of experience, luck, and trial and error. For linear systems we shall
see that the construction of (quadratic) Lyapunov functions can be carried
out quite explicitly.

Now return to the linear system (7.4), and examine this technique in detail
for quadratic Lyapunov functions.

Definition 7.4.3 Let M ∈ Rn×n be symmetric: M = MT . Then the
function from Rn to R defined by x 7→ xTMx is called the quadratic form
defined by M . The symmetric matrix M is said to be:

• nonnegative definite (denoted M ≥ 0) if xTMx ≥ 0 for all x ∈ Rn;

• positive definite (denoted M > 0) if in addition, xTMx = 0 implies
x = 0;

• nonpositive definite (denoted M ≤ 0) if −M is nonnegative definite;

• negative definite (denoted M < 0) if −M is positive definite.

�

Let us now carry out the computation of
•
V in the case that V a quadratic

form and the system is given by (7.4). Consider the quadratic form V (x) =
xTPx with P = PT , and examine how it evolves along solutions of (7.4).
Let x : R→ Rn be a solution of (7.4). Then x satisfies d

dtx = Ax and it is

easily seen, using the chain rule of differentiation, that d
dtV (x(t)) is given

by

d

dt
V (x(t)) = (grad V )(x(t)) ·Ax(t) = xT (t)(ATP + PA)x(t).

In other words, if at time t, x(t) = a, then the derivative of V (x(t)) at time

t is aT (ATP +PA)a. We denote this function by
•
V . Explicitly,

•
V : Rn → R

is thus given by
•
V (x) = xT (ATP + PA

︸ ︷︷ ︸

Q

)x.

Note that
•
V is also a quadratic form,

•
V (x) = xTQx, with Q the matrix

Q = ATP + PA. (7.19)

Equation (7.19) shows the relation between the system matrix A ∈ Rn×n,
the symmetric matrix P = PT defining the quadratic Lyapunov function
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V (x) = xTPx, and the symmetric matrix Q = QT defining its derivative

along solutions of (7.3), the quadratic function
•
V (x) = xTQx. Equation

(7.19) viewed as a relation between A,P , and Q is called the Lyapunov
equation. Sometimes, one wants to find Q for a given A and P in order to

see if
•
V ≤ 0. Sometimes, however, one wants to find P for a given A and Q.

Note that if Q ≤ 0, then
•
V ≤ 0, and so V : x 7→ xTPx is then a Lyapunov

function for (7.4). Thus solving (7.19) for P corresponds to constructing a
Lyapunov function. As mentioned in the introduction, this should allow us
to draw conclusions regarding the stability of (7.4). However, before we can
make this statement precise, we need one more thing. Recall that the pair
of matrices (A,Q) is said to be observable if the associated state system
d
dtx = Ax, w = Qx is observable, equivalently, if and only if the rank of
col(Q,QA, . . . , QAn−1) is n (see Theorem 5.3.9), or if and only if the only
A-invariant subspace contained in kerQ is {0} (see Theorem 5.3.13). Note,
in particular, that if Q is nonpositive or nonnegative definite, then (A,Q)
is observable if and only if

(
d
dtx = Ax, xTQx = 0

)
⇒ (x = 0). This follows

easily from the implication that then (xTQx = 0)⇔ (Qx = 0).

Theorem 7.4.4 Consider (7.4). Assume that A,P = PT , and Q = QT

satisfy the Lyapunov equation (7.19). Then

1. (P > 0, Q ≤ 0)⇒ ((7.4) is stable).

2. (P > 0, Q ≤ 0, and (A,Q) observable) ⇒ ((7.4) is asymptotically
stable).

3. (P not ≥ 0, Q ≤ 0, and (A,Q) observable) ⇒ ((7.4) is unstable).

Proof We use the following fact from linear algebra. Consider the symmet-
ric matrix P = PT . If P > 0, then there exist ǫ,M ∈ R, with 0 < ǫ ≤ M ,
such that for all x ∈ Rn there holds ǫxTx ≤ xTPx ≤MxTx.

1. Let x : R → Rn be a solution of (7.4). Consider as Lyapunov func-
tion V the quadratic form defined by P . Then d

dtV (x)(t) = xT (t)Qx(t) is
nonpositive because Q ≤ 0. Hence, for t ≥ 0,

V (x(t))− V (x(0)) =

t∫

0

d

dt
V (x(τ))dτ ≤ 0.

Consequently, xT (0)Px(0) ≥ xT (t)Px(t).HenceMxT (0)x(0) ≥ xT (0)P (x(0) ≥
xT (t)Px(t) ≥ ǫxT (t)x(t), which shows that for t ≥ 0, ‖x(t)‖2 ≤ M

ǫ ‖x(0)‖2
for t ≥ 0. Boundedness of x on [0,∞) and hence stability of (7.4) follow.

2. From (1), we know that (7.4) is stable. If it were not asymptotically
stable, then by Corollary 7.2.4, A must have an eigenvalue on the imaginary
axis. Therefore, (7.4) would have a nonzero periodic solution. Let x̃ be this
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periodic solution, and assume that it has period T > 0. Define the subspace
L of Rn by L = span{x̃(t), t ∈ [0, T ]}. Now verify that L is A-invariant

(Ax = lim
t→0

eAtx0−x0

t then belongs to L if x0 does). Furthermore, since

0 = V (x̃(T ))− V (x̃(0)) =

T∫

0

d

dt
V (x̃(τ))dτ =

T∫

0

x̃T (τ)Qx̃(τ)dτ,

x̃T (t)Qx̃(t) must be zero for t ∈ [0, T ]. Since Q ≤ 0, this implies that
Qx̃(t) = 0 for t ∈ [0, T ]. Hence L is an A-invariant subspace contained in
kerQ, implying, by the observability of (A,Q), that L = {0}. Hence x̃ = 0,
which establishes by contradiction that (7.4) is indeed asymptotically stable.

3. In order to prove (3), first use the same argument as in (2) to prove
that (7.4) cannot have nonzero periodic solutions. Hence A has no eigen-
values with zero real part. Therefore it suffices to prove that (7.4) is
not asymptotically stable. Since P is not ≥ 0, there is an a ∈ Rn

such that aTPa < 0. Now consider the solution x : R → Rn of (7.4)
with x(0) = a. By the Lyapunov argument used in (1), it follows that
for t ≥ 0, xT (t)Px(t) = V (x(t)) ≤ V (x(0)) = V (a) < 0. Therefore,
xT (t)Px(t) ≤ V (a) < 0 for all t ≥ 0. By continuity, this shows that for this
solution x, limt→∞ x(t) cannot be zero. Hence (7.4) is unstable in this case.

�

Example 7.4.5 Assume that A+AT ≤ 0. Then Theorem 7.4.4 with P =
I shows that (7.4) is stable. If A + AT < 0, then it is asymptotically
stable. More generally, if A + AT ≤ 0, then (7.4) is asymptotically stable
if (A,A+AT ) is an observable pair of matrices. �

Example 7.4.6 Consider the system described by the scalar second-order
differential equation

bw + a
d

dt
w +

d2

dt2
w = 0. (7.20)

Recall from Example 3.2.2 that we can think of (7.20) as describing the
motion of a unit mass in a mass–damper–spring combination, with a the
damping coefficient and b the spring constant. By the results in Section
7.3, we know that this system is

(asymptotically stable) ⇔ (a > 0 and b > 0);

(stable ) ⇔ ((a ≥ 0 and b > 0) or (a > 0 and b ≥ 0));

(unstable ) ⇔ ((a < 0) or (b < 0) or (a = b = 0)).

Let us see whether we can deduce this also from Theorem 7.4.4. Introduce
the state variables x1 = w and x2 = d

dtw. This leads to

d

dt
x =

[
0 1
−b −a

]

x. (7.21)



7.4 The Lyapunov Equation 265

Consider the following quadratic Lyapunov function V .

• For a ≥ 0 : V (x1, x2) = bx21 + x22. Its derivative along solutions of

(7.21) is
•
V (x1, x2) = −2ax22. In terms of the notation of theorem

7.4.4, we have P =

[
b 0
0 1

]

and Q =

[
0 0
0 −2a

]

. Note that (A,Q)

is observable if and only if a > 0 and b 6= 0. Furthermore, (P > 0)⇔
(b > 0), (P ≥ 0) ⇔ (b ≥ 0), and (P not ≥ 0) ⇔ (b < 0). Theorem
7.4.4 therefore allows us to conclude that (7.21) is

– asymptotically stable if a > 0 and b > 0.

– stable if a ≥ 0 and b > 0.

– unstable if a > 0 and b < 0.

• For a ≤ 0 : V (x1, x2) = −bx21−x22. Its derivative is
•
V (x1, x2) = 2ax22.

Following the above argument, we conclude that

– (7.21) is unstable if a < 0 and b 6= 0.

• For a = 0 : V (x1, x2) = x1x2. Its derivative is
•
V (x1, x2) = −bx21+x22.

Applying theorem 7.4.4, we conclude, after some calculations, that

– (7.21) is unstable if a = 0 and b < 0.

• For b = 0 : V (x1, x2) = (ax1+x2)
2+x22. Its derivative is

•
V (x1, x2) =

−2ax22. Conclusion:
– (7.21) is stable if a > 0 and b = 0.

We have now covered all cases, except when b = 0 and a ≤ 0, for which
(7.21) is unstable. In fact, Theorem 7.4.4 cannot be used to prove instability
in this case, since it is easy to verify that then there exist no P = PT and
Q = QT ≤ 0, with (A,Q) observable, satisfying the Lyapunov equation
(7.19). �

Example (7.4.6) shows at the same time the power and some of the pitfalls of
Theorem 7.4.4. The choice of V as a Lyapunov function in the first two cases
is rather natural if one identifies the system (7.20) with a mass–damper–
spring combination, the Lyapunov function with the stored energy, and its
derivative with the rate of dissipation of energy. However, the Lyapunov
function for the other two cases has no such simple physical interpretation.
Finally, we also saw that Theorem 7.4.4 was unable to provide a complete
analysis even in this simple example. Indeed, on the basis of Theorem 7.4.4
we could not conclude instability in the case b = 0 and a ≤ 0.

Next, we establish the converse of part 1 of Theorem 7.4.4. In other words,
we show that for asymptotically stable systems it is always possible to find
a suitable quadratic Lyapunov function.
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Theorem 7.4.7 Assume that A is a Hurwitz matrix.

1. Then for any Q = QT there exists a unique P = PT such that (7.19) is
satisfied.

2. Moreover, (Q ≤ 0)⇒ (P ≥ 0).

3. Finally, if Q ≤ 0, then (P > 0)⇔ ((A,Q) is observable).

Proof 1. Let A be Hurwitz and let Q = QT be given. Consider the
symmetric (n× n) matrix

−
∞∫

0

eA
T tQeAtdt. (7.22)

Note that since A is Hurwitz, this matrix is well-defined; in other words,
the infinite integral converges. Furthermore,

AT (−
∞∫

0

eA
T tQeAtdt) + (−

∞∫

0

eA
T tQeAtdt)A

= −
∞∫

0

d

dt
(eA

T tQeAt)dt = −eAT tQeAt ]
∞
0 = Q.

Hence the matrix defined by (7.22) indeed satisfies the Lyapunov equation
(7.19).

Next, we prove that it is the unique solution to this Lyapunov equation with
P viewed as the unknown. We give two proofs of uniqueness. The reason for
giving two proofs is purely pedagogical. The proofs differ widely in math-
ematical character, and both are useful for generalization to more general
situations. The first proof is based on a property of linear transformations
on finite-dimensional vector spaces. Consider the map L : X 7→ ATX+XA.
Clearly, L maps the set of symmetric (n × n) matrices into itself. Thus L

is a linear mapping from a real n(n+1)
2 dimensional vector space into itself.

We have just proved that it is surjective, since for any Q = QT , (7.22)
provides us with a solution to L(X) = Q. Since L is a surjective linear
map from a finite-dimensional vector space onto itself, it is also injective.
(Indeed, a square matrix has full column rank if and only if it has full row
rank.) Hence (7.22) is the only P = PT that satisfies (7.19).

For the second proof of uniqueness, assume that both P1 and P2 satisfy
(7.19). Then ∆ := P1 − P2 satisfies AT∆ + ∆A = 0. Consider M(t) :=

eA
T t∆eAt and note that d

dtM(t) = eA
T t(AT∆+∆A)eAt = 0. Hence M(t)

is a constant matrix as a function of t. Obviously,M(0) = ∆, andM(t)→ 0
as t→∞. Therefore, ∆ = 0, i.e., P1 = P2, which establishes uniqueness.

2. The expression (7.22) shows that for a ∈ Rn, aTPa =
∞∫

0

(eAta)T (−Q)(eAta)dt ≥
0 when Q ≤ 0. Hence (Q ≤ 0)⇒ (P ≥ 0).
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3. From (7.22), we obtain that for all a ∈ Rn,

aTPa = aT (

∞∫

0

eA
T t(−Q)eAtdt)a. (7.23)

Now, observability of (A,Q) implies that the right-hand side of (7.23) is
zero only if a = 0. Since we already know from part 2 that P ≥ 0, this
yields P > 0. This establishes the implication (⇐) of part 2.

To show the converse implication, observe that P > 0 implies that the
left-hand side of (7.23) is zero only if a = 0. Therefore, QeAta = 0 for t ≥ 0
only if a = 0, which establishes the observability of (A,Q). �

Summarizing Theorems 7.4.4 and 7.4.7 for asymptotically stable systems
shows that if (A,P,Q) satisfy the Lyapunov equation (7.19), then P =
PT > 0, Q = QT ≤ 0, and (A,Q) observable imply that A is Hurwitz.
Conversely, if A is Hurwitz and if we pick any Q = QT ≤ 0 with (A,Q)
observable, then there is a unique solution P to (7.19), and it satisfies
P = PT > 0.

Example 7.4.6 (continued):

Theorem 7.4.7 allows us to conclude that for a > 0 and b > 0, there must

exist a V (x1, x2) such that
•
V (x1, x2) = −x21 − x22. Let us compute it. The

relevant Lyapunov equation is
[

0 −b
1 −a

] [
p1 p2
p2 p3

]

+

[
p1 p2
p2 p3

] [
0 1
−b −a

]

=

[
−1 0
0 −1

]

.

Solving for p1, p2, p3 yields

p1 =
a

2b
+
b+ 1

2a
, p2 =

1

2b
, p3 =

b+ 1

2ab
.

Asymptotic stability is easy whenever V (x) is a positive definite quadratic

form and
•
V (x) is a negative definite one. Unfortunately, while such Lya-

punov functions exist (see (7.4.7)), they are not easy to obtain. Thus if
we interpret this example as a mass–damper–spring combination, we see
that using the stored energy 1

2 (bx
2
1 + x22) yields a positive definite Lya-

punov function V , but with derivative
•
V that is nonpositive definite but

not negative definite (since the dissipation depends only on the velocity).
From a physical point of view, this is a very natural Lyapunov function.
However, in order to allow us to conclude asymptotic stability, we need to
invoke observability. On the other hand, there always exist positive definite
quadratic Lyapunov functions with a negative definite derivative. We have
just seen that

V (x1, x2) =

(
a

2b
+
b+ 1

2a

)

x21 +
1

b
x1x2 +

b+ 1

2ab
x22
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indeed yields
•
V (x1, x2) = −x21 − x22.

7.5 Stability by Linearization

Let us now consider again the nonlinear system (7.15)

d

dt
x = f(x), (7.24)

where f : Rn → Rn may be nonlinear and is now assumed to be differ-
entiable. Let Σ = (R,Rn,B) be the dynamical system defined by (7.24).
Since in stability considerations we agreed to consider only smooth solu-
tions, the behavior is defined by B := {x : R→ Rn | x is differentiable and
d
dtx(t) = f(x(t)) for all t}. Furthermore, if, for example, f ′ : Rn → Rn×n,
the Jacobi matrix of derivatives of f , is bounded on Rn, then for each
a ∈ Rn, there exists precisely one element x ∈ B such that x(0) = a. These
existence and uniqueness properties are standard results from the theory
of differential equations. However, they are of no real concern to us in the
sequel, and we mention them merely for completeness.

Let x∗ ∈ Rn be an equilibrium point of (7.24). This means that f(x∗) = 0
and hence that the constant trajectory x : R → Rn with x(t) = x∗ for all
t ∈ R belongs to B. It is the stability of this equilibrium point that matters
to us in this section.

Definition 7.5.1 The equilibrium point x∗ ∈ Rn of (7.24) is said to be
stable if for all ǫ > 0 there exists a δ > 0 such that

(x ∈ B, ‖x(0)− x∗‖ ≤ δ)⇒ (‖x(t)− x∗‖ ≤ ǫ for all t ≥ 0).

It is said to be an attractor if there exists an ǫ > 0 such that

(x ∈ B, ‖x(0)− x∗‖ ≤ ǫ)⇒ ( lim
t→∞

x(t) = x∗).

It is said to be asymptotically stable if it is a stable attractor, and unstable
if it is not stable. �

These definitions are illustrated in Figure 7.5. See Exercises 7.25 and 7.26
for the relations between Definitions 7.2.1 and 7.5.1 for linear systems.

It turns out that the stability properties of the equilibrium point x∗ can
to a large extent be decided by the linearization of the system (7.24) at
the equilibrium point x∗. Linearization has been discussed extensively in
Section 4.7. Recall that the linear system

d

dt
∆ = f ′(x∗)∆ (7.25)
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ǫ

stability

t

asymptotic stability

t

ǫ

δ

X X

FIGURE 7.5. Stability and asymptotic stability.

is the linearization of (7.24) at the equilibrium point x∗. Here f ′ denotes
the Jacobi matrix of f , i.e., the matrix of first-order partial derivatives

f ′ =












∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
...
...

...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn












, (7.26)

where f is given by

f(x1, x2, . . . , xn) =








f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)







.

Now, f ′(x∗) is the matrix obtained by evaluating f ′ at the equilibrium
point x∗. It is important to realize that f ′(x∗) is a constant (n×n) matrix
and hence (7.25) becomes a system of first-order differential equations like
(7.4) with A = f ′(x∗). Also, remember from Section 4.7 that if x ∈ B, then
x(t) is equal to x∗+eAt(x(0)−x∗) up to terms of order ‖x(0)−x∗‖2. From
this it stands to reason that there is a close relation between the stability
of x∗ as an equilibrium point of (7.24) and the stability of (7.25).

Theorem 7.5.2 Consider (7.24) and assume that f(x∗) = 0.

1. Assume that all the eigenvalues of the matrix f ′(x∗) have negative real
parts. Then x∗ is an asymptotically stable equilibrium of (7.24).

2. Assume that at least one eigenvalue of f ′(x∗) has positive real part. Then
x∗ is an unstable equilibrium of (7.24).
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Proof 1. Consider the Lyapunov equation

(f ′(x∗))TP + P (f ′(x∗)) = −I.

It follows from Theorem 7.4.7 that this equation has a unique solution
P = PT > 0. Consider the rate of change of the function V : Rn → R
defined by V (x) = (x−x∗)TP (x−x∗), along solutions of (7.24). Let x ∈ B

be a solution of (7.24) and compute d
dt (V (x)). Obviously,

d

dt
V (x)(t) = 2(x(t)− x∗)TPf(x(t)).

Since f(x) = f(x∗)+f ′(x∗)(x−x∗) + terms of order higher than ‖x−x∗‖2
and since f(x∗) = 0, it follows that

d

dt
V (x)(t) = −‖x(t)− x∗‖2 + terms of order higher than ‖x(t)− x∗‖2.

This implies that there exists an ǫ > 0 such that

(
‖x(t)− x∗‖2 ≤ ǫ

)
⇒
(
d

dt
V (x)(t) ≤ −1

2
‖x(t)− x∗‖2

)

. (7.27)

On the other hand, since P = PT > 0, there exists δ > 0 such that
(
(x(t)− x∗)TP (x(t)− x∗) ≤ δ

)
⇒ (‖x(t)− x∗‖ ≤ ǫ) . (7.28)

Furthermore, since P = PT > 0, there exists α > 0 such that

‖x(t)− x∗‖2 ≥ α(x(t)− x∗)TP (x(t)− x∗). (7.29)

Using (7.27), (7.28), and (7.29), we obtain

((x(t)− x∗)TP (x(t)− x∗) ≤ δ)⇒
(
d

dt
(x(t)− x∗)TP (x(t)− x∗) ≤ −α

2
(x(t)− x∗)TP (x(t)− x∗)

)

.
(7.30)

From (7.30) we conclude that
(
(x(0)− x∗)TP (x(0)− x∗) ≤ δ

)
⇒

(
x(t)− x∗)TP (x(t)− x∗) ≤ e−α

2
t((x(0)− x∗)TP (x(0)− x∗)

)
,

which yields asymptotic stability.

2. The proof of the second part of the theorem is omitted. See Exercise
7.24. �

Example 7.5.3 The motion of a damped pendulum (see Example 7.1.1)
is governed by the behavioral differential equation (7.2):

d2

dt2
φ+D

d

dt
φ+

g

L
sinφ = 0,
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where L > 0 denotes the length, g > 0 the constant of gravity, and D the
friction coefficient. Take x1 = φ and x2 = d

dtφ. The state space equations
become

d

dt
x1 = x2,

d

dt
x2 = − g

L
sinx1 −Dx2.

The equilibria are
1. x∗1 = 0, x∗2 = 0 (the pendulum is hanging down),
2. x∗1 = π, x∗2 = 0 (the pendulum is standing up).

Linearization around these equilibria leads to

d

dt
∆ =

[
0 1
− g

L −D

]

∆

for the first equilibrium, and

d

dt
∆ =

[
0 1
g
L −D

]

∆

for the second equilibrium. Application of Theorem 7.5.2 shows that when
D > 0, the first equilibrium point is asymptotically stable, and unstable
when D < 0. The second equilibrium point is unstable for both D ≥ 0 and
D ≤ 0. It can be shown that in fact, the first equilibrium is also stable but
not asymptotically stable when D = 0 (see Exercise 7.30), but that is a
result that does not follow from Theorem 7.5.2. It requires analysis of the
nonlinear system, instead of the linearized one (see Exercise 7.30). �

7.6 Input/Output Stability

In this section we examine the stability of the i/o system

P (
d

dt
)y = Q(

d

dt
)u, (7.31)

where P (ξ) ∈ Rp×p[ξ], detP (ξ) 6= 0, Q(ξ) ∈ Rp×m[ξ], and P−1(ξ)Q(ξ) ∈
Rp×m(ξ) is a matrix of proper rational functions. We have seen in Section
3.3 that the behavior of (7.31) is given by

y(t) = H0u(t) +

t∫

0

H1(t− τ)u(τ)dτ + ya(t), (7.32)

where u ∈ Lloc
1 (R,Rm) and H0 ∈ Rp×m, H1 : R → Rp×m are defined

through the partial fraction expansion of P−1(ξ)Q(ξ) (see Theorem 3.3.13),
and where ya ranges over the set of solutions of the autonomous system

P (
d

dt
)y = 0.
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In i/o stability considerations, we are interested in the solutions on the half-
line [0,∞). More specifically, we examine whether small inputs generate
small outputs.

Definition 7.6.1 Let p be a real number, 1 ≤ p < ∞. The system (7.31)
is said to be Lp-i/o-stable if

((u, y) ∈ B and

∞∫

0

‖u(t)‖pdt <∞)⇒ (

∞∫

0

‖y(t)‖pdt <∞).

It is said to be L∞-i/o-stable if

((u, y) ∈ B and sup
t≥0
‖u(t)‖ <∞)⇒ (sup

t≥0
‖y(t)‖ <∞).

Especially important in applications are L1-, L2-, and L∞-i/o stability. The
third type of stability is often referred to as BIBO (bounded input-bounded
output)-stability. �

Theorem 7.6.2 1. Let 1 ≤ p < ∞. System (7.31) is Lp-i/o-stable if and
only if all the roots of detP (ξ) have negative real parts.

2. System (7.31) is L∞-i/o-stable if and only if each root of detP (ξ) sat-
isfies one of the following conditions:

1. its real part is negative;

2. its real part is zero, it is a semisimple singularity of P (ξ), and it is
not a pole of the transfer function P−1(ξ)Q(ξ). In the scalar case,
this means that the roots of P (ξ) on the imaginary axis must also be
roots of Q(ξ).

Remark 7.6.3 The second condition of part 2 of the above theorem can
be interpreted in terms of the uncontrollable modes of (7.31). Indeed, it
states that the controllable part (see Section 5.2, in particular Theorem
5.2.14) of (7.31) cannot have poles on the imaginary axis. However, the
uncontrollable part can have poles on the imaginary axis, provided that
they are semisimple. �

For the proof of Theorem 7.6.2 we need the following lemma, which is of
interest in its own right.

Lemma 7.6.4 Let p(ξ), q(ξ) ∈ R[ξ], p(ξ) 6= 0, p−1(ξ)q(ξ) be proper, and
assume that p−1(ξ)q(ξ) has a pole on the imaginary axis. Then the dynam-
ical system represented by

p(
d

dt
)y = q(

d

dt
)u (7.33)
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is not L∞-i/o-stable.

Proof Let iω0 ∈ C, ω0 ∈ R, be a pole of p−1(ξ)q(ξ). We show that bounded
inputs of the form uω0

: t 7→ αeiω0t, 0 6= α ∈ C, generate unbounded out-
puts. Note that the solutions corresponding to this input (uω0

, yω0
) satisfy

the set of differential equations

p(
d

dt
)yω0

= q(
d

dt
)uω0

,

(
d

dt
− iω0)uω0

= 0.
(7.34)

The second equation guarantees that uω0
has the desired form t 7→ αeiω0t,

while the first one guarantees that (uω0
, yω0

) satisfies (7.33).

From Theorem 7.2.2 it follows that there are unbounded solutions (uω0
, yω0

)
to (7.34) if and only if iω0 is not a semisimple singularity of

[
p(ξ) −q(ξ)
0 ξ − iω0

]

. (7.35)

We now show that this is the case. Note that since iω0 is a pole of p
−1(ξ)q(ξ),

iω0 is certainly a root of p(ξ), and if it happens also to be a root of q(ξ),
its multiplicity as a root of q(ξ) must be less than its multiplicity as a root
of p(ξ). Now the dimension of the kernel of

[
p(iω0) q(iω0)

0 0

]

is 1 if q(iω0) 6= 0 and 2 if q(iω0) = 0, in which case iω0 is a root of p(ξ) of
multiplicity at least two. The multiplicity of iω0 as a root of

det

[
p(ξ) −q(ξ)
0 ξ − iω0

]

= p(ξ)(ξ − iω0)

equals one plus the multiplicity of iωo as a root p(ξ). This shows that iω0

is not a semisimple singularity of (7.35).

Hence, from Theorem 7.2.2, it follows that (7.34) has a solution of the form
t 7→ (αeiω0t, (β + γt)eiω0t) with γ 6= 0. This proves the lemma. �

Proof of Theorem 7.6.2 We prove only part 2, the BIBO case, p = ∞.
The case p = 1 is also easily proven, while the other cases 1 < p < ∞ are
more tricky.

In order to prove the “if” part, observe that the assumptions imply that
all the poles of the matrix of rational functions P−1(ξ)Q(ξ) have negative
real parts. It then follows from (3.31) that

∞∫

0

‖H1(t)‖dt <∞.
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Let (u, y) ∈ B and assume that supt≥0 ‖u(t)‖ ≤ ∞. Of course, u and y are
related by (7.32). Clearly, supt≥0 ‖H0u(t)‖ < ∞. Also, since the roots of
detP (ξ) have negative real parts, or zero real part and are semisimple as
singularities of P (ξ), it follows from Theorem 7.2.2 that supt≥0 ‖ya(t)‖ <∞.
Furthermore, for t ≥ 0,

‖
t∫

0

H1(t− τ)u(τ)dτ‖ ≤
t∫

0

‖H1(t− τ)‖ ‖u(τ)‖dτ

≤ (
t∫

0

‖H1(t− τ)‖dτ)(sup
t≥0
‖u(t)‖)

≤ (
∞∫

0

‖H1(t)‖dt)(sup
t≥0
‖u(t)‖).

Therefore, y as given by (7.32) is the sum of three functions that are
bounded on R+. It follows that supt≥0 ‖y(t)‖ <∞, as claimed.

In order to prove the “only if” part, observe first that L∞-i/o-stability
requires that all solutions of P ( d

dt )y = 0 be bounded on R+. Theorem 7.2.2
then shows that the roots of detP (ξ) must either have negative real part
or have zero real part and be semisimple singularities of P (ξ). It remains
to be shown that if P (ξ)−1Q(ξ) has a pole on the imaginary axis, then
(7.31) is not L∞-i/o-stable. In Lemma 7.6.4 we have proven this for the
single-input/single-output case.

We now show in the multivariable case that if the transfer function
P−1(ξ)Q(ξ) has a pole on the imaginary axis, then (7.31) is not L∞-
i/o-stable. Let V1(ξ) ∈ Rp×p[ξ] and V2(ξ) ∈ Rp×p[ξ] be unimodular
polynomial matrices such that V1(ξ)P (ξ)V2(ξ) is in diagonal form. Let
P ′(ξ) := V1(ξ)P (ξ)V2(ξ) and Q′(ξ) := V1(ξ)Q(ξ). Then (P ′)−1(ξ)Q′(ξ)
has also a pole on the imaginary axis. Hence one of its entries, say the
(k, ℓ)th entry, has a pole on the imaginary axis. Let iω0 be such a pole.
Now consider for the system described by

P ′(
d

dt
)y′ = Q′(

d

dt
)u′ (7.36)

the input u′ = col(u′1, . . . , u
′
m) with the ℓth entry given by u′ℓ : t 7→ αeiω0t

with α 6= 0, and the other elements zero. Then the kth element of y′ in
(7.36) is governed by

p′kk(
d

dt
)y′k = q′kℓ(

d

dt
)u′ℓ, (7.37)

where pkk denotes the kth element on the diagonal of the (diagonal) poly-
nomial matrix P ′(ξ) and q′kℓ denotes the (k, ℓ)th element of Q′(ξ). By
Lemma 7.6.4 it follows that (7.37) admits an unbounded solution of the
form (β + γt)eiω0t with γ 6= 0. It follows from this that the set of solutions
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to

P ′(
d

dt
)y′ = Q′(

d

dt
)u′,

(
d

dt
− iω0)u

′ = 0
(7.38)

contains unbounded solutions. Now consider the solution set of

P (
d

dt
)y = Q(

d

dt
)u,

(
d

dt
− iω0)u = 0.

(7.39)

The definition of P ′(ξ) and Q′(ξ) shows that (u′, y′) is a solution to (7.38) if
and only if (u′, V −1

2 ( d
dt )y

′) is a solution to (7.39). Since V2(ξ) is unimodular,
this shows that also (7.39) has unbounded solutions (see Exercise 7.2). This
ends the proof of Theorem 7.6.2. �

The proof of Theorem 7.6.2 shows that when P (ξ) has a singularity at iω0,
then the system (7.31) with input u = 0 has solutions of the form eiω0tα,
α 6= 0. If iω0 is a pole of P−1(ξ)Q(ξ), then (7.31) has unbounded solutions
of the form u : t 7→ αeiω0t, y : t 7→ (β+γt)eiω0t, with γ 6= 0. Note that this
unbounded solution is generated by a bounded input applied to a system
that is zero–input stable (but not asymptotically stable). This phenomenon
is called resonance and ω0

2π is called a resonant frequency. It implies that
periodic inputs such as u : t 7→ A cosω0t yield unbounded outputs of the
form y : t 7→ (B+Ct) cos(ω0t+ϕ). Periodic inputs at resonant frequencies
are hence “pumped up” to generate unbounded outputs.

Example 7.6.5 Consider the motion of the position q of the mass of a
mass–spring–damper combination under influence of an external force F .
See Examples 3.2.2 and 3.2.3. This system is governed by the scalar differ-
ential equation

Kq +D
d

dt
q +M

d2

dt2
q = F

with M > 0 the mass, K > 0 the spring constant, and D ≥ 0 the damping.
If D > 0, then Theorem 7.6.2 allows us to infer L∞-i/o-stability. However,
if D = 0, the transfer function

1

K +Mξ2

has a pole at ±i
√

K
M , showing that the system is not L∞-i/o-stable.

This can be illustrated by computing the solution q resulting from applying

the input force F = sin
√

K
M t to the undamped system starting at rest with

q(0) = 0 and d
dtq(0) = 0. The resulting response q is given by

q(t) =
1

2K
sin

√

K

M
t− 1

2
√
KM

t cos

√

K

M
t.
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The second term is the resonance term and shows that the undamped
system is not L∞-i/o-stable. �

Resonance is an important phenomenon in applications. Undamped or
lightly damped systems generate very large responses when subject to small
inputs containing a periodic component with period equal to the natural
frequency of the system. It is in order to avoid this resonance response that
in older times marching soldiers had to fall out of step when crossing a
bridge. Resonance is also responsible for the singing of glasses and vases
that sometimes occurs when playing high toned opera music (such as the
Queen of the Night) loudly in a room.

7.7 Recapitulation

The topic of this chapter is stability of dynamical systems. Stability is one of the
important concepts in systems theory. It is often the most central issue in the
synthesis of control systems. The main points of this chapter are:

• The mathematical definition of stability. For linear autonomous systems,
stability concepts refer to boundedness and convergence to zero of solu-
tions (Definition 7.2.1). For nonlinear autonomous systems, stability is a
property of an equilibrium solution and refers to the behavior of solutions
in the neighborhood of the equilibrium (Definition 7.5.1). For input/output
systems, stability means that bounded inputs should produce bounded out-
puts (Definition 7.6.1).

• Stability of autonomous linear systems can be determined explicitly by the
location of the roots of the determinant of the polynomial matrix specifying
the kernel representation or the eigenvalues of the system matrix specifying
the state representation. In particular, the system is asymptotically stable
if and only if the roots of the characteristic polynomial or the eigenvalues
of the system matrix have negative real part (Theorem 7.2.2 and Corollary
7.2.4).

• There are explicit tests that allow one to deduce that the roots of a polyno-
mial have negative real part, in particular the Routh test and the Hurwitz
test (Theorems 7.3.1 and 7.3.3).

• An effective way of examining stability of a dynamical system is by means
of a Lyapunov function, an energy-like function whose rate of change can
be evaluated without computing the solutions (Definition 7.4.2). For lin-
ear systems, quadratic Lyapunov functions can be explicitly constructed
through a linear matrix equation, called the Lyapunov equation (Theorems
7.4.4 and 7.4.7).

• The asymptotic stability and instability of an equilibrium point of a non-
linear system are closely related to the analogous property of the linearized
system (Theorem 7.5.2).
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• Input/output stability can be decided in terms of the roots of the determi-
nant of a polynomial matrix specifying the zero-input behavior (Theorem
7.6.2). An interesting phenomenon occurring in the context of bounded-
input/bounded-output stability is that of resonance.

7.8 Notes and References

Many textbooks on control and on the theory of differential equations treat stabil-

ity problems, for example [62] and [23]. The Routh–Hurwitz problem originated

in the paper [39] by J.C. Maxwell in 1868. This paper can be considered to be

the first mathematical paper on control. Maxwell posed the problem of finding

conditions on the coefficients of a polynomial for the real part of its roots to be

negative as a public problem for the Adams prize. The prize was awarded to Routh

for his work leading to the Routh test [49]. The Hurwitz test appeared in [24].

There have been uncountable papers devoted to variations on the Routh–Hurwitz

problem. A book that treats many aspects of this problem is [7]. The proof of the

Routh test outlined in Exercise 7.15 is inspired by [41]. The nice stability results

for interval polynomials, Theorem 7.9.2 of Exercise 7.17, appeared in [32]. An

elementary treatment of Lyapunov methods can be found in [62]. Input/output

stability is a more recent development: see e.g. [54], where earlier references can

be found.

7.9 Exercises

7.1 Determine for all parameters α ∈ R whether the systems described by the
following differential equations represent stable, asymptotically stable, or
unstable systems. Do not use Routh–Hurwitz, but determine the roots of
the corresponding polynomial (matrix) explicitly.

(a) αw + d2

dt2
w = 0.

(b) α2w + 2α d2

dt2
w + d4

dt4
w = 0.

(c)

[
d
dt
( d
dt

+ 1) α
0 d

dt
( d
dt

+ 1)

] [
w1

w2

]
= 0.

7.2 Consider the autonomous systems R1(
d
dt
)w = 0 and R2(

d
dt
)w = 0, with

R1(ξ) and R2(ξ) ∈ Rq×q[ξ], detR1(ξ) 6= 0 and detR2(ξ) 6= 0. Assume
that there exist unimodular polynomial matrices U(ξ), V (ξ) ∈ Rq×q[ξ] such
that R2(ξ) = U(ξ)R1(ξ)V (ξ). Prove that the first system is asymptotically
stable, stable, or unstable if and only if the second one is.

7.3 Let P (ξ) ∈ R[ξ], P (ξ) 6= 0. Consider the dynamical system represented

by P ( d2

dt2
)w = 0. Prove that it is asymptotically stable if and only if P is
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of degree 0. Prove that it is stable if and only if all the roots of P (ξ) are
strictly negative and simple. Prove that this system is hence stable if and
only if all solutions are bounded on all of R.

7.4 Determine for what ω1, ω2, α ∈ R the following system represents a stable,
asymptotically stable, or unstable system

d

dt
x =




0 ω1 α 0
−ω1 0 0 0
0 0 0 ω2

0 0 −ω2 0


x.

7.5 Prove that if A ∈ Rn×n is Hurwitz, then Tr(A) < 0 and (−1)n det(A) > 0.
Prove that these conditions imply that A is Hurwitz in the case n = 2.

7.6 Prove that p0 + p1ξ + · · · + pn−1ξ
n−1 + pnξ

n is a Hurwitz polynomial if
and only if pn + pn−1ξ + · · ·+ p1ξ

n−1 + p0ξ
n is. Prove that A ∈ Rn×n is a

Hurwitz matrix if and only if A−1 is, and if and only if AT is.

7.7 Let A ∈ Rn×n. Its characteristic polynomial χA(ξ) is det(Iξ − A). A
polynomial p(ξ) ∈ R[ξ] is said to annihilate A if p(A) is the zero ma-
trix. In other words, if p0I + p1A + · · · + pdA

d is the zero matrix, where
p(ξ) = p0 + p1ξ + · · · + pdξ

d. The Cayley-Hamilton theorem states that
χA(ξ) annihilates A. The monic polynomial of minimal degree that anni-
hilates A is called the minimal polynomial of A and is denoted by µA(ξ).
It is easy to prove that χA(ξ) and µA(ξ) have the same roots but that the
multiplicities of the roots of µA(ξ) may be less than those of A. Prove that
λ ∈ C is a semisimple eigenvalue of A if and only if it is a simple root of
µA(ξ).

7.8 Consider the discrete-time system (T = Z) with behavioral difference equa-
tion P (σ)w = 0, with σ the shift operator ((σw)(t) = w(t+1)). The associ-
ated difference equation is thus P0w(t)+P1w(t+1)+ · · ·+P2w(t+L) = 0.
Assume that P (ξ) is square and that detP (ξ) 6= 0. Define stability, insta-
bility, and asymptotic stability fully analogously as in the continuous-time
case. Prove that this system is

(a) asymptotically stable if and only if all the roots of detP (ξ) are inside
the unit disc |λ| < 1. A polynomial matrix having this property is
called Schur (see Exercise 7.19);

(b) stable if and only if for each λ ∈ C that is a root of P (ξ) there must
hold either (i) |λ| < 1, or (ii) |λ| = 1 and λ is a semisimple root of
P (ξ);

(c) unstable if and only if P (ξ) has either a root with |λ| > 1 and/or a
nonsemisimple root with |λ| = 1.

7.9 Consider the discrete-time analogue of (7.4), x(t+1) = Ax(t). Define stabil-
ity, asymptotic stability, and instability fully analogously as in continuous-
time case. Prove the analogue of Corrolary 7.2.4.

7.10 Which of the following polynomials are Hurwitz?
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(a) 1 + ξ + ξ2 + ξ3 + ξ4 + ξ5.

(b) 1 + 5ξ + 10ξ2 + 10ξ3 + 5ξ4 + ξ5.

7.11 Determine necessary and sufficient conditions on the coefficients a, b, c, d ∈
R for the polynomial d+ cξ + bξ2 + aξ3 + ξ4 to be Hurwitz.

7.12 Prove that the (n+2)th row of the Routh table of an nth order polynomial
is zero.

7.13 Call p(ξ) ∈ R[ξ] anti-Hurwitz if all its roots have positive real part. Give a
Routh-type test in terms of the coefficients of p(ξ) for it to be anti-Hurwitz.

7.14 Prove the following refinements of Theorems 7.3.3 and 7.3.4.

(a) Assume that pn > 0. Prove that if all the roots of p(ξ) have nonpos-
itive real part, then ∆1 ≥ 0,∆2 ≥ 0, . . . ,∆n ≥ 0. Provide a coun-
terexample for the converse.

(b) Prove that if all the roots of p(ξ) ∈ R[ξ] have nonpositive real part,
then no two coefficients of p(ξ) can have opposite sign, but some can
be zero.

7.15 The purpose of this exercise is to lead the reader through a step-by-step
proof of the Routh test. Let p(ξ) ∈ R[ξ] be given by (7.9), and assume that
it has degree n. Write p(ξ) in terms of its even and odd parts as

p(ξ) = E0(ξ
2) + ξE1(ξ

2).

Note that E0(ξ), E1(ξ) ∈ R[ξ] are given by

E0(ξ) = p0 + p2ξ + p4ξ
2 + · · · , E1(ξ) = p1 + p3ξ + p5ξ

2 + · · · .

The coefficients of the polynomials E0(ξ) and E1(ξ) form the first and
second rows of the Routh table. The third row of the Routh table consists
of the coefficients of the polynomial

E2(ξ) = ξ−1(E1(0)E0(ξ)− E0(0)E1(ξ)).

Prove that with the obvious notation, the (k+1)th row of the Routh table
consists of the coefficients of the polynomial

Ek(ξ) = ξ−1(Ek−1(0)Ek−2(ξ)− Ek−2(0)Ek−1(ξ)).

The Routh test thus states that if pn > 0, then p(ξ) is Hurwitz if and only
if the constant term coefficients of the Ek(ξ)s, E1(0), E2(0), . . . , En(0) are
all positive.

Define q(ξ) ∈ R[ξ] by q(ξ) = E1(ξ
2) + ξE2(ξ

2). Prove that q(ξ) has degree
less than n. The key to the Routh test is provided by the following lemma.

Lemma 7.9.1 Denote the leading coefficients of p(ξ) and q(ξ) by pn and
qn−1, respectively. The following statements are equivalent:

(i) p(ξ) is Hurwitz and pn > 0;



280 7. Stability Theory

(ii) q(ξ) is Hurwitz, qn−1 > 0, and p(0) > 0.

Organize your proof of this lemma as follows:

• Consider the convex combination of p(ξ) and q(ξ), qα(ξ) = (1 −
α)p(ξ) + αq(ξ) for α ∈ [0, 1]. Write qα(ξ) in terms of E0(ξ

2) and
E1(ξ

2), and prove that if p(0) > 0 and q(0) > 0 then all the polyno-
mials qα(ξ) have the same imaginary axis roots for α ∈ [0, 1].

• Prove (i) ⇒ (ii). Hint: Use the fact that no roots of qα(ξ) cross the
imaginary axis to show qα(ξ) is Hurwitz for all α ∈ [0, 1].

• Prove (ii) ⇒ (i). Hint: Use the fact that no roots of qα(ξ) cross the
imaginary axis to show that qα(ξ) has at least n−1 roots in the open
left half of the complex plane for α ∈ [0, 1]. Prove that p(0)pn > 0
implies that the nth root of p(ξ) = q0(ξ) lies also in the open left half
of the complex plane.

Finally, prove the Routh test by induction on n, using this lemma.

7.16 The purpose of this exercise is to lead the reader through a proof of the
Hurwitz test. We use the notation introduced in Exercise 7.15. Let Hp be
the Hurwitz matrix associated with p(ξ), and Hq the one associated with
q(ξ).

(i) Prove that

HpP =




p1 0 · · · 0
p3
p5 Hq

...


 ,

where

P =




1 −p0 0 0 · · ·
0 p1 0 0 · · ·
0 0 1 −p0 · · ·
0 0 0 p1 · · ·
...

...
...

...
. . .



.

(ii) Let ∆1,∆2, . . . ,∆n−1,∆n denote the Hurwitz determinants associ-
ated with p(ξ), and ∆′

1,∆
′
2, . . . ,∆

′
n−1 those associated with q(ξ).

Prove from the above relation between Hp and Hq that

∆1 = p1

p
⌊ k

2 ⌋−1

1 ∆k−1 = ∆′
k for k = 1, 2, . . . , n− 1;

where ⌊α⌋ denotes the largest integer ≤ α.

(iii) Use Lemma 7.9.1 to prove the Hurwitz test by induction on n.

7.17 In this exercise we study a Hurwitz type test for the asymptotic stability
of differential equations when only bounds on the coefficients are known.
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(i) Assume that the two polynomials p0 + p1ξ+ · · ·+ pk−1ξ
k−1 + p′kξ

k +
pk+1ξ

k+1+· · ·+pnξn and p0+p1ξ+· · ·+pk−1ξ
k−1+p′′kξ

k+pk+1ξ
k+1+

· · · + pnξ
n are both Hurwitz. Use the induction lemma used in the

proof of the Routh test to prove that p0 + p1ξ + pk−1ξ
k−1 + · · · +

pkξ
k + pk+1ξ

k+1 + · · ·+ pnξ
n is also Hurwitz for all p′k ≤ pk ≤ p′′k .

(ii) Let [ak, Ak], k = 0, 1, . . . , n, be n + 1 intervals in R. Consider the
interval family of polynomials consisting of all polynomials p0+p1ξ+
. . . + pnξ

n with ak ≤ pk ≤ Ak for k = 0, 1, . . . , n. Its extreme points
consist of the 2n+1 polynomials with pk ∈ {ak, Ak} for k = 0, 1, · · · , n.
Use (i) to prove that all the polynomials in this interval family are
Hurwitz if and only if its extreme points are.

(iii) The result of (ii) concerning an interval family of polynomi-
als can be dramatically simplified. Define the four polynomials
k1(ξ), k2(ξ), k3(ξ), k4(ξ) as follows:

k1(ξ) = a0 + a1ξ +A2ξ
2 +A3ξ

3 + a4ξ
4 + a5ξ

5 +A6ξ
6 + · · · ,

k2(ξ) = a0 +A1ξ +A2ξ
2 + a3ξ

3 + a4ξ
4 + a5ξ

5 +A6ξ
6 + · · · ,

k3(ξ) = A0 +A1ξ + a2ξ
2 + a3ξ

3 +A4ξ
4 +A5ξ

5 + a6ξ
6 + · · · ,

k4(ξ) = A0 + a1ξ + a2ξ
2 +A3ξ

3 +A4ξ
4 + a5ξ

5 + a6ξ
6 + · · · .

Note that these polynomials follow the pattern

. . . ,max,min,min,max,max,min,min,max,max,

(the Kharitonov melody).

The purpose of this exercise is to prove the following result:

Theorem 7.9.2 (Kharitonov test) All polynomials in the interval fam-
ily are Hurwitz if and only if the four polynomials k1(ξ), k2(ξ), k3(ξ), and
k4(ξ) are Hurwitz.

Prove this result as follows

1. First prove that if k1(ξ), k2(ξ), k3(ξ), and k4(ξ) are Hurwitz, then any
convex combination of these polynomials is also Hurwitz. In order to
see this, write these four polynomials as

E′
0(ξ

2) + ξE′
1(ξ

2), E′
0(ξ

2) + ξE′′
1 (ξ

2),

E′′
0 (ξ

2) + ξE′
1(ξ

2), E′′
0 (ξ

2) + ξE′′
1 (ξ

2),

and use the induction used in the proof of the Routh test.

2. Next, prove that if p(ξ) is any element of the interval family of poly-
nomials, then

Re(k1(iω)) = Re(k2(iω)) ≤ Re(p(iω)) ≤ Re(k3(iω)) = Re(k4(iω)),

Im(k1(iω)) = Im(k4(iω)) ≤ Im(p(iω)) ≤ Im(k2(iω)) = Im(k3(iω)).

for all ω ∈ R, 0 ≤ ω <∞.
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3. Combine 2 and 3 to prove that p(ξ) cannot have roots on the imagi-
nary axis.

4. Finally, prove Theorem 7.9.2.

7.18 It is well known that by choosing α1, β, γ, δ ∈ R suitably, the map s ∈ C 7→
αs+β
γs+δ

∈ C maps the imaginary axis onto any line parallel to the imaginary
axis, or a circle with center on the real axis. This construction leads to
Routh–Hurwitz type tests for the roots of a polynomial to lie strictly to
the left or to the right of any line parallel to the imaginary axis, or inside or
outside any circle centered on the real axis, by considering the polynomial

(γξ + δ)np(
αξ + β

γξ + δ
).

Use this idea to find conditions on p0, p1, p2 for p0+p1ξ+p2ξ
2+ξ3 to have

its roots strictly inside the unit disc.

7.19 As shown in Exercise 7.8, the scalar difference equation p(σ)w = 0 is
asymptotically stable if and only if the polynomial p(ξ) = p0 + p1ξ + · · ·+
pn−1ξ

n−1 + pnξ
n has all its roots inside the unit disc {z ∈ C | |z| < 1}. A

polynomial which has all its roots inside the unit disc is called Schur. The
purpose of this exercise is to derive a Routh-type test for p(ξ) to be Schur.
Define p∗(ξ) := pn+pn−1ξ+ · · ·+p1ξn−1+p0ξ

n. Denote q1(ξ) := p(ξ) and
define

qk+1(ξ) :=
q∗k(0)qk(ξ)− qk(0)q

∗
k(ξ)

ξ
.

(i) Prove that p(ξ) is Schur if and only if |qk(0)| < |q∗k(0)| for k =
1, 2, . . . , n. Hint: Use the ideas of Exercise 7.15: Prove that p(ξ) is
Schur if and only if |p(0)| < |p∗(0)| and q2(ξ) is Schur. Proceed by
induction on n.

(ii) Determine the resulting conditions on the coefficients of p(ξ) for n =
1, 2, 3, 4.

7.20 Consider Theorem 7.3.5. Discuss whether stability or instability of (7.3)
is a robust property, assuming that the degree of detPα(ξ) is constant in
a neighborhood of α0. Is instability a robust property if detPα0

(ξ) has a
root with positive real part? Use Exercise 7.7 to formulate a result con-
cerning robust asymptotic stability, stability, and instability properties of

the dynamical system represented by P ( d2

dt2
)w = 0.

7.21 Construct for the following asymptotically stable system a positive definite
Lyapunov function with a negative definite derivative

d

dt
x =




0 1 0
0 0 1

−1 −2 −1


x.

7.22 The purpose of this exercise is to prove Corollary 7.3.6 using Theorem 7.4.7.
Use the notation of Corollary 7.3.6. Assume that A(α0) is Hurwitz. Let P
be the solution of AT (α0)P + PA(α0) = −I. Now prove that AT (α)P +
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PA(α) < 0 for all α sufficiently close to α0. Conclude that A(α) is Hurwitz
for α sufficiently close to α0.

7.23 Assume that P = PT and Q = QT satisfy the Lyapunov equation
ATP + PA = Q. In Theorem 7.4.4 it has been shown that the conditions
(P not ≥ 0, Q ≤ 0, and (A,Q) observable) imply that (7.4) is unstable.
Theorem 7.4.7, however, did not claim the converse. In other words, it was
not claimed that if (7.4) is unstable, then there exists a P = PT not ≥ 0
and a Q = QT ≤ 0 with (A,Q) observable. So the question arises, Are there
unstable systems for which there do not exist such P and Q? Prove that this
is indeed the case. Specifically, prove that if A,P = PT , and Q = QT ≤ 0
satisfy the Lyapunov equation, then (A,Q) cannot be observable whenever
A has eigenvalues with zero real part. Prove that if A has no eigenvalues
with zero real part, then (7.4) is unstable if and only if there exist such P
and Q.

7.24 Assume that A ∈ Rn×n has at least one eigenvalue with real part positive.
Prove then that there exists Q = QT ≤ 0 and P = PT ≤ 0, P 6= 0,
satisfying the Lyapunov equation (7.19). Now consider system (7.24) with
f(x∗) = 0 and assume that f ′(x∗) has at least one eigenvalue with real
part positive. Use the Lyapunov function (x−x∗)TP (x−x∗) to prove that
x∗ is an unstable equilibrium, as claimed in part 2 of Theorem 7.5.2.

7.25 Consider d
dt
x = Ax. This is a special case of both (7.3) and (7.24). Of

course, x∗ = 0 is an equilibrium point of this system. What is the relation
between the notions of stability introduced in Definitions 7.2.1 and 7.5.1
respectively? This exercise shows that these notions correspond.

(a) Prove that all solutions of d
dt
x = Ax are bounded on [0,∞) if and

only if 0 is a stable equilibrium.

(b) Prove that all solutions of d
dt
x = Ax converge to zero as t → ∞ if

and only if 0 is an asymptotically stable equilibrium.

7.26 Consider the system (7.4). Of course, x∗ = 0 is always an equilibrium, but
there may be more. Obviously, x∗ = 0 is the only equilibrium if and only
if A is nonsingular.

(i) Prove that (7.4) is asymptotically stable if and only if x∗ = 0 is
an asymptotically stable equilibrium, in which case it is the only
equilibrium solution.

(ii) Prove that the following are equivalent:
1. (7.4) is stable.
2. x∗ = 0 is a stable equilibrium.
3. Let a ∈ Rn be another equilibrium. Then it is stable.

(iii) Repeat (ii) with “stable” replaced by “unstable.”

7.27 Let us take a look at the Lyapunov equation (7.19) ipso suo. Let A ∈ Rn×n,
and define the linear map L : Rn×n → Rn×n by L(X) := ATX + XA.
Assume that the matrix AT has a basis of real eigenvectors v1, . . . , vn, say
AT vk = λkvk; k = 1, . . . , n.
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(a) Prove that vkv
T
ℓ is an eigenvector (eigenmatrix if you like) of L.

(b) Show that the vectors (matrices) vkv
T
ℓ ; k, ℓ = 1, 2, . . . n are linearly

independent.

(c) Conclude that the eigenvalues of L are given by λk+λℓ; k, ℓ = 1, . . . , n.
Note that these numbers are never distinct, even when λ1, λ2, . . . , λn

are distinct.

(d) State necessary and sufficient conditions in terms of A for L to be a
bijective map.

(e) Denote the linear subspace of real symmetric n × n matrices by S.
Prove that S is L-invariant and determine the dimension of S.

(f) From part (c), we conclude that LS , the restriction of L to S, is well-
defined as a linear map from S to S. Prove that vkv

T
ℓ + vℓv

T
k ; k, ℓ =

1, 2, . . . , n; k ≥ ℓ, forms an independent system of eigenvectors (eigen-
matrices) of LS . Conclude that the eigenvalues of LS are given by
λk + λℓ; k, ℓ = 1, . . . , n, k ≥ ℓ.

(g) Argue that the above results are valid for general matrices A ∈ Rn×n

(without the assumption of distinct eigenvalues or the existence of a
basis of eigenvectors).

(h) Generalize all this to the case that the λks and vks could be complex.

7.28 Linear mechanical systems can often be described by systems of second–
order differential equations of the form

Kw +D
d

dt
w +M

d2

dt2
w = 0,

with M , D, and K ∈ Rq×q; M represents the masses (and M d2

dt2
w the

inertial forces), D represents the damping (and D d
dt
w friction forces), and

K represents the springs (and Kw the restoring forces). Assume that M =
MT > 0 and K = KT > 0. Prove that this system is stable if D+DT ≥ 0,
asymptotically stable if D +DT > 0, and unstable if D +DT is not ≥ 0.

Hint: The total energy of the system is a good candidate Lyapunov func-
tion. The idea is that if the system dissipates energy through the dampers,
then we have asymptotic stability. Introduce col(x1, x2) as the state, with
x1 = w and x2 = d

dt
w, and consider as Lyapunov function the total energy

1
2
xT1Kx1 +

1
2
xT2Mx2. Show that

•
V (x1, x2) = −xT2 (D +DT )x2.

7.29 Consider the system of differential equations

d
dt
x1 = x2,

d
dt
x2 = −x1 − (α+ x21)x2.

Use Theorem 7.5.2 to classify the stability properties of the equilibrium
x∗ = 0 for all α 6= 0. For α = 0, Theorem 7.5.2 does not allow us to
reach a conclusion. Use a direct argument to show that the equilibrium is
asymptotically stable when α = 0.
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7.30 Consider the equilibria of the undamped pendulum of Example 7.5.3 (with
D = 0). Prove that

− g

L
cosx1 +

1

2
x22

is invariant along solutions. Examine the level sets of this function around
x∗1 = 0, x∗2 = 0, and around x∗1 = π, x∗2 = 0. Use this to prove that the first
equilibrium is stable, but the second is unstable.

7.31 Consider the linearized system (4.62) of Examples 4.7.1 and 4.7.2, the
inverted pendulum on a carriage. Investigate the stability.

7.32 The dynamical equations of the rotation of a spinning body are given by

I1
dω1

dt
= (I2 − I3)ω2ω3,

I2
dω2

dt
= (I3 − I1)ω3ω1,

I3
dω3

dt
= (I1 − I2)ω1ω2.

(7.40)

These equations are called the Euler equations. Here ω1, ω2, ω3 denote the
rotation rates of the body around its principal axes, and I1, I2, I3 denote
the moments of inertia of the body with respect to these principal axes.
The Euler equations describe only the spinning of the body. The complete
equations of motion that describe both the motion of the center of gravity
and the attitude of the body are more complicated and are not discussed
here. Assume for simplicity that 0 < I1 < I2 < I3 (implying a certain lack
of symmetry).

(a) Describe the equilibria of (7.40).

(b) Linearize around the equilibria.

(c) Use Theorem 7.5.2 to prove that steady spinning around the second
principal axis is unstable.

(d) Does Theorem 7.5.2 allow you to conclude something about the sta-
bility of steady spinning around the other axes?

(e) Prove that the quadratic forms I1ω
2
1 +I2ω

2
2 +I3ω

2
3 and I21ω

2
1 +I

2
2ω

2
2 +

I23ω
2
3 are both invariants of motion (in other words, prove that they

are constant along solutions of (7.40)). Sketch on a surface where the
first quadratic form is constant (assume I1 = 1

2
, I2 = 1, I3 = 2) the

curves on which the second is also constant. Use this to prove that
steady spinning around the first and third principal axes is stable,
but not asymptotically stable.

Conclusion: A spinning body spins stably around the principal axis with
the smallest and the largest moment of inertia, but not around the principal
axis with the intermediate moments of inertia. This can be demonstrated
by (carefully) tossing this book into the air. You will see that you can get
it to spin nicely around its largest and smallest axes, but if you try to
spin it around the middle axis, the motion will be very wobbly, suggesting
instability. See [1] for an in–depth analysis of this problem.
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7.33 For which 1 ≤ p ≤ ∞ are the following systems Lp-i/o-stable?

(a) (1− d2

dt2
)y = u.

(b) (1 + d2

dt2
)y = u.

(c) (1 + d
dt

+ d2

dt2
)y = (1− d

dt
)u.

(d) (1− d2

dt2
)y = (1− d

dt
)u.

7.34 Consider the system described by (ω2
0+

d2

dt
)y = u. Let ω0 ∈ R, and consider

the input u = cosω0t. Compute the solution corresponding to the initial
condition y(0) = 0, d

dt
y(0) = 0. Conclude that this system is not L∞-i/o-

stable. Verify that this agrees with Theorem 7.6.2.

7.35 Consider the nonlinear input/output system

1

4
y − 4

10− y
+

d

dt
y +

d2

dt2
y = 0 (7.41)

(a) Define x := [y d
dt
y]T , and determine f : R2 → R2 such that d

dt
x =

f(x), y = x1 is a state space representation of (7.41).

(b) Determine the equilibrium points of d
dt
x = f(x).

(c) Linearize the system about each of the equilibrium points.

(d) Investigate the local (in)stability of the equilibrium points.
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Time- and Frequency-Domain
Characteristics of Linear
Time-Invariant Systems

8.1 Introduction

The purpose of this chapter is twofold. First, we explain how a linear time-
invariant system acts in the frequency domain. An important feature of
such systems is that (in an input/output setting) they transform sinusoidal
(and, more generally, exponential) inputs into sinusoidal (exponential) out-
puts. This leads to the transfer function and the frequency response as
a convenient way of describing such systems. The second purpose of this
chapter is to study properties of the time- and frequency-domain response.
Thus we describe important characteristics of a system that can be deduced
from its step-response, or from its Bode and Nyquist plots.

In Chapters 2 and 3, we studied two related classes of linear time-invariant
dynamical systems. The first class consists of the systems described by
differential equations

R(
d

dt
)w = 0 (8.1)

defined by the polynomial matrix R(ξ) ∈ Rg×q[ξ]. The second class consists
of the systems described by the convolution

y(t) =

∫ +∞

−∞
H(t− t′)u(t′)dt′, (8.2)
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defined in terms of the kernel H ∈ Lloc
1 (R,Rp×m). Often, the limits of the

integral in (8.2) are, or can be taken to be,
t∫

−∞
or

t∫

0

, but for the time being,

we need not be concerned with that. The function H is called the impulse
response matrix of the system; see Section 3.4 for an explanation of this
terminology. The system of equations (8.1) defines the dynamical system
Σ = (R,Rq,BR) with behavior BR defined by

BR = {w ∈ L
loc
1 (R,Rq) | R( d

dt
)w = 0 weakly}

while (8.2) defines the dynamical system Σ = (R,Rm × Rp,BH) with be-
havior BH defined by

BH = {(u, y) ∈ L
loc
1 (R,Rm × Rp) | (8.2) is satisfied.}

We have also seen that (8.1) can always be reduced to a system of equations
of the form

P (
d

dt
)y = Q(

d

dt
)u, (8.3)

with P (ξ) ∈ Rp×p[ξ], Q(ξ) ∈ Rp×m[ξ], detP (ξ) 6= 0, and P−1(ξ)Q(ξ) ∈
Rp×m(ξ) a matrix of proper rational functions. In this case, (8.3) defines
an input/output dynamical system: its behavior allows for any function
u ∈ Lloc

1 (R,Rm) as input, and the output y is completely specified by the
input u and by the appropriate initial conditions. We have also seen that
the system descriptions (8.3) and (8.2) are very closely related whenever
H is a Bohl function (see also Section 3.5). Indeed, if u ∈ Lloc

1 (R,Rm) and
assuming that system is initially at rest, then the response y to (8.3) is
given by (8.2) with the impulse response matrix specified by (3.45).

In the remainder of this chapter, we occasionally silently assume that we
are considering complex-valued inputs and outputs.

8.2 The Transfer Function and the Frequency
Response

In this section we study systems from what is called the frequency-domain
point of view. In this context, we basically expand the time functions in
their frequency components and study how the individual frequency (or
exponential) components are constrained or transformed by the dynamical
system. In order to understand the system behavior it suffices then to “add”
the behavior for the individual frequencies. This feature, of being able to
view the response to a system as a sum of exponential terms, each of which
individually satisfies the system equations, is characteristic for linear time-
invariant systems. The mathematics that underlies this is the Fourier and
Laplace transforms. A brief introduction to these is given in Appendix B.
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We treat convolution systems and differential systems separately.

8.2.1 Convolution systems

Consider the system described by (8.2). Assume that the impulse response
matrix has a two-sided Laplace transform

G(s) =

+∞∫

−∞

H(t)e−stdt.

Obviously, G : C→ Cp×m is a matrix of complex functions. Its domain of
definition consists of the domain of convergence of the Laplace transform
G, i.e., of all s ∈ C such that H exps ∈ L1(R,C

p×m), where the exponential
function with exponent s, exps : C → C, is defined by exps(t) := est. The
function G is called the transfer function of the system (8.2).

Consider the input exponential u : R → Cm defined by u = us exps, with
us ∈ Cm. If s belongs to the domain of convergence of G, then

y(t) =

+∞∫

−∞

H(t− t′)usest
′

dt′

= (

+∞∫

−∞

H(t− t′)e−s(t−t′)dt′)estus

= G(s)use
st. (8.4)

This shows that the output corresponding to an exponential input is also
an exponential. The significance of the transfer function therefore is that
it shows how exponential inputs are transformed into exponential outputs,
namely, us exps is transformed into ys exps, with ys = G(s)us. The vector
us of the exponential input is thus multiplied by the transfer function matrix
G(s) in order to produce the corresponding output vector ys.

The special case that H ∈ L1(R,Rp×m), i.e., that
+∞∫

−∞
‖H(t)‖dt <∞, is of

particular importance. In this case H is Fourier transformable. Its Fourier
transform

G(iω) =

+∞∫

−∞

H(t)e−iωtdt

is called the frequency response of (8.2). In this case, the output correspond-
ing to the sinusoidal input eiωtuω equals the sinusoidal output eiωtyω, with
yω = G(iω)uω.
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The effect of the transfer function and the frequency response on more
general inputs is described in the following theorem.

Theorem 8.2.1 (i) Consider the system (8.1) and assume that H is (2-
sided) Laplace transformable, with its Laplace transform, called the transfer
function, denoted by G. Let u : R → Cm be also (2-sided) Laplace trans-
formable and denote its Laplace transform by û. Assume that the inter-
section of the domains of convergence of G and û is nonempty. Then the
output of (8.2) is also (2-sided) Laplace transformable. Denote its Laplace
transform by ŷ. Then ŷ(s) = G(s)û(s), and the domain of convergence of
ŷ contains the intersection of those of G and û.

(ii) Assume that H ∈ L1(R,Rp×m) and u ∈ L1(R,Rm). Then y, defined
by (8.2), belongs to L1(R,R

p), and the L1-Fourier transforms of u and y
satisfy ŷ(iω) = H(iω)û(iω).

(ii)′ Assume that H ∈ L1(R,Rp×m) and u ∈ L2(R,Rm). Then y, defined
by (8.2), belongs to L2(R,R

p) and the L2-Fourier transforms of u and y
satisfy ŷ(iω) = H(iω)û(iω).

Proof We sketch only the proof of part (i); the other cases can be proven
analogously (see Exercise B.3).

The input and output u and y are related by (8.2). Hence

ŷ(s) =
∞∫

−∞
y(t)e−stdt

=
∞∫

−∞

∞∫

−∞
H(t− t′)u(t′)dt′e−stdt

=
∞∫

−∞

∞∫

−∞
H(t− t′)e−s(t−t′)u(t′)e−st′dt dt′

=
∞∫

−∞
H(t)e−stdt

∞∫

−∞
u(t′)e−st′dt′

= G(s)û(s).

�

Example 8.2.2 Consider the system

y(t) =
1

2∆

t+∆∫

t−∆

u(t′)dt′. (8.5)
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This is an example of a (simple) smoother, in which the output computes
a windowed average of the input. It is a special case of (8.2) with

H(t) =

{
1 for |t| ≤ ∆,
0 for |t| > ∆.

The frequency response of this system is given by

G(iω) =

∆∫

−∆

e−iωtdt = 2
sinω∆

ω
.

The frequency-response function G is shown in Figure 8.1. This figure

G

Π
∆

ω

3Π
∆

2Π
∆

FIGURE 8.1. Frequency response of Example 8.2.2.

shows that, as can be intuitively expected from the fact that (8.5) averages
the input, a high-frequency input is transformed into an output that is
practically zero. It is also worthwhile to observe that there are certain
frequencies that are completely cut off by this system, and hence the input
uωe

iωt, with ω = k π
∆ for k = 1, 2, . . ., results in a zero output. �

8.2.2 Differential systems

We now study the transfer function and the frequency response for differen-
tial systems (8.1). A differential system can be represented in input/output
form (8.3), and as we have seen in Section 3.5, this leads to a convolution
system (8.2) with impulse response matrix (3.45). In fact, the initially-at-
rest response of (8.3) is exactly given by this convolution. As such, we can
in principle apply the theory of Section 8.2.1 to this class of systems. Thus
the transfer function is given as the Laplace transform of (3.45), and it is
well known (see Exercise 8.2) that this transfer function is given by

G(s) = P−1(s)Q(s). (8.6)
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The domain of convergence of (8.6) viewed as the Laplace transform of
(3.45) includes the open half plane to the right of the root of P (s) with
largest real part.

This domain of convergence consideration is an annoying element of the
interpretation of (8.6) as a transfer function. In particular, it implies that
we cannot simply view G(iω) as the frequency response of (8.3) unless
P (ξ) is a Hurwitz polynomial matrix, more precisely, unless the impulse
response (3.45) belongs to L1(R,Rp×m). Note, however, that there are only
a finite number of elements s ∈ C, the roots of detP (ξ), where the ex-
pression P−1(s)Q(s) is not defined, and as such, the domain of definition
of P−1(s)Q(s) equals not just a half plane, but all of C minus this finite
set of points. So it seems reasonable that one should be able to interpret
P−1(s)Q(s) as the transfer function without reference to domains of con-
vergence. We shall see that the behavioral interpretation of (8.1) and (8.3)
indeed allows us to do that. An important advantage of this is that the
frequency response for differential systems is thus always a well-defined
complex matrix, except at most at a finite number of points.

Let Σ = (R,Cq,B) be the linear time-invariant system represented by
(8.1). We assume, for the reasons already explained, that we are considering
complex systems obtained, for example, by complexifying a real system.

Definition 8.2.3 The exponential behavior of Σ is defined as the elements
of B of the special form w = b exps with b ∈ Cq and s ∈ C. �

Thus the exponential behavior of Σ induces the mapping E from C to the
subset of Cq such that

E(s) = {b ∈ Cq | b exps ∈ B}.

Let us now consider the exponential behavior of (8.1). Since R( d
dt )(b exps) =

R(s)b exps (see Exercise 8.4), we immediately obtain the following lemma.

Lemma 8.2.4 The exponential behavior of (8.1) is characterized by

E(s) = kerR(s). (8.7)

Thus, in particular, E(s) is a linear subspace of Cq.

Consider now the exponential behavior of (8.3). Obviously, for s ∈ C such
that detP (s) 6= 0, there holds

E(s) = {(us, ys) ∈ Cm × Cp | ys = P−1(s)Q(s)us}.

Therefore, in analogy to what has been obtained in Section 8.2.1, we call
G(s) = P−1(s)Q(s) the transfer function of (8.3).
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We emphasize that we view the transfer function as the mapping that
produces from the exponential input us exps, the corresponding exponential
output ys exps (easily seen to be unique when detP (s) 6= 0), the relation
being given by premultiplication of us by the transfer function in order to
obtain ys.

The following theorem shows the significance of the exponential behavior
and of the transfer function for differential systems. A signal w ∈ Lloc

1 (R,Rq)
that is Laplace transformable is in the behavior of (8.1) if and only if its
Laplace transform is in the exponential behavior for all s where the Laplace
transform is defined.

Theorem 8.2.5 Consider the system defined by (8.1). Let w : R → Cq

be given. If w is (2-sided) Laplace transformable with Laplace transform ŵ,
then w ∈ B if and only if ŵ(s) ∈ E(s) for all s in the domain of convergence
for ŵ.

Proof We give the proof only under the additional assumption that also
R( d

dt )w is Laplace transformable.

(if): R( d
dt )w has (2-sided) Laplace transform R(s)ŵ(s). Since ŵ(s) ∈ E(s) =

kerR(s) for all s in the domain of convergence of ŵ, this implies that the
Laplace transform of R( d

dt )w is zero. Hence R( d
dt )w = 0, as desired.

(only if): Assume that R( d
dt )w = 0. Then also its Laplace transform is zero,

and hence R(s)ŵ(s) = 0 for all s in the domain of convergence of ŵ. Hence
ŵ(s) ∈ E(s), as claimed. �

It follows immediately from the above theorem that if w ∈ L1(R,R
q),

then it belongs to the behavior of (8.1) if and only if its Fourier transform
ŵ(iω) satisfies ŵ(iω) ∈ E(iω) for all ω ∈ R. The same holds for signals
w ∈ L2(R,R

q), with ŵ the L2-Fourier transform.

In particular, for input/output systems, we obtain that if (u, y) is Laplace
transformable, then (u, y) belongs to the behavior of (8.3) if and only if
ŷ(s) = G(s)û(s) for all s in the domain of convergence of (û, ŷ). Ap-
plied to (L1- or L2-) Fourier transformable pairs (u, y), this leads to
ŷ(iω) = G(iω)û(iω). This has the following important consequence. Let
u ∈ L2(R,R

q) and assume that G(iω)û(iω), viewed as a mapping from
ω ∈ R to Cq, belongs to L2(R,Cq). This is automatically the case if detP (ξ)
has no roots on the imaginary axis, since in that case G(iω), viewed as a
mapping from ω ∈ R to Cp×m, is bounded. However, G(iω)û(iω) can obvi-
ously be in L2(R,C

q), even when detP (ξ) does have roots on the imaginary
axis. Let y ∈ L2(R,R

q) be the inverse L2-Fourier transform of G(iω)û(iω).
Then (u, y) belongs to the behavior of (8.3). This shows that for differential
systems (8.3) the frequency response G(iω) = P−1(iω)Q(iω) always has a
clear significance in terms of the behavior, and P (ξ) need not be Hurwitz
for this interpretation to hold.



294 Time- and Frequency-Domain Characteristics

Example 8.2.6 Let us illustrate this by means of an example. Consider
the mechanical system with behavioral differential equation relating the
displacement q and the force F given by

Kq +M
d2

dt2
q = F,

where M is the mass and K the spring constant. Writing this in our stan-
dard form yields

[

(K +M
d2

dt2
) − 1

] [
q
F

]

= 0.

Note that F is the input, and that q is the output. The corresponding
convolution (8.2) is in this case

q(t) =

∫ t

−∞
sin

√

K

M
(t− t′) · F (t

′)√
MK

dt′.

• The exponential behavior (8.7) becomes

E(s) = Im

[
1

Ms2 +K

]

.

• The transfer function equals

1

Ms2 +K
.

• If we apply a periodic input force F with Fourier series

F (t) =

+∞∑

k=−∞
F̂ke

ik 2π
T ,

then there is a periodic q corresponding to this force if and only if

F̂k = 0 for k = ±

√
K
M

2π/T
,

in which case this output is

q(t) =

+∞∑

k=−∞

F̂k

K −M
(
k2π
T

)2 e
ik 2π

T
t.

• If we apply an L2-input force F with L2-Fourier transform F̂ (iω),
then there is a corresponding L2-output q if and only if

ω 7→ 1

K −Mω2
F̂ (iω)

is in L2(R;C), in which case q has F̂ (iω)
K−Mω2 as its L2-Fourier transform.
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• If we apply a Laplace transformable input F with Laplace transform
F̂ (s) that converges in a strip S such that S ∩ {s | Re(s) = 0} 6= ∅,
then there is a corresponding Laplace transformable q with

q̂(s) =
1

Ms2 +K
F̂ (s)

as its Laplace transform.

�

8.2.3 The transfer function represents the controllable part of
the behavior

From the definition of the transfer function it is clear that the behavior
defines the transfer function uniquely. The converse, however, is not true.
In fact, we now prove that two systems of the form (8.3) have the same
transfer function if and only if the controllable parts of their behaviors
coincide. Hence the transfer function determines only the controllable part
of a behavior and is therefore a useful concept mainly in the context of
controllable systems.

Theorem 8.2.7 The controllable parts of the behaviors of two systems of
the form (8.3) are the same if and only if their transfer functions are the
same.

Proof We give the proof only for single-input/single-output systems. Let
Bi be represented by pi(

d
dt )y = qi(

d
dt )u (i = 1, 2). By Theorem 5.2.14,

(5.17), the controllable parts are represented by canceling the common
factors of pi(ξ) and qi(ξ) yielding p̄i(

d
dt )y = q̄i(

d
dt )u. Since the transfer

functions G1(s) and G2(s) are the same, we have q̄1
p̄1
(s) = q̄2

p̄2
(s). Since the

common factors have been canceled, this implies that q̄1(s) = αq̄2(s) and
p̄1(s) = αp̄2(s), for some α 6= 0. This implies that the controllable parts of
the behaviors coincide, since then p̄i(

d
dt )y = q̄i(

d
dt )u and p̄2(

d
dt )y = q̄2(

d
dt )u

represent the same system.

To show the converse, observe that (us, Gi(s)us) exps belongs to the con-
trollable part of Bi. Therefore, if for s

′ ∈ C, G1(s
′) 6= G2(s

′), then there is
an exponential response in the controllable part of B1 but not in that of
B2. �

8.2.4 The transfer function of interconnected systems

One of the main applications of transfer functions as system representations
is that it becomes very simple to calculate the transfer function of a system
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that is specified as an interconnection of component subsystems through
a signal flow diagram. We illustrate this for series, parallel, and feedback
connection.

Let the transfer functions of the i/o systems Σ1 and Σ2 be given by G1(s)
and G2(s) respectively. Assume that the input and output signal spaces
have dimension such that the required interconnections are well defined.

Σ1

Σ2

Σ1 Σ2

(c)

u y

y

Σ2

Σ1

+
u

y

u2

u

u1 u2 y2

u1 u1

y2

y1

y2

y1

u2

y1

−

(a)

(b)

FIGURE 8.2. (a) Series, (b) parallel, and (c) feedback interconnection.

1. Series interconnection (see Figure 8.2). The series interconnection of
Σ1 and Σ2 is defined by u2 = y1, u = u1, and y = y2. The transfer
function of the series interconnection is given by G(s) = G2(s)G1(s).

Proof ŷ(s) = ŷ2(s) = G2(s)û2(s) = G2(s)ŷ1(s) = G2(s)G1(s)û1(s) =
G2(s)G1(s)û(s). �

2. Parallel interconnection (see Figure 8.2). The parallel interconnection
of Σ1 and Σ2 is defined by u1 = u2 = u and y = y1 + y2. The
transfer function of the parallel interconnection is given by G(s) =
G1(s) +G2(s).

Proof ŷ(s) = ŷ1(s) + ŷ2(s) = G1(s)û(s) + G2(s)û(s) = (G1(s) +
G2(s))û(s). �

3. Feedback interconnection (see Figure 8.2). The feedback interconnec-
tion of Σ1 and Σ2 is defined by u = u1 − y2, u2 = y1, y = y1.
The transfer function of the feedback interconnection is given by
G(s) = (I −G1(s)G2(s))

−1G1(s).

Proof ŷ(s) = G1(s)û1(s) = G1(s)(û(s) + ŷ2(s)) = G1(s)(û(s) +
G2(s)ŷ(s)). This implies (I −G1(s)G2(s))ŷ(s) = G1(s)û(s), which in
turn yields ŷ(s) = (I −G1(s)G2(s))

−1G1(s)û(s). �
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8.3 Time-Domain Characteristics

We now study some characteristic features of the time response of dynamical
systems described by (8.2) or (8.3). We consider the single-input/single-
output (SISO) case only. Multi-input/multi-output (MIMO) systems are
usually analyzed by considering the transfer characteristics input channel
by output channel. Some aspects of this section were already mentioned in
Section 3.4.

The system under consideration is a special case of (8.2):

y(t) =

∫ t

−∞
H(t− t′)u(t′)dt′. (8.8)

Thus we in effect assumed that H(t) = 0 for t < 0: the system is assumed to
be nonanticipating. Two important characteristics of (8.8) are the impulse
response and the step response. The impulse response is the response as
ε→ 0 to the input

u(t) =







0 for t < 0,
1/ε for 0 ≤ t ≤ ε,
0 for t > ε.

(8.9)

The corresponding output (assuming that H is continuous) is given, in the
limit as ε→ 0, by

y(t) =

{
0 for t < 0,

H(t) for t ≥ 0.

A mathematically more sophisticated way of approaching this is to consider
the Dirac delta distribution as the input. From this point of view, (8.9)
defines a family of inputs that approach the delta distribution as ǫ→ 0. In
the engineering literature the Dirac delta distribution is called an impulse,
whence the name impulse response.

The step response is the response to the unit step (sometimes called the
Heaviside step function)

u(t) =

{
0 for t < 0,

1 for t ≥ 0.

The corresponding output, denoted by s, for step response, is of course
given by

s(t) =

{
0 for t < 0,
∫ t

0
H(t′)dt′ for t ≥ 0.

A typical step response is shown in Figure 8.3. This figure shows a number
of characteristic features of a step response. These are now formally defined.
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FIGURE 8.3. Step response of (1− 0.5s)/(1 + s)(1 + 0.5s+ s2).

• The steady-state, or static gain is defined as

s∞ = lim
t→∞

s(t).

For asymptotically stable systems this limit s∞ exists. For systems
defined by the convolution (8.8) it equals

∫∞
0
H(t)dt; for systems

described by (8.3) it equals P−1(0)Q(0). The steady-state gain is a
measure of the amplification of constant inputs into constant outputs.

• The % overshoot is given by

max
t≥0

s(t)− s∞
s∞

100.

The overshoot is a measure of the extent to which the output exceeds
its steady-state value before settling down.

• The 5% settling time is given by

min{t ≥ 0 | | s(t′)− s∞ |≤ 0.05s∞ for t′ ≥ t}.

The settling time is a measure for the time at which the output settles
down to its steady-state value.
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• The rise time is given by

min{t ≥ 0 | s(t) = 0.5s∞}.

The rise time is a measure of the speed at which the output responds
when it is driven by an input to a new steady-state value. Sometimes
the value 0.9s∞ (instead of 0.5s∞) is used for the comparison level.
The rise time is a measure of the global time delay that is present in
a system.

• The 5% deadtime is given by

max{t ≥ 0 || s(t′) |≤ 0.05s∞ for 0 ≤ t′ < t}.

The deadtime is a measure of the hard time delay in the system, the
time required to have the system react at all.

• The notion of the timeconstant of a system is very close in spirit to
the rise time, and, to a lesser extent, to the deadtime and the set-
tling time. However, the notion of timeconstants usually refers to the
behavior of the autonomous system d

dtx = Ax, or more generally of

P ( d
dt )y = 0, obtained by setting u = 0 in (8.3). In (3.16) and Section

4.5.4 we have seen that the solution of these differential equations
consists of terms involving sums of exponentials eλ

′

kt, with the λ′ks
the real parts of the roots of detP (s) or the eigenvalues of A. As-
suming asymptotic stability, i.e., that these real parts are negative,
then the times Tk = −1/λk such that eλkTk = e−1 are called the
timeconstants of the system. Often, the largest of these is called the
timeconstant. From the timeconstants one gets an idea of how fast
the system reacts and how long it takes before transients die out.

• We say that a system has an adverse response if s(t) ·s∞ < 0 for some
t. Usually, the adverse response occurs in an interval containing the
initial time 0. The % (adverse) undershoot is given by

max
t≥0
{−s(t)

s∞
100}.

Not all systems have an adverse response. A system with an adverse
response reacts (initially) in a direction that is opposite to its steady
state response. A system with an adverse response is often difficult to
understand intuitively and to control, since its initial response points
in the wrong direction as compared to the direction of its ultimate
response.

We warn the reader that there is no uniformity in the terminology used
above. These concepts should be used with common sense (some of them
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are meaningless, for example, if s∞ = 0). The question arises as to what
are good characteristics for a system. This, of course, depends on the type
of application. In some applications the system is designed such that the
output “tracks” the input. One can think of a radar whose direction is
required to point towards an airplane that it is following. Or one can think
of a servo in which the output is required to adjust to an imposed input
path (robot motion, systems in which a desired temperature profile is to be
followed, or a sensor, such as a thermometer, in which the sensor output
should be a mere scaled version of the input). “Good” tracking systems
require

• small overshoot,

• small settling time,

• small deadtime,

• small rise time,

• no adverse response.

Of course, these requirements are often incompatible. In other applications
the system is designed so that the input disturbance is suppressed, and
the output is insensitive to the input. For example, the suspension of an
automobile should absorb the forces due to road irregularities; and the
control system of a heating system should suppress the disturbances due to
changes in the ambient temperature. For a “good” disturbance rejection,
one should have

• small steady state gain,

• small overshoot,

• small adverse response.

In Section 8.5 we study the step response of second-order systems in detail.
The reader is referred to that section for examples.

8.4 Frequency-Domain Response Characteristics

In Section 8.2 we have seen that a system of the type (8.2) or (8.3) trans-
forms sinusoidal inputs into sinusoidal outputs. Thus the input u(t) = Aeiωt

is transformed into the output y(t) = G(iω)Aeiωt, where the frequency re-

sponse G(iω) equals
∫ +∞
−∞ H(t)e−iωtdt in the case (8.2), (assuming

∫ +∞
−∞ |

H(t) | dt <∞), and G(iω) = P−1(iω)Q(iω) in the case (8.3). From the re-
sponse to elementary complex exponentials (= trigonometric functions) we
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can then derive the response to arbitrary inputs. The important observation
in this is that there is no interference between the different frequencies: if
the input is a sum of trigonometric functions, then the output is the sum
of the corresponding outputs at the different frequencies.

If we concentrate on real-valued trajectories, we see that the sinusoidal in-
put with frequency ω

2π , amplitude A ≥ 0, and phase ϕ ∈ R : A sin(ωt+ ϕ)
is transformed into the output |G(iω)|A sin(ωt + ϕ + ArgG(iω)), where
G(iω) = |G(iω)|eiArgG(iω). This output is a sinusoid with the same fre-
quency ω

2π as the input, but with amplitude |G(iω)|A and phase ϕ +
ArgG(iω): the amplitude is multiplied by the modulus of G(iω), and the
phase is shifted by an amount that equals the argument of G(iω). Thus we
see the importance of the modulus and the phase of the frequency-response
function. There is, however, a small problem of definition here. In general,
the argument of a complex number is assumed to lie in [0, 2π) or, better, in
R(mod 2π). However, in the case of the frequency response it often makes
good sense to talk about negative phase shifts and let the phase shift con-
tinue past 2π or −2π. We therefore use the following definition of gain and
phase of a transfer function.

Definition 8.4.1 Assume that the transfer function G : R→ C is contin-
uous with G(iω) = Ḡ(−iω), where − denotes complex conjugate, and as-
sume that G(iω) 6= 0 for all ω ∈ R. Then the gain is defined as A : R→ R+

with A(ω) = |G(iω)| and the phase is defined as the continuous function
φ : R→ R such that G(iω) = A(ω)eiφ(ω) with

φ(0) =

{
0 if G(0) > 0,
−π if G(0) < 0.

If G : R → C has a zero on the imaginary axis, say G(iω0) = 0, ω0 > 0,
then define A(ω0) = 0 and φ(ω+

0 ) = φ(ω−
0 )+kπ, where k is the multiplicity

of the zero. If it has a pole at ω0 > 0, then define A(ω0) = +∞ and
φ(ω−

0 ) = φ(ω−
0 )− kπ where k is the multiplicity of the pole. If G(s) has a

zero at s = 0, factor out the zero, G(s) = skG1(s), such that G1 has no
zeros at s = 0, and take A(0) = 0 and φG(0) = φG1

(0) + kπ. If G(s) has a
pole at s = 0, factor out the pole G(s) = 1

sk
G1(s) with G1 such that it has

no poles at s = 0, take A(0) =∞ and φG(0) = φG1
(0)− kπ. �

Example 8.4.2 The phase of 1
s2+ω2

0

is given by φ(ω) = −π for |ω| < ω0

and φ(ω) = 0 for |ω| > ω0. The input sinωt with ω 6= ω0 is transformed
into 1

ω2−ω2
0

sinωt. The fact that for |ω| < ω0 the sinusoid at the output has

opposite sign of the input sinusoid is reflected by the phase shift −π for
|ω| < ω0. �
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8.4.1 The Bode plot

There are several ways of graphically representing the frequency response
of a system or, more generally, the Fourier transform of a signal. In the
Bode plot the gain A and the phase φ are plotted for ω > 0 in two graphs.
For the gain axis a logarithmic scale is used; for the phase axis, a linear
scale is used; and for the frequency1 axis a logarithmic scale. As units for
the magnitude A, 20 log is used (a unit is called a decibel, abbreviated dB);
for the phase φ, degrees are used; and for the frequency ω the unit used
is a 10-fold (a unit is called a decade). Sometimes for ω the unit used is
a 2-fold (in which case one calls it an octave: don’t be surprised—there
are 8 full tones between a frequency and its double). As the origin of the
ω-axis, a characteristic frequency ω0, for example the resonant frequency,
is taken. A typical Bode plot is shown in Figure 8.4. Note on the dB scale
that 6dB “up” means “doubling,” 6dB “down” means “halving.” Decibel
is used for 20 log (while “deci” should remind one of 10, not 20), since

10 logA2 = 20 logA, and for signals, |f̂(iω)|2 often signifies the energy in a
signal at frequency ω. So in the future, when you want to ask your friends
to keep the noise down, ask them, “6dB down, please,” so that they will
know that you have become a nerd.
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FIGURE 8.4. Bode plot of (1− 0.5s)/(1 + s)(1 + 0.5s+ s2).

We now describe a number of characteristic features of the frequency re-
sponse that can be easily deduced from the Bode plot.

1We do not distinguish the variable ω (radians/unit time) and f = ω
2π

(cycles/unit
time). Thus, for example, the resonance frequency ω0 is taken as being expressed in
radians per second. In order to get it in cycles/second, divide by 2π.
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• The peak gain is defined as

max
ω

A(ω) =: Amax.

The peak relative gain is defined as Amax

A(0) . The peak gain is a measure

of the degree to which signals are transmitted through a system, as
opposed to being cut off by it.

• The peak , or resonant, frequency ωr is defined as the frequency such
that A(ωr) = Amax. The peak frequency is the frequency at which a
sinusoidal signal passes most easily through the system.

• The (6 dB) pass-band is defined as the set of ωs such that A(ω) ≥
1
2Amax. Often, this set is an interval, [ωmin, ωmax]. The pass-band
is the interval of frequencies that, relatively speaking, dominate the
output. Sometimes it is a family of intervals. In that case, there are
many pass-bands. If ωmin = 0, we speak about a low-frequency signal
or a low-pass filter; if ωmax =∞, of a high frequency signal or a high-
pass filter; if ωmin > 0 and ωmax <∞, of a band-pass signal or filter.
The interval ωmax − ωmin is called the bandwidth.

• The frequencies such that

A(ω)

Amax
=

1

2

are called the cut-off frequencies (for example, ωmin and ωmax).

• The rate at which A(ω)→ 0 as ω →∞ can be measured by

lim
ω→∞

20 log
A(10ω)

A(ω)
= α.

We call α the high-frequency roll-off and say that A rolls off at α dB
per decade. In particular, it is easily verified that thus 1

sn rolls off at
the rate of n× 20 dB/decade or n× 6 dB/octave.

8.4.2 The Nyquist plot

A second way of representing graphically the frequency response is by means
of the Nyquist plot. This is a graph in the complex plane consisting of the set
{G(iω)|ω ∈ [0,∞)}. Usually, this graph also displays the parametrization
by ω. A typical Nyquist plot is shown in Figure 8.5.
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FIGURE 8.5. Nyquist plot of (1− 0.5s)/(1 + s)(1 + 0.5s+ s2).

8.5 First- and Second-Order Systems

8.5.1 First-order systems

In the previous sections we have introduced a number of characteristic
features related to the time- and frequency-domain description of systems.
In this section, we study first- and second-order systems, and relate these
characteristics to the system parameters.

Consider the system described by

αy +
d

dt
y = βu.

The timeconstant of this system is 1
α , and the steady-state gain equals

β
α (assuming α > 0). Its impulse response is βe−αt, its step response is
β
α (1−e−αt), and its transfer function is β

s+α . This system is asymptotically
stable if and only if α > 0, stable if and only if α ≥ 0, and unstable if α < 0.
The impulse response, the step response, and the Bode and Nyquist plots
of a first-order system are shown in Figure 8.6. In these plots, we used the
normalized variables y′ = α/βy, t′ = t/α, ω′ = ω/α.

8.5.2 Second-order systems

Consider the second-order system

p0y + p1
d

dt
y + p2

d2

dt2
y = q0u. (8.10)
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FIGURE 8.6. The response of a first-order system.

Assume p0, p2 > 0, p1 ≥ 0, and q0 6= 0. Note that the system is thus
assumed to be stable, and asymptotically stable if p1 > 0. The steady-state
gain of this system is given by s∞ = q0

p0
. In order to analyze (8.10), we

will reduce the number of parameters. This can be achieved by choosing
convenient units for the output and for the time axis. Thus we renormalize
y and t by using appropriate scales. For the y scale, choose s∞ = q0

p0
as the

unit, and for the time scale, choose
√

p2

p0
as the unit. The system equation

in terms of the normalized variables

y′ =
y

q0/p0
and t′ =

t
√

p2

p0

becomes

y′ + 2ζ
d

dt′
y′ +

d2

dt′2
y′ = u, (8.11)

where ζ := 1
2

p1√
p0p2

. The time
√

p2

p0
is called the characteristic time,

ω0 =
√

p0

p2
the characteristic frequency, and the coefficient ζ the damp-

ing coefficient of the system.
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Note that the choice of the scales has reduced the number of parameters
in (8.11 to one, the damping coefficient ζ. For 0 < ζ < 1, the roots of
p(ξ) = 1 + 2ζξ + ξ2 are complex, and for ζ ≥ 1 both roots are real. The
undriven system (u = 0) has thus a (damped) oscillatory response for
0 < ζ < 1; the system is called underdamped. For ζ > 1 the undriven
response consists of the sum of two real exponentials; the system is said to
be overdamped. When ζ = 1 the system is called critically damped; the zero
input response is of the form (a+bt)e−t in that case. For ζ = 0 the response
consists of a periodic response. The system has no damping in this case.

Figure 8.7 shows the response of (8.11) as a function of ζ. Here, we have
used the normalized variables t′, y′ and the normalized frequency ω′ = ω/ω0.
Note that as ζ becomes large (which corresponds to high damping), the sys-
tem becomes more and more sluggish, while as ζ → 0 (which corresponds to
low damping), the system exhibits large overshoot and oscillatory behavior.
The response of this second-order system, viewed as a tracking servo, i.e.,
when we desire y to follow u, is nice for ζ between 0.7 and 1, whence good
tracking requires a reasonable, but not an excessive, amount of damping.
Thus a damper should be properly tuned in order to function well. Systems
with too much damping respond very slowly to external inputs, which im-
plies that correction or command inputs will be slow to have effect, and
that disturbance inputs are noticed (when it is too) late. These are clearly
undesirable features of systems. On the other hand, systems with too little
damping will overreact to commands and will amplify disturbances. This
is obviously also an undesirable situation. This fact, that systems should
be finely tuned in order to work well, is one of the reasons that control is
an important subject.

The required tuning and trade-off between too much and too little damping
can be observed already in very common low-tech devices. For example, in
dampers of automobiles, or in door-closing mechanisms. In these devices,
too much and too little damping are both undesirable. A door closing mech-
anism with too much damping causes the door to bang, too little damp-
ing causes it to close too slowly. A car with too little damping will cause
uncomfortable overshoots at bumps, etc.

The Bode and Nyquist plots of the system (8.11) are also shown in Figure
8.7. The system has a low-pass characteristic for ζ > 1, but it obtains
the character of a band-pass system as ζ → 0, 0 < ζ < 1. For ζ close
to zero, the system resonates, and the output will be dominated by the
frequency content of the input signal around ω = ω0. In particular, if a
lightly damped system will be excited by an input that contains energy in
the frequency-band around ω0, then the output will be strongly amplified.
In many situations, this is undesirable and often dangerous.
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FIGURE 8.7. Responses of second-order systems.

8.6 Rational Transfer Functions

Let G(s) be a transfer function. If it is of the form G(s) = P−1(s)Q(s)
with P (ξ), Q(ξ) ∈ R[ξ], then it is called a rational transfer function. Such
transfer functions occur very frequently in applications. As we have seen,
transfer function obtained from systems of differential equations (8.1) via
the input/output representation (8.3) are rational. In Chapter 6, we have
seen that systems described by state space equations lead to differential
systems for the their external behaviors. Conversely, we have also seen in
Section 6.4 that i/o systems can be represented in state space form. Thus
we expect that state space systems also lead to rational transfer functions.
We show that this is indeed the case. For simplicity, we consider only the
single-input/single-output case.
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In this section we study the characteristics of rational transfer functions.
We shall see that the Bode plot for such systems can be readily obtained
by combining Bode plots of first- and second-order systems.

8.6.1 Pole/zero diagram

Definition 8.6.1 Consider the system (8.3) with m = p = 1. Then the
roots of P (ξ) are called the poles of this system, and the roots of Q(ξ) are
called the zeros. Thus poles and zeros are complex numbers with multiplic-
ities. Let G(ξ) = P−1(ξ)Q(ξ) be the associated transfer function. If a pole
coincides with a zero, then we say that there is a cancellation. �

From the theory developed in Chapter 2, it follows that the poles determine
the dynamics when the input is zero,

P (
d

dt
)y = 0,

while the zeros determine the dynamics when the output is zero,

Q(
d

dt
)u = 0.

In the pole/zero diagram the poles and zeros are marked in the complex
plane. A pole is marked as a cross, ×, a zero as a circle, ◦. Multiple poles
and zeros are marked as ×× and ⊚, etc. Note that no zeros and poles coincide
if and only if the system is controllable. Thus (8.3) is controllable if it has
no poles and zeros in common.

Example 8.6.2 Consider the system

y + 2
d

dt
y + 2

d2

dt2
y +

d3

dt3
y = 4u− 3

d2

dt2
u− d3

dt3
u.

The corresponding polynomials are p(ξ) = (1 + ξ)(1 + ξ + ξ2) and q(ξ) =
−(−1 + ξ)(2 + ξ)2. The pole/zero diagram is shown in Figure 8.8. �

8.6.2 The transfer function of i/s/o representations

In this subsection we derive the expression of the transfer function of a
system in i/s/o form. Consider the system studied extensively in Chapter
4,

d
dtx = Ax+Bu,
y = Cx+Du.
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FIGURE 8.8. Pole/zero diagram of Example 8.6.2.

Assume that s ∈ C is not an eigenvalue of A. Let u(t) = estus be an
exponential input. Then obviously, xs = (Is−A)−1Buse

st is a correspond-
ing exponential state response, and ys = (D + C(Is − A)−1B)us is the
corresponding exponential output. Hence, the transfer function is given by

G(s) = D + C(sI −A)−1B.

This expression for the transfer function can also be obtained from the
convolution description (4.31). Take u(t) = estus. Then assuming that
s ∈ C is to the right of every eigenvalue of A, there holds

y(t) =

t∫

−∞

CeA(t−τ)Besτusdτ +Destus = (C(sI −A)−1B +D)use
st.

As a consequence,

G(s) = D + C(sI −A)−1B.

The transfer function of the i/s/o system is thus D + C(Is − A)−1B. In
particular, it is a matrix of rational functions. Combining this result with
the theory of Section 6.4 shows that the following families of systems are
equivalent in the sense that to each system in one family there corresponds
one (but, in general, more than one) in the other class:

• Systems described by linear constant-coefficient differential equa-
tions,

• Finite-dimensional i/s/o systems,

• Systems with rational transfer functions.
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8.6.3 The Bode plot of rational transfer functions

Let G(ξ) = q(ξ)
p(ξ) be a rational function. Now write these numerator and

denominator polynomials in their elementary factors to obtain

G(s) = Ksr

∏

i

(1 + s
z′

i
)
∏

j

(1 + 2ζ ′j(
s
ω′

j
) + ( s

ω′

j
)2)

∏

k

(1 + s
z′′

k

)
∏

ℓ

(1 + 2ζ ′′ℓ (
s
ω′′

ℓ

) + ( s
ω′′

ℓ

)2)
, (8.12)

with r ∈ Z, | z′k |6= 0, | z′′k |6= 0, ω′
j > 0, ω′′

ℓ > 0, | ζ ′j |< 1, and | ζ ′′ℓ |< 1.
The factor sr in this expression corresponds to the poles or zeros at the
origin, the −z′is to the real zeros, and the −z′′k s to the real poles. The

complex zeros are given by ω′
j(−ζ ′j±i

√

1− (ζ ′j)
2), and the complex poles by

ω′′
ℓ (−ζ ′′ℓ ±i

√
1− (ζ ′′ℓ )

2). The factorK in front of the expression (8.12) equals
the steady-state gain (in the case of asymptotic stability). The expression
8.12 shows that the rational function G(s) is the product of a finite number
of elementary first-, zero-th, and second-order factors of the form

K, s±1, (1 +
s

z
)±1, (1 + 2ζ

s

ω
+ (

s

ω
)2)±1.

Because of the scales chosen, the Bode plot of the product G1(iω)G2(iω)
can be obtained by adding both the magnitude and the phase graphs of the
Bode plots of G1(iω) and G2(iω). Similarly, the Bode plot of G−1(iω) can
be obtained from the Bode plot of G(iω) by taking the negative of both the
magnitude and the phase graphs of the Bode plot of G(iω). Consequently,
the Bode plot of G(s) can be obtained by adding and subtracting the
magnitude and phase graphs of elementary factors such as

K, s, 1 +
s

z
, 1 + 2ζ

s

ω
+ (

s

ω
)2.

Moreover, the Bode plot of the elementary factor 1+ s
z can be obtained by

scaling the frequency axis from the Bode plot of 1+s or 1−s, depending on
whether z > 0 or z < 0. However, 1+ s and 1− s have the same magnitude
plot but the opposite phase. Similarly, the Bode plot of 1+2ζ s

ω +( s
ω )

2 can
be obtained from the Bode plot of 1 + 2ζs + s2 by scaling the frequency
axis. In addition, 1 + 2ζs+ s2 and 1− 2ζs+ s2 have the same magnitude
plot, but opposite phase. It follows from all this that the Bode plot of
G(s) can be obtained by adding, subtracting, and the frequency scaling
of the Bode plots of the simple zero-th, first-, and second-order systems
K, s, 1 + s, 1 + 2ζs+ s2, with 0 ≤ ζ ≤ 1.

We can use these ideas in order to obtain very quickly a rough idea of the
magnitude part of the Bode plot of a system with rational transfer function
G(s). Note, at least when | ζ | is not too small, that the magnitude parts of
1+ s

z and 1+2ζ s
ω +( s

ω )
2 are reasonably well approximated by the straight

line curves shown in Figure 8.9.
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FIGURE 8.9. Bode plots of 1, s, 1 + s, and 1 + 2ζs+ s2, and approximate Bode
plots of 1 + s and 1 + 2ζs+ s2.

The fact that the Bode plots of the elementary factors are simple leads to
the following procedure for quickly sketching the approximate magnitude
part of the Bode plot of the rational transfer function G(s), once it has
been expressed in its elementary factors as in (8.12). Mark first on the
frequency axis the points | zi |, ωj , | zk |, and ωℓ. These frequencies are
called the breakpoints of the Bode plot. The sketch is now obtained as
follows. The approximate magnitude plot is a continuous, piecewise linear
graph. Between each of the breakpoints, the magnitude plot is a straight
line segment. At each of the breakpoints, the slope of this straight line
is modified. To the far left, the slope is 20 dB/decade. If the breakpoint
corresponds to a real zero (the zis), 20 dB/decade is added to the slope; for
a complex zero (the ωjs), 40 dB/decade is added; for a real pole (the zks),
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20 dB/decade is subtracted; and for a complex pole (the ωℓs), 40 dB/decade
is subtracted. Finally, the origin of the magnitude scale is chosen such that
for ω = 1 the magnitude is 20 log |K|.
There exist similar techniques for sketching the phase part of the Bode plot
of rational transfer functions, but we will not give details.

It should be mentioned, however, that the resulting approximations may
be poor, particularly in the neighborhood of the breakpoints. In particu-
lar, if some of the poles or zeros have small damping coefficients, then the
approximations will be very inaccurate around the corresponding break-
points. Thus, in particular, when analyzing the frequency response of lightly
damped mechanical systems with many oscillatory modes, these approxi-
mations should not be used.

These approximations allows one, with a bit of routine, to obtain very
quickly a sketch of the magnitude (and phase) part of the Bode plot of a
system whose poles and zeros have been determined. It is fair to add, how-
ever, that this sort of expertise is rapidly becoming quaint, since computer
packages draw Bode plots much faster and much more accurately than any
grey-haired mature expert in control.

Example 8.6.3 Consider the transfer function

(1 + 0.5s+ s2)

s(1 + 10s+ 100s2)(1 + 0.14s+ 0.01s2)
. (8.13)

The breakpoints corresponding to zeros are at 1; those corresponding to
the poles are at 0.1 and at 10. The sketch of the Bode plot and the actual
Bode plot are shown in Figure 8.10. �
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8.7 Recapitulation

In this chapter we described some characteristic time and frequency-domain fea-
tures of linear time-invariant systems. The main points are the following:

• A linear time-invariant system processes periodic (more generally, expo-
nential) components of signals individually, without interference among
the different frequencies. This leads to the notions of transfer function and
frequency response. The transfer function expresses how exponential inputs
are transformed into exponential outputs (Section 8.2).

• The transfer function specifies only the controllable part of a system, and
uncontrollable modes are not represented by it. This limits the potential of
transfer function methods for the description of systems (Theorem 8.2.7).

• The step response is the response of a system to a step input. Many useful
time domain characteristics (such as overshoot, settling time, rise time) of
a system can be read of from its step response (Section 8.3).

• A useful way of representing the frequency response of a system is by its
Bode plot. Many useful frequency-domain characteristics (such as band-
width, resonant frequencies) can be read off from the Bode plot (Section
8.4.1).

• The parameters of a first-order system have an immediate interpretation
in terms of the timeconstant and the steady-state gain. For second-order
systems, the characteristic frequency and the damping coefficient are the
important parameters (Section 8.5).

• Rational transfer functions occur very frequently in applications. Their
characteristic features can readily be deduced by their pole/zero diagram.
The poles and zeros specify the breakpoints of the Bode plot. The Bode
plot can readily be sketched from the steady-state gain and the pole/zero
diagram (Section 8.6).

8.8 Notes and References

The material covered in this chapter forms bread and butter mathematical tech-
niques underlying classical control theory. In this text, we cover but some essential
features of this very useful theory. There are numerous textbooks, mostly with an
engineering emphasis, covering these topics. The underlying mathematics is that
of Fourier and Laplace transforms. The result of Theorem 8.2.7, implying that
the transfer function specifies only the controllable part of a system, appeared
in [59]. On the level of generality presented here, this result was obtained in the
above reference for the first time. However, for state space systems, a similar
result has been known for some time (see, for example, [27] and [15]).
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8.9 Exercises

As a simulation exercise illustrating the material covered in this chapter
we suggest A.5.

8.1 Assume that w : R → Rq is periodic with period T . Define f : [0, T ] →
Rq by f(t) = w(t) for 0 ≤ t ≤ T . Assume that f ∈ L1([0, T ],R

q). Let
{f̂n, n ∈ Z} denote the Fourier series of f . Consider (8.1). Prove that f
belongs to the behavior of this system if and only if f̂n ∈ E(i 2πn

T
) for all

n ∈ Z. Obtain an analogous result for input/output systems (8.3) applied
to periodic inputs.

8.2 Let G(ξ) ∈ R(ξ). Assume for simplicity that G(ξ) is strictly proper. Expand
G(ξ) in partial fractions, yielding an expression of the form

G(ξ) =

N∑

k=1

nk∑

ℓ=1

akℓ
(ξ − λk)ℓ

,

with λ1, λ2, . . . , λN the poles of G(ξ), and n1, n2, . . . , nN their multiplici-
ties. Consider the associated impulse response

h(t) =





N∑
k=1

nk∑
ℓ=1

akℓt
ℓ−1eλkt t ≥ 0,

0 t ≤ 0.

Prove that G(s) is the Laplace transform of h and that its domain of
convergence equals {s ∈ C | Re(s) > Re(λk), k = 1, 2, · · · , N}. Use this
result to prove in the multivariable case that the transfer function of
the initially-at-rest system (8.3) viewed as a convolution system equals
G(s) = P−1(s)Q(s). Specify the domain of convergence of this transfer
function. Prove that P−1(s)Q(s) is the transfer function of the initially-
at-rest system (8.3) by considering the Laplace transform of P ( d

dt
)u and

Q( d
dt
)y in terms of the Laplace transforms of u and y, and considering

(8.3).

8.3 Let Σ = (R,Cq,B) be a linear time-invariant system (not necessarily de-
scribed by a differential equation). Prove that for each λ ∈ C the set
{b ∈ Cq | b expλ ∈ B} defines a linear subspace of Cq.

8.4 Let R(ξ) ∈ Rg×q[ξ], b ∈ Cq, and s ∈ C. Prove that R( d
dt
)b exps =

R(s)b exps. Deduce Lemma 8.2.4 from this.

8.5 Let E(s) be the exponential behavior of (8.3), as obtained in (8.7). Prove
that (8.1) defines a controllable system if and only if the dimension of E(s)
is independent of s for s ∈ C.

8.6 Does the exponential response (8.7) determine the behavior (8.1) uniquely?
If not, give a counterexample. Does it, if it is known that the system is
controllable?
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8.7 Give examples of controllable systems G1(s), G2(s) but for which the series
interconnection, the parallel interconnection, or the feedback interconnec-
tion is not controllable. Comment on the limited validity of the transfer
function as describing the behavior of an interconnected system.

8.8 Plot the step response of the following systems:

(a) y + d2

dt2
y = u.

(b) y − d2

dt2
y = u.

(c) y + d
dt
y = u− d

dt
u.

(d) y + d
dt
y + 4 d2

dt2
y = u− d

dt
u.

8.9 Compute the steady state gain of the system with transfer function

βs+ α

s3 + 3s2 + 3s+ 1
.

8.10 Consider the single-input/single-output system

y(t) =

∫ t

−∞
H(t− t′)u(t′)dt′.

Assume that H(t) ≥ 0 for t ≥ 0 and
∫∞
0
H(t)dt < ∞. Prove that this

system has no overshoot. Give a “formula” for the 5% settling time, the
rise time, and the deadtime.

8.11 Give some real-life verbal examples of systems with an adverse response.

8.12 Sketch the Bode and the Nyquist plots of

s+ 1

(s+ 2)(s+ 3)(s+ 4)

and
s2 + 0.5s+ 1

s(s2 + s+ 1)
.

8.13 Consider the electrical circuit of Example 3.3.27 Take the resistor and the
capacitor values equal to one. Sketch the step response and the Bode plot of
the transfer function from V to I. Repeat for the the transfer function from
Vin to Vout. Are these systems low-pass, band-pass, or high-pass filters?

8.14 Estimate the peak frequency, the pass-band, and the bandwidth of the
system with transfer function

1

(s2 + 0.2s+ 1)(s2 + s+ 1)
.

8.15 Consider the system described by y(t) = u(t − T ), T > 0. This is a pure
delay. Plot its step response, and its Bode and Nyquist plots.
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8.16 Consider the system with behavioral equation

P (
d

dt
)y = Q(

d

dt
)ũ; ũ = ∆u,

with ∆ the delay operator: (∆u)(t) = u(t− T ). Compare its step response
to that of P ( d

dt
)y = Q( d

dt
)u. Same question for the Bode plot.

8.17 Compute the impulse and the step responses of the series, parallel, and feed-
back interconnections of two single-input/single-output systems in terms
of the impulse responses of the interconnected systems.

8.18 Consider the first-order system

αy +
d

dt
y = βu+

d

dt
u.

Assume that α > 0. Draw the step response, using as time scale t
α
, for a

range of positive and negative values of β. Draw the Bode plot. Discuss
the filtering characteristics of this system.

8.19 Consider the system

y +
d

dt
y +

d2

dt2
y = βu+

d

dt
u.

Sketch the step response for a range of positive and negative values of β.

8.20 Consider the transfer functions of Exercise 8.12. Sketch the magnitude
of the Bode plot using the technique explained in Section 8.6.3. Plot the
exact magnitude plot (using, for example, a computer package such as

MATLAB©). Comment on the difference with the approximation.

8.21 Consider the single-input/single-output system (8.3). Assume that P (ξ)
is Hurwitz. Prove that if this system has an adverse response, then Q(ξ)
cannot be Hurwitz. Relate this to the minimum phase property discussed in
Exercise 8.23. Prove that if P (ξ) and Q(ξ) are both first-order polynomials
and if P (ξ) is Hurwitz, then the system has no adverse response if and only
if Q(ξ) is also Hurwitz.

8.22 Two transfer functions G1(s) and G2(s) are said to be gain equivalent
if |G1(iω)| = |G2(iω)| for all ω ∈ R. Consider the transfer functions
G1(s) = K1P

−1
1 (s)Q1(s) and G2(s) = K2P

−1
2 (s)Q2(s) with Pi(ξ),Qi(ξ)

monic polynomials, (Pi(ξ), Qi(ξ)) coprime, andKi 6= 0, i = 1, 2. Prove that
G1(s) is gain equivalent to G2(s) if and only if P1(−ξ)P1(ξ) = P2(−ξ)P2(ξ),
Q1(−ξ)Q1(ξ) = Q2(−ξ)Q2(ξ), and |K1| = |K2|. Interpret these conditions
in terms of the poles and zeros of G1(s) and G2(s).

8.23 An i/o system with transfer function G is said to be minimum phase if
whenever G′(s) is gain equivalent to G(s), then the phase of G(iω) is less
than that of G′(iω) for all ω ∈ R. Consider the single-input single output
system G(s) = KP−1(s)Q(s) with P (ξ), Q(ξ) ∈ R[ξ] and monic and co-
prime, and K ∈ (0,∞). Assume, moreover, that P (ξ) is Hurwitz. Prove
that G(s) is minimum phase if and only if Q(ξ) is also Hurwitz.
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Pole Placement by State Feedback

In this chapter we discuss an important control design question: that of
choosing a control law such that the closed loop system is stable (stabi-
lization) or, more generally, such that it has a certain degree of stability
reflected, for example, in a requirement on the location of the closed loop
poles (pole placement).

We consider state feedback, and in the next chapter we study output feed-
back. Thus, we consider linear time-invariant dynamical systems in state
form described by

d

dt
x = Ax+Bu, (9.1)

where x : R → Rn and u : R → Rm denote respectively the state and
the input trajectory, and where the matrices A ∈ Rn×n and B ∈ Rn×m

denote the parameter matrices specifying the dynamics of the system under
consideration.

9.1 Open Loop and Feedback Control

Feedback is one of the central concepts from system theory. It is one of
the concepts that, together with input and output, has become part of our
daily vocabulary. In order to explain the underlying idea clearly, we will
discuss it first in connection and in contrast to open loop control. Note that
the dynamical system defined by (9.1) is a special case of a system such as
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(2.1), but one in which the variable u is a free input and in which x is the
state. Such systems have been studied in detail in Chapter 4. If we think of
(9.1) as describing a physical engineering or an economic system, then we
should think of the input u as being chosen by a designer, by someone who
is trying to achieve a desired behavior of the state trajectory x through a
judicious choice of the input trajectory u. In this context, where we think
of u as a variable that can be manipulated, it is natural to call the input u
the control. In other situations, the input could be a disturbance imposed
by nature, in which case it would not be appropriate to view u as a control.

How should a designer choose the control u in order to achieve a certain
task? We have to distinguish clearly between two types of control:

1. Open loop control.

2. Feedback control.

This distinction is an extremely important one in applications.

In open loop control one chooses u as an explicit function of time. In other
words, u : R→ Rm is designed so as to achieve a certain goal, for example to
transfer the state from x0 to x1. In this context the terms motion planning
or trajectory optimization are often appropriate. In the Russian literature,
open loop control is called program control. This is an appropriate term:
just as in the theater, where the program announces that a particular
piece of music will be played at a particular time, an open loop control
announces what control action will be taken at what time. In Chapter
5, in the section about controllability, we have seen that if (9.1) is state
controllable, equivalently, if the pair of matrices (A,B) is controllable, then
for any x1, x2 ∈ Rn and any T > 0 it is possible to choose u ∈ Lloc

1 (R,Rm)
such that u transfers the system from state x1 at time 0 to state x2 at
time T . Inspection of the expressions (5.30, 5.31) shows that once x1 and
x2 and the system parameters A and B are specified, an input u can be
computed that drives x1 to x2. This is the essence of open loop control.
The fact that controllability allows this transfer to be executed at all is an
important starting point in (optimal) motion planning questions.

However, in this book, we are mainly interested in another type of control,
referred to as feedback control, and we do not pursue open loop control
problems. In feedback control the value of the control input is chosen not
as an explicit function of time, but on the basis of an observed output. To
be specific, let us consider the dynamical system (9.1) and assume that the
state x is observed. Then the choice of the value of the control is based on
the observed state trajectory. Thus the control law can be thought of as
a map that associates with the observed state trajectory x : R → Rn the
chosen control input u : R → Rm. Denote this map by F . Of course, for
obvious reasons, this map has to be nonanticipating, meaning that (Fx)(t)
depends only on the values taken on by x(t′) for t′ ≤ t. The map F may be
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required to have other properties: linear time invariant, or without memory.
In the present chapter we discuss memoryless linear time invariant control
laws. We will soon explain in detail what this means.

But before we do that, we pause for a few moments in order to emphasize
two important aspects of the present discussion: firstly, the distinction be-
tween open loop and feedback control and secondly, the fact that feedback
control leads to implicit equations, and to situations in which the distinction
between cause and effect is blurred.

Example 9.1.1 In pondering the difference between open loop control and
feedback control, an example may help. Suppose you are about to climb
a flight of stairs. You can decide to do this with your eyes open or with
your eyes closed. In the latter case, you will take a careful look at the stairs
and the railing, count the number of stairs, process in your head a motion
plan, and execute it, hoping for the best. This is open loop control. In feed-
back control, you keep your eyes open. By observing at each moment where
your feet are with respect to the stairs, where your hands are with respect
to the railing, etc., you continuously plan and adjust your movements. It
should be clear from this example that feedback control in general leads
to superior performance. Unexpected events, small disturbances, or miscal-
culations due to uncertain parameters can be taken into consideration by
feedback control, but not by open loop control. �

Example 9.1.2 Consider the scalar input/state system

d

dt
x+ ax = u, a < 0. (9.2)

Suppose that at time t = 0 the system is in state x0 and that we want to
choose the input in such a way that the state is transferred to the zero state
as time tends to infinity. If we want to do this in an open loop fashion, we
could choose u as

u(t) = (a− 1)e−tx0. (9.3)

It is easy to check by substituting (9.3) into (9.2) that the resulting trajec-
tory x is given by

x(t) = e−tx0, (9.4)

so that indeed x(t) converges to zero asymptotically. Notice that the input
depends on the initial state x0 and the system parameter a. In practical
situations, both x0 and a will not be known with infinite accuracy, so their
nominal values contain small errors, let’s say that their assumed values are
a+ ǫ and x0 + δ instead of the real values a and x0, so that we use instead
of (9.3),

u(t) = (a+ ǫ− 1)e−t(x0 + δ).
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The resulting state trajectory is then

x(t) = e−tx0 + (
ǫ

a− 1
(x0 + δ) + δ)(e−t − e−at).

Since by assumption a < 0, we conclude that small errors in the initial
state or in the system parameter may cause instability.

If, on the other hand, we take the input at time t as a function of the state
at time t, then small errors need not have such disastrous consequences.
Take, for example,

u(t) = (a− 1)x(t). (9.5)

In the idealized case where there are no errors in a and x0 we obtain from
substituting (9.5) into (9.2)

x(t) = e−tx0,

which is identical to (9.4). However, in the case that a and x0 contain a
small error, we get

x(t) = e−(1+ǫ)t(x0 + δ),

which is still stable if ǫ > −1. Of course, if x cannot be measured exactly,
then the measurement of x(t) also contains an error, so instead of (9.5),
the input will be of the form

u(t) = (a+ ǫ− 1)(x(t) + γ(t)) |γ(t)| < γ

for some (small) γ. The response to this input can of course not be deter-
mined exactly, but an upper bound is easily obtained:

|x(t)|= |e(ǫ−1)tx(0) +
t∫

0

e(ǫ−1)(t−τ)γ(τ)dτ |

≤ |e(ǫ−1)tx(0)|+
t∫

0

e(ǫ−1)(t−τ)|γ(τ)|dτ

≤ |e(ǫ−1)tx(0)|+ γ
t∫

0

e(ǫ−1)(t−τ)dτ = |e(ǫ−1)tx(0)|+ γ

1− ǫ (1− e
(ǫ−1)t).

(9.6)
The inequality (9.6) shows that if we make explicit use of the state at time
t, even if there is a small error in x(t), then the resulting state trajectory
is still bounded by a constant that is proportional to the upper bound of
the error in the measurement of the state. This is in contrast to the open
loop control strategy, where we have seen that even the smallest error may
destabilize the system. �
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FIGURE 9.1. A child on a swing.

Example 9.1.3 A concrete example through which the difference between
open loop and feedback control can be made very clear is that of a child
on a swing (see Figure 9.1). By standing up when the swing moves upward
and squatting when it moves downward, the child continuously switches
the center of gravity of the swing up and down. In this way, it manages to
pump up the amplitude of oscillation.

Let us derive the equations of motion for the swing, even though they
are somewhat peripheral for the present discussion. We do this using La-
grangian mechanics. Readers not familiar with these ideas can proceed to
equation (9.7), taking them for granted. Let ϕ denote the angle of the pen-
dulum with respect to the vertical axis. Model the child as a point mass
with mass M and denote by L the distance of the child to the pivot of the
swing. Now, neglecting the mass of the swing (as compared to that of the
child) yields for the kinetic energy T in terms of ϕ, ϕ̇, the rate of change
of ϕ, L, and L̇, the rate of change of L,

T (ϕ, ϕ̇, L, L̇) =
M

2
(L2(ϕ̇)2 + (L̇)2),

and for the potential energy

U(ϕ, ϕ̇, L, L̇) = −MgL cosϕ,

where g denotes the gravitational constant. The Euler–Lagrange equations
of mechanics yield the following differential equation for the motion of ϕ:

d

dt

∂

∂ϕ̇
(T − U) +

∂

∂ϕ
(T − U) = 0.

For the case at hand this yields

d

dt
ML2 d

dt
ϕ+MgL sinϕ = 0. (9.7)

This equation should be viewed as the behavioral equation relating the
manifest variables L and ϕ.
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How should we explain that a child is able to pump up the motion of the
swing? Mathematics texts often suggest that L will be chosen as a periodic
function of t. Indeed, it can be shown that by choosing for L : R→ R an ap-
propriate periodic function of time, then (9.7) becomes unstable, resulting
in the desired increase in amplitude of the swing. This type of instability
is known as parametric resonance, because it requires that the amplitude
of the “parameter” L be chosen in resonance with the natural frequency of
the system.

Is parametric resonance really the appropriate way of explaining the way
a child pumps up the motion of a swing? The answer is no. Parametric
resonance implies that the length L of the swing is chosen as an explicit
function of time. It suggests that the child is looking at its watch in order
to decide whether to squat or to stand up at time t, or that the child moves
up and down in a predetermined periodic motion. This is, of course, not
what happens in reality. The choice of L is made as a function of φ and
d
dtφ. Typically, L will be chosen to be large if φ and d

dtφ have opposite signs
and small if they have the same sign.

The parametric resonance explanation of a swing suggests that open loop
control is used: the decision to squat or to stand up is taken as an explicit
function of time. The explanation in which this decision depends on the
observed values of φ and d

dtφ suggests feedback control. In essentially all
applications of control, feedback enters in one way or another. Feedback,
not trajectory planning, is the central idea in control theory. �

Feedback control leads to a blurring of cause and effect. In (9.1) it is logical
to view the input trajectory u as the cause and the state trajectory x as
the effect. However, the control law F : x 7→ u uses the state trajectory
in order to decide on the control trajectory: the roles of cause and effect
are now reversed. Consequently, in the controlled system there is no way of
telling what causes what. A feedback system acts like a dog chasing its tail.
Feedback leads to implicit equations, one of the complications characteristic
of the mathematics of feedback control. For example, if the control law
u = Nx is used in (9.1), then the behavioral equations become

d

dt
x = Ax+Bu, u = Nx. (9.8)

Assuming that x(0) is given, then the first equation in (9.8) defines x in
terms of u, while the second defines u in terms of x, whence the implicit
nature of the equations for x and u.

The dynamical system to be controlled (e.g., (9.1)) is usually called the
plant. It is typically a physical, a chemical, or an economic system. The
system that implements the control law is called the feedback processor. It
processes the observations in order to obtain the control input. Nowadays, a
feedback processor is often implemented in hardware as a microprocessor. In
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older times, it was common to implement feedback processors by means of
mechanical or pneumatic devices. The behavior of the plant in conjunction
with the control law leads to the closed loop system. This can conveniently
be illustrated by means of the signal flow graphs shown in Figure 9.2.

u = Nx

d
dt
x = Ax+Bu

Plant

Feedback

processor

FIGURE 9.2. State feedback.

9.2 Linear State Feedback

Although in principle the control is allowed to depend also on the past of
x, feedback laws are often memoryless; i.e., the control at time t depends
on the state at the present time t only. A memoryless linear time-invariant
linear control law for (9.1) is thus defined by

u = Nx, (9.9)

where the matrix N ∈ Rm×n is called the feedback gain matrix. The control
law (9.9) functions as follows. If the value of x is observed, then the control
value is specified by (9.9). The law (9.9) is called memoryless because the
value of x at time t determines the value of u at time t. Sometimes the term
static is used instead of memoryless. In Chapter 10 we consider feedback
laws with memory: the present value of the control is then also influenced by
the strict past of the measurements. Such control laws are called dynamic.

Now consider (9.9) in conjunction with (9.1). This leads to the equations

d

dt
x = (A+BN)x ; u = Nx. (9.10)

Equations (9.10) tell us how the state trajectory of (9.1) evolves when the
control law (9.9) is applied. These equations are the closed loop equations
for the case at hand. Observe that (9.10) defines an autonomous dynamical
system.
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The problem of controlling the plant (9.1) by means of a feedback processor
(9.9) thus leads to a seemingly straightforward question in matrix theory.
Indeed, it comes down to choosing, for given matrices (A,B) appearing in
(9.1), the feedback matrix N in (9.9) such that the matrix pair (A+BN,N)
appearing in (9.10) has desirable properties. For example, the question may
be to choose N such that all solutions x of (9.10) satisfy x(t) → 0 as
t → ∞ (and hence u(t) → 0 as t → ∞)—this is the problem of feedback
stabilization; or the question may be to chooseN such that the average value
of
∫∞
0

(‖u(t)‖2 + ‖x(t)‖2)dt is as small as possible, with average suitably
interpreted. This is a problem in optimal feedback control, which we do not
address in this book.

9.3 The Pole Placement Problem

Consider the system (9.1). We call the eigenvalues (counting multiplicity) of
the matrix A the poles of the dynamical system governed by (9.1). Similarly,
we call the eigenvalues of A + BN the poles of (9.10). This nomenclature
stems from considering as input to (9.1) u = Nx+ v, with v a new input.
This yields the system d

dtx = (A+BN)+Bv, which has (Iξ−A−BN)−1B
as transfer function from v to x. If the pair (A,B) is controllable, then
the poles of this matrix of rational functions are equal to the eigenvalues
of A + BN . This explains the nomenclature, which is, strictly speaking,
somewhat confusing, since we assume that the input v is absent. In order
to distinguish between the poles of (9.1) and those of (9.10) we speak of
the eigenvalues of A as the open loop poles and of those of A+BN as the
closed loop poles. Similarly, we call the characteristic polynomial of A the
open loop characteristic polynomial, and that of A + BN the closed loop
characteristic polynomial. Of course, the open loop and closed loop poles
are the roots of the corresponding characteristic polynomials.

The poles of the closed loop system are very important features for judging
the behavior of the closed loop system (9.10). In Chapter 7 we have seen
that the asymptotic stability of (9.10) can be decided from the location of
the eigenvalues of A+BN with respect to the imaginary axis. When all poles
lie in the open left half plane, the system is asymptotically stable. However,
it follows from Theorem 3.2.16 that much more can be concluded from the
poles, as, for example, the exponential decay (or growth) of the solutions of
(9.10), their frequency of oscillation, and the presence of polynomial factors
in the solutions. This leads to the following (compelling) question:

What closed loop pole locations are achievable by choosing the feedback gain
matrix N?

This problem is known as the pole placement problem. Since the closed loop
poles of (9.10) are the roots of the characteristic polynomial of A + BN ,
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it is possible to reformulate the pole placement problem in linear algebra
terms as follows:

Let A ∈ Rn×n and B ∈ Rn×m be given matrices. Choose N ∈ Rm×n, and
let χA+BN (ξ) denote the characteristic polynomial of the matrix A+BN .
What is the set of polynomials χA+BN (ξ) obtainable by choosing the matrix
N ∈ Rm×n?

Of course, if Λ = {λ1, λ2, · · · , λn} are the desired poles, then the desired

closed loop characteristic polynomial is r(ξ) =
n∏

k=1

(ξ − λk). Note that for

the coefficients of r(ξ) to be real, we obviously need that (λk ∈ Λ)⇔ (λ̄k ∈
Λ). The main result on pole placement states that the closed loop poles
(equivalently the closed loop characteristic polynomial) can be chosen to
be arbitrary if and only if the system (9.1) is controllable, i.e., if and only
if rank[B,AB, . . . , An−1B] = n. This result is proven in the next section.

Theorem 9.3.1 (Pole placement) Consider the system (9.1). For any
real monic polynomial r(ξ) of degree n there exists a feedback gain matrix
N ∈ Rm×n such that χA+BN (ξ) = r(ξ) if and only if (9.1) is controllable.

Recall that a polynomial is called monic if the coefficient of its leading
term is one. In Chapter 5 we have seen the open loop interpretation of
controllability in terms of the possibility of steering the state of (9.1) from
any initial to any final value. Theorem 9.3.1 gives controllability a closed
loop, feedback control significance in terms of the possibility of being able
to choose a feedback gain matrix that achieves an arbitrary pole location.

9.4 Proof of the Pole Placement Theorem

We give a detailed proof of Theorem 9.3.1. This proof is a bit intricate,
even though each of its steps is logical and straightforward. The necessity
part of the proof uses the notion of system similarity. We start therefore
with a section on system similarity and its relation to pole placement. This
leads readily to the conclusion that controllability is a necessary condition
for pole placement.

It is the sufficiency part that takes most of the work. The proof that con-
trollability implies pole placement is structured as follows. First we consider
the single-input case (m = 1). For such systems there is an algorithm that
shows how the feedback gain should be chosen so as to achieve a desired
closed loop characteristic polynomial. We subsequently turn to the multi-
input case (m > 1). By using a clever lemma (Lemma 9.4.4), we can reduce
this case to the single-input case.
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9.4.1 System similarity and pole placement

Denote by Σn,m the family of systems such as (9.1) with n state andm input
variables. Thus each element of Σn,m is parametrized by a pair of matrices
(A,B) with A ∈ Rn×n and B ∈ Rn×m. Denote this by (A,B) ∈ Σn,m. Let
(A1, B1), (A2, B2) ∈ Σn,m. In line with Section 4.6, we call (A1, B1) and
(A2, B2) similar if there exists a nonsingular matrix S ∈ Rn×n such that

A2 = SA1S
−1 , B2 = SB1. (9.11)

Note that this notion of similarity is a generalization to systems of the type
(9.1) of the notion of similarity of square matrices, A1 and A2 being called
similar if the first equation of (9.11) holds. If in the state space of (9.1) we
change the coordinate basis by defining z(t) = Sx(t), then it is clear that
the dynamics of z are governed by

d

dt
z = SAS−1z + SBu.

Hence similarity as defined by (9.11) corresponds to changing the basis in
the state space.

Note that if (A1, B1) is controllable and if (A2, B2) is similar to (A1, B1),
then (A2, B2) is also controllable. To see this, simply compute the control-
lability matrix of (A2, B2). We obtain

[B2, A2B2, . . . , A
n−1
2 B2] = S[B1, A1B1, . . . , A

n−1
1 B1].

Since rank[B1, A1B1, . . . , A
n−1
1 , B1] = n, and S is invertible, controllability

of (A2, B2) follows.

The following lemma shows that for two similar systems the closed loop
characteristic polynomials that are achievable by state feedback coincide.

Lemma 9.4.1 Assume that (A1, B1), (A2, B2) ∈ Σn,m are similar. Let
r(ξ) ∈ R[ξ] be a monic polynomial. Then there exists a matrix N1 ∈ Rm×n

such that χA1+B1N1
(ξ) = r(ξ) if and only if there exists a matrix N2 ∈

Rm×n such that χA2+B2N2
(ξ) = r(ξ).

Proof Compare the effect of using the feedback matrix N1 on (A1, B1)
with that of using N2 = N1S

−1 on (A2, B2). The resulting closed loop
system matrices are A1 + B1N1 and A2 + B2N2 = S(A1 + B1N1)S

−1.
Hence A1 +B1N1 and A2 +B2N2 are similar, and therefore they have the
same characteristic polynomial. The lemma follows. �

It follows from this lemma that in order to prove pole placement for (9.1),
we may as well consider a system that is similar to it.
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9.4.2 Controllability is necessary for pole placement

The proof of the necessary part of Theorem 9.3.1 is based on the decom-
position of systems into a controllable and a noncontrollable part (the so-
called Kalman decomposition, see Corollary 5.2.25). The following lemma
was proven already in Chapter 5 and is repeated here for easy reference,
and in order to make the proof of the pole placement theorem self-contained
and independent of the material in Chapter 5.

Lemma 9.4.2 The system (9.1) is similar to a system (A′, B′) ∈ Σn,m

with A′, B′ of the form

A′ =

[
A′

11 A′
12

0 A′
22

]

, B′ =

[
B′

1

0

]

(9.12)

and with (A′
11, B

′
1) controllable.

Proof See Corollary 5.2.25. �

This lemma immediately shows that controllability is a necessary condition
for pole placement. Indeed, assume that (9.1) is not controllable. Then it is
similar to a system (A′, B′) of the form (9.12) with n1, the dimension of A′

11,
less than n. Now consider the effect of a feedback matrix N ′ = [N ′

1 N
′
2], with

N ′
1 ∈ Rm×n1 and N ′

2 ∈ Rm×(n−n1), on this system. The matrix (A′+B′N ′)
is given by

[
A′

11 +B′
1N

′
1 A′

12 +B′
1N

′
2

0 A′
22

]

.

Hence its characteristic polynomial is given by χA′

11
+B′

1
N ′

1
(ξ)χA′

22
(ξ) (see

Exercise 9.23). Therefore, the characteristic polynomial χA′+B′N ′(ξ), and
hence χA+BN (ξ), has, regardless of what N is chosen, χA′

22
(ξ) as a factor.

Hence χA+BN (ξ) cannot be made equal to any characteristic polynomial.
In the language of pole placement, this means that pole placement does
not hold if (A,B) is not controllable.

9.4.3 Pole placement for controllable single-input systems

The proof of the sufficiency part of Theorem 9.3.1 for the case m = 1
follows from the following theorem, that actually provides an algorithm for
choosing N from A,B and r(ξ).

Theorem 9.4.3 Assume that (9.1) is controllable, and that m = 1. Let
F ∈ R1×n be the solution of the system of linear equations

F [B AB · · ·An−2B An−1B] = [0 0 · · · 0 1]. (9.13)

Then
N = −Fr(A) (9.14)
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yields

χA+BN (ξ) = r(ξ). (9.15)

The notation r(A) signifies the n×n matrix r0I+r1A+· · ·+rn−1A
n−1+An.

Proof Let N be given by (9.14) and denote the characteristic polynomial
of A+ BN by χA+BN (ξ) = α0 + α1ξ + · · · + αn−1ξ

n−1 + ξn. From (9.13)
it follows that FB = · · · = FAn−2B = 0 and FAn−1B = 1, hence

F (A+BN)k = FAk for k = 0, 1, . . . , n− 1,
F (A+BN)n = FAn +N.

(9.16)

By the Cayley–Hamilton theorem, χA+BN (A + BN) = 0. Hence
FχA+BN (A+BN) = 0. Multiplying both sides of (9.16) by the appropriate
coefficients of χA+BN (ξ) and adding yields

N = −FχA+BN (A)
= −α0F − α1FA− · · · − αn−1FA

n−1 − FAn.

Hence

N = −[α0 α1 · · · αn−1]








F
FA
...

FAn−1








︸ ︷︷ ︸

M

−FAn. (9.17)

From








F
FA
...

FAn−1







[An−1B An−2B . . . B] =









1 0 · · · 0

∗ . . .
. . .

...
...

. . . 0
∗ · · · ∗ 1









it follows thatM is an invertible matrix. Combining (9.14) and (9.17) yields

[
α0 α1 · · · αn−1

]
M =

[
r0 r1 · · · rn−1

]
M.

Since M is invertible it follows that

[
α0 α1 · · · αn−1

]
=
[
r0 r1 · · · rn−1

]
.

This completes the proof of Theorem 9.3.1 for the single-input case. �

Observe that it follows from the proof of Theorem 9.4.3, which gives N
uniquely in terms of r(ξ), that in the single-input case, the feedback gain
N that achieves r(ξ) is unique.



9.4 Proof of the Pole Placement Theorem 329

9.4.4 Pole placement for controllable multi-input systems

We now proceed towards the proof of Theorem 9.3.1 in the multi-input case
m > 1. Denote by Σcont

n,m the set of pairs (A,B) ∈ Rn×n × Rn×m that are
controllable. Consider the pair of matrices (A,B). Let Bk denote the kth
column of B. If there existed a k such that the single-input system (A,Bk)
were controllable, then the pole placement problem would immediately be
solvable by considering feedback laws u = Nx with N of the form

N =















0
...
0
1
0
...
0















N ′, (9.18)

with the 1 in the kth entry of the first matrix on the right-hand side of
(9.18). Indeed, since A+BN = A+BkN

′, we see that the problem would
then be reduced to the single-input case. Note that (9.18) is a feedback
gain matrix that uses only the kth input channel for feedback, with the
other inputs set to zero. More generally, if there existed a K ∈ Rm×1 such
that (A,BK) were controllable, the control law u = Nx with N of the
form N = KN ′ would similarly reduce the problem to the single-input
case. However, the system (I, I) ∈ Σcont

n,n shows that such a K ∈ Rm×1 may
not exist. Thus it appears not to be possible to reduce the problem to the
single-input case by simply taking a linear combination of the inputs. The
next lemma shows that we can reduce the problem to the single-input case
by combining preliminary feedback with a linear combination of the inputs.

Lemma 9.4.4 Let (A,B) ∈ Σcont
n,m , and assume that K ∈ Rm×1 is such that

BK 6= 0. Then there exists a matrix N ′ ∈ Rm×n such that (A+BN ′, BK) ∈
Σcont

n,1 .

Proof (i) Let us first prove that there exist v1, . . . , vn−1 ∈ Rm such that
the algorithm

x0 = 0 ; v0 = K,xt+1 = Axt +Bvt (9.19)

generates vectors x1, x2, . . . , xn ∈ Rn that are linearly independent. (In
Exercise 9.8 an interpretation of (9.19) is given in terms of discrete-time
systems.) The proof goes by induction. Note that x1 = BK 6= 0. Assume
that x1, x2, . . . , xt, with t < n, are linearly independent. We need to prove
that there exists a vt ∈ Rm such that the vectors x1, x2, · · · , xt, xt+1 =
Axt + Bvt are also linearly independent. Assume to the contrary that for
all vt, Axt +Bvt ∈ L := span{x1, x2, . . . , xt}. Note that since t < n, L is a
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proper subspace of Rn. We now demonstrate that L must satisfy

imB ⊆ L and AL ⊆ L, (9.20)

and subsequently that this contradicts controllability. Indeed, Theorem
5.2.24 on controllability implies that Rn is the smallest A-invariant sub-
space that contains imB.

To prove (9.20), note that since Axt +Bvt ∈ L for all vt ∈ Rm, there must
hold Axt ∈ L (take vt = 0) and imB ⊆ L. Further, since for k = 0, 1, . . . , t−
1, there exist v0, v1, . . . , vt−1 such that xk+1 = Axk + Bvk, it follows that
Axk ∈ L for k = 1, 2, . . . , t − 1. Hence Axk ∈ L for k = 1, 2, . . . , t. This
yields AL ⊂ L.

To show that (9.20) contradicts controllability, observe that imAkB =
Ak imB ⊆ L for k = 0, 1, . . .. Consequently, im[B,AB, . . . , An−1B] ⊆ L.
This implies that L = {x1, x2, . . . , xt} = Rn, contradicting the fact that L
is a proper subspace of Rn. Hence t = n.

(ii) It follows from (i) that there exist v0, v1, . . . , vn−1 ∈ Rm such that
x1,x2,...,xn ∈ Rn defined by (9.19) are linearly independent. Also, it follows
that we can take v0 = K, and hence x1 = BK. Now define the matrix N ′

by [v1, . . . , vn−1, vn] = N ′[x1, . . . , xn−1, xn] (with vn ∈ Rm arbitrary). Note
that this defines N ′, since [x1, . . . , xn−1, xn] ∈ Rn×n is nonsingular. This
yields xt+1 = (A + BN ′)tx1 for t = 0, 1, . . . , n − 1. Since, x1 = BK, this
implies [BK, (A+BN ′)BK, . . . , (A+BN ′)n−1BK] = [x1, x2, . . . , xn]. Since
[x1, x2, . . . , xn] is nonsingular, it follows that the pair (A + BN ′, BK) is
indeed controllable. �

We are now ready to deliver the coup de grâce.

Proof of the sufficiency part of Theorem 9.3.1 The proof of the
sufficiency of Theorem 9.3.1 in the case m > 1 is as follows. First choose
K ∈ Rm×1 such that BK 6= 0, and N ′ ∈ Rm×1 such that (A+ BN ′, BK)
is controllable. By controllability, B 6= 0, and hence such a K exists. By
Lemma 9.4.4 such an N ′ exists. Next, use Theorem 9.4.3 in the case m = 1,
applied to (A+BN ′, BK), to obtainN ′′ ∈ R1×n such that A+BN ′+BKN ′′

has the desired characteristic polynomial r(ξ). Finally, observe that the
feedback law u = Nx with N = N ′ + KN ′′ achieves χA+BN (ξ) = r(ξ).
This yields the desired characteristic polynomial with feedback applied to
the original system (9.1). �

We now review briefly the key points of the proof of Theorem 9.3.1. First
we showed that pole placement is invariant under system similarity (cf.
Lemma 9.4.1). Using the transformation of (A,B) into the similar system
(9.12) and examining the effect of feedback on this similar system immedi-
ately yields the conclusion that controllability is a necessary condition for
pole placement. To prove the converse, i.e., that controllability implies pole
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placement, observe that Lemma (9.4.4) reduces the multi-input case to the
single-input case. The single-input case is proven in Theorem 9.4.3. Several
alternative ideas for elements of the proofs are explored in Exercises 9.11
to 9.13.

Observe that if we view the equation for pole placement χA+BN (ξ) = r(ξ)
as n real equations (the coefficients of the polynomials) inmn real unknowns
(the elements of the matrix N ∈ Rm×n), then we have shown that these
equations are solvable for all r(ξ) if and only if (A,B) is controllable. If
m = 1, then the number of equations is equal to the number of unknowns,
and indeed (see the comment at the end of Section 9.4.3) the solution is
unique. In the multi-input case, there are more unknowns than equations,
and there will be multiple solutions (we have not formally shown this, but
the nonuniqueness of the matrices K and N ′ constructed in Lemma 9.4.4
makes it at least intuitively reasonable). It is interesting to note that it was
harder to prove solvability of an equation that has multiple solutions than
one that has a unique solution.

9.5 Algorithms for Pole Placement

Theorem 9.3.1 implies that if (9.1) is controllable and if r(ξ) ∈ R[ξ] is any
monic polynomial of degree n, then there exists an N ∈ Rm×n such that
the closed loop matrix A + BN has characteristic polynomial r(ξ). Our
proof, while in principle constructive, does not really provide an algorithm
for computing an N from the data (A,B) and r(ξ) in the multi-input case.
In this section we discuss some algorithmic aspects of the computation of
N .

The following conceptual algorithm may be deduced from Theorem 9.4.3
and the proof of Theorem 9.3.1.

Algorithm 9.5.1 Pole placement by state feedback

�

Data: A ∈ Rn×n, B ∈ Rn×m, with (A,B) controllable; r(ξ) ∈ R[ξ] with
r(ξ) monic and of degree n.

Required: N ∈ Rm×n such that χA+BN (ξ) = r(ξ).

Algorithm:

1. Find K ∈ Rm×1 and N ′ ∈ Rm×n such that (A + BN ′, BK) is con-
trollable. Lemma 9.4.4 shows that such K,N ′ exist. We shall see in
Theorem (9.5.2) that in fact a “random” choice produces such a pair
(K,N ′).
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2. Put A′ = A+BN ′, B′ = BK, and compute F from

F [B′, A′B′, . . . , (A′)n−1B′] = [0 0 . . . 0 1].

3. Compute N ′′ = −Fr(A′).

4. Compute N = N ′ +KN ′′.

Result: N is the desired feedback matrix.

Note that step 1 of the above algorithm may be skipped for single-input
systems, since K = 1 and N ′ = 0 will do in this case. Even for multi-
input systems this step is a great deal easier than the explicit construction
carried out in the proof of Lemma 9.4.4 suggests. The procedure for finding
the matrices K and N ′ given in Lemma 9.4.4 is, in a sense, constructive.
However, it turns out that if the matrices K and N ′ are chosen using a
random number generator, then we can be sure that the resulting matrices
(A + BN ′, BK) form a controllable pair. Well, formally speaking, we can
only be almost sure. We now explain this.

Let S be a subset of RN . Think of RN as parametrizing a family of concrete
objects and of S as those objects that enjoy a certain desired property.
For example, S could consist of those (K,N ′) ∈ Rm×1 × Rm×n such that
(A+BN ′, BK) is controllable. We call S an algebraic variety if there exists
a polynomial p(ξ1, ξ2, . . . , ξN ) ∈ R[ξ1, ξ2, . . . , ξN ] (that is, a polynomial with
real coefficients in N variables ξ1, ξ2, . . . , ξN ) such that

S = {col(z1, z2, . . . , zN ) ∈ RN | p(z1, z2, . . . , zN ) = 0}.

If an algebraic variety S is not equal to all of RN (hence if the coefficients of
p(ξ1, ξ2, . . . , ξN ) are not all zero), then we call S a proper algebraic variety.
It can be shown that a proper algebraic variety must be a “very small” set.
Specifically, it can be shown that if S is a proper algebraic variety, then

1. Scomplement is open and dense in RN .

2. S has zero Lebesgue measure. This means that for all ǫ > 0 there
exists a countable sequence ak ∈ RN , k = 1, 2, . . ., such that

S ⊆
∞⋃

k=1

(ak −
ǫ′

2k
, ak +

ǫ′

2k
), (9.21)

with ǫ′ the vector col(ǫ, ǫ, . . . , ǫ) ∈ RN . Note that the volume of the set
on the right-hand side of (9.21) goes to zero as ǫ goes to zero. Hence
(2) states that S is contained in a set of arbitrarily small volume.

Intuitively these two properties mean that if we choose a point x ∈ RN

“at random,” then it essentially never belongs to S. Mathematicians often
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call Scomplement generic, or in general position It is useful to think that
consequently, typical elements of RN enjoy property Scomplement. As an
illustration of the situation at hand, draw in R2 the familiar curve defined
by z21 + z22 = 1. Observe that it is an algebraic variety, and indeed, a
randomly chosen point in R2 does not lie on the unit circle.

We now show that matrices K,N ′ generically have the property required
in Lemma 9.4.4.

Theorem 9.5.2 Let (A,B) ∈ Σcont
m,n . Then the set {(K,N ′) ∈ Rm×1 ×

Rm×n | (A+BN ′, BK) is controllable}, viewed as a subset of Rm(n+1), is
the complement of a proper algebraic variety.

Proof Define M = A+BN ′, and observe that

{(K,N ′) ∈ Rm×1 × Rm×n | det[BK,MBK, . . . ,Mn−1BK] = 0} (9.22)

is an algebraic variety, since the equation expressing that the determinant
in (9.22) is zero obviously defines a polynomial in the components of the
matrices K and N ′. That it is a proper algebraic variety is the content of
Lemma 9.4.4. �

We can conclude from this theorem that the first step of Algorithm 9.5.1
can be carried out by choosing the elements of K and N ′ by means of a
random number generator.

As a final comment regarding computation of an N such that

χA+BN (ξ) = r(ξ), (9.23)

observe that as already remarked before, it requires solving n equations
(obtained by equating the n coefficients of the monic polynomials on the
left- and right-hand sides of (9.23)) with mn unknowns (the entries of the
matrix N ∈ Rm×n). Actually, if m = 1, then the solution N of (9.23), if
it exists at all, is unique (and it always exists in the controllable case).
However, if m > 1, there are less equations than unknowns, and indeed,
the solution is nonunique. This feature can be exploited to obtain solutions
that are “better” than others. For example, the linear algebra and control
systems package MATLAB© uses this nonuniqueness in order to find an
N such that the sensitivity of χA+BN (ξ) under changes in N is minimized
in some appropriate sense.

9.6 Stabilization

Theorem 9.3.1 can be refined so that it gives a complete answer to the pole
placement question for systems (A,B) that are not necessarily controllable.
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This refinement is based on Lemma 9.4.2, which basically provides a canon-
ical form for Σn,m. This canonical form puts the controllability structure
into evidence. Consider the matrix A′

22 in (9.12). This matrix characterizes
the noncontrollable behavior of the system (9.1). Its characteristic poly-
nomial χA22

(ξ) is called the uncontrollable polynomial of the system (9.1),
equivalently of (A,B), and its roots are called the uncontrollable poles, of-
ten called the uncontrollable modes. This allows us to state the following
refinement of Theorem 9.3.1.

Theorem 9.6.1 Consider the system (9.1), and assume that χu(ξ) is its
uncontrollable polynomial. There exists a feedback matrix N ∈ Rn×m such
that χA+BN(ξ) = r(ξ) if and only if r(ξ) is a real monic polynomial of
degree n that has χu(ξ) as a factor.

Proof Observe that by Lemma 9.4.1, if (A,B) and (A′, B′) are similar,
then there exists an N ∈ Rn×m such that χA+BN(ξ) = r(ξ) if and only if
there exists an N ′ ∈ Rn×m such that χA′+B′N ′(ξ) = r(ξ). Now take (A′, B′)
as in (9.12). Partition N ′ conformably as N ′ = [N ′

1 N
′
2]. Then

A′ +B′N ′ =

[
A′

11 +B′
1N

′
1 A′

12 +B′
1N

′
2

0 A′
22

]

.

Obviously, χA′+B′N ′(ξ) = χA′

11
+B′

1
N ′

1
(ξ)χA22

(ξ) = χA′

11
+B′

1
N ′

1
(ξ)χu(ξ). Now,

since (A′
11, B

′
1) is controllable, χA′

11
+B′

1
N ′

1
(ξ) can, by Theorem 9.3.1, be

made equal to any real monic polynomial of degree n1. The result follows.
�

Consider the system (9.1) with the control law (9.9). The closed loop system
(9.10) is asymptotically stable if and only if A+BN is a Hurwitz matrix.
The question thus arises whether for a given system (A,B) ∈ Σm,n, there
exists a feedback matrix N ∈ Rm×n such that (A+BN) is Hurwitz.

Corollary 9.6.2 There exists a feedback law (9.9) for (9.1) such that the
closed loop system (9.10) is asymptotically stable if and only if the uncon-
trollable polynomial of (9.1) is Hurwitz.

From the canonical form (9.12) it follows, in fact, that for the existence of
a feedback control law of any kind (linear/nonlinear time-invariant/time-
varying, static/dynamic) such that the closed loop system is asymptotically
stable, it is simply always necessary that χu(ξ) is Hurwitz. Indeed, the
second equation of (9.12) shows that x′2 is not influenced in any way by the
control. Hence the matrix A′

22 has to be Hurwitz to start with if we want all
solutions to go to zero after control is applied. Motivated by this discussion,
we call the system (9.1), or, equivalently, the pair (A,B), stabilizable if its
uncontrollable polynomial is Hurwitz (see also Section 5.2.2 and Exercise
9.15).
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9.7 Stabilization of Nonlinear Systems

The result on pole placement and stabilization by state feedback can im-
mediately be applied in order to stabilize a nonlinear system around an
equilibrium by using a linear feedback law.

Consider the system

d

dt
x = f(x, u), x ∈ Rn, u ∈ Rm, (9.24)

with f : Rn × Rm → Rn continuously differentiable. Assume that (u∗, x∗)
is an equilibrium, i.e., that f(x∗, u∗) = 0. Linearization around this equi-
librium (see Section 4.7) yields

d

dt
∆x = A∆x +B∆u, (9.25)

with A = ∂f
∂x (x

∗, u∗), B = ∂f
∂u (x

∗, u∗). If (A,B) is controllable, then, follow-
ing Theorem 9.3.1, there exists an N ∈ Rm×n such that A+BN has preas-
signed eigenvalues, in particular such that A+BN is Hurwitz. The control
law ∆u = N∆x, of course, stabilizes the linear system (9.25). However, our
aim is to stabilize the nonlinear system (9.24) around the equilibrium x∗.

In order to achieve this, consider the following control law for (9.24) u =
u∗ +N(x− x∗). Combined with (9.24) this yields the controlled system

d

dt
x = f(x, u∗ +N(x− x∗)). (9.26)

Denote the function on the right-hand side of (9.25) by g; i.e., g(x) :=
f(x, u∗ +N(x− x∗)). The system (9.26) can thus be written as

d

dt
x = g(x). (9.27)

Since obviously, x∗ satisfies g(x∗) = 0, x∗ is an equilibrium of the au-
tonomous system (9.27). Linearization around this equilibrium yields

d

dt
∆x =

∂g

∂x
(x∗)∆x.

Using the chain rule yields

∂g

∂x
(x∗) =

∂f

∂x
(x∗) +

∂f

∂u
(u∗)N = A+BN.

Hence ∂g
∂x (x

∗) is Hurwitz. Therefore, by Theorem 7.5.2, x∗ is an asymptot-
ically stable equilibrium of (9.26). This shows that if the system (9.24) lin-
earized around the equilibrium (x∗, u∗), is controllable, it is always possible
to stabilize the nonlinear system around the equilibrium x∗.
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Example 9.7.1 Consider the pendulum (see Examples 7.1.1 and 9.1.3).
Assume that in contrast to Example 9.1.3, the length is constant and that
an external force acts on the pendulum, leading to the differential equation

d2

dt2
θ +

g

L
sin θ =

1

ML2
F.

Use the state variables x1 = θ, x2 = d
dtθ, and denote the external force F ,

which will be the control, by u. This leads to the state equations

d

dt
x1 = x2,

d

dt
x2 = − g

L
sinx1 +

1

ML2
u. (9.28)

Both x∗ = (0, 0), u∗ = 0 and x∗ = (π, 0), u∗ = 0 are equilibria. Lineariza-
tion around the first equilibrium yields

d

dt
∆x1

= ∆x2
,

d

dt
∆x2

= − g
L
∆x1

+
1

ML2
∆u, (9.29)

and around the second equilibrium

d

dt
∆′

x1
= ∆′

x2
,

d

dt
∆′

x2
=

g

L
∆′

x1
+

1

ML2
∆′

u. (9.30)

These linearized systems are both controllable. Hence both equilibrium
points can be made asymptotically stable. For the first equilibrium point
this can, for example, be achieved by using the control law u = −Kx2, with
K > 0. This corresponds to introducing damping in the system. For the
second equilibrium point, stabilization can be achieved using the control
law u = −K1(x1 − π)−K2x2, with K1 > LMg and K2 > 0. �

Example 9.7.2 Consider the motion of a spinning body. This motion has
been studied before in Exercise 7.32; see equations (7.40). However, we now
assume that the spinning around the principal axis can be accelerated by
torques N1, N2, N3. The equations then become

I1
dω1

dt
= (I2 − I3)ω2ω3 +N1,

I2
dω2

dt
= (I3 − I1)ω3ω1 +N2,

I3
dω3

dt
= (I1 − I2)ω1ω2 +N3,

(9.31)
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with 0 < I1 < I2 < I3. Here ω1, ω2, ω3 denote the rate of spinning of the
body around its principal axes, and the acceleration torques N1, N2, N3 are
inputs that can be achieved for example by electro-motors mounted on the
main axis of the spinning body.

We have seen in Exercise 7.32 that in the absence of the inputs N1 = N2 =
N3 = 0, this body cannot spin in an asymptotically stable mode. We now
examine whether asymptotic stability can be achieved by exerting control.
We do this by considering the linearized system, and stabilize the system
around the equilibrium point col(0, ω∗

2 , 0) with ω
∗
2 > 0. Linearization yields

I1
d∆ω1

dt
= (I2 − I3)ω∗

2∆ω3
+N1,

I2
d∆ω2

dt
= N2,

I3
d∆ω3

dt
= (I1 − I2)ω∗

2∆ω1
+N3.

(9.32)

Note that this system is not stabilizable if we use only one torque. Hence
in order for this system to be stabilizable, we need to use at least two
controls: ∆N1 and ∆N2, or ∆N2 and ∆N3. The open loop poles of (9.32)

are at 0,±ω∗
2

√
(I3−I2)(I2−I1)

I1I3
. Thus, when the system runs open loop, this

equilibrium point is unstable. We look for a feedback control law using the
torques N1, N2 that puts all three closed loop poles in the left half plane

at −ω∗
2

√
(I3−I2)(I2−I1)

I1I3
. The feedback law

N1 = −ω∗
2

√

I1
I3

√

(I3 − I2)(I2 − I1)∆ω1
− 2ω∗

2(I3 − I2)∆ω3
,

N2 = −ω∗
2

√

I22
I1I3

√

(I3 − I2)(I2 − I1)∆ω3
(9.33)

puts the closed loop poles in the desired locations. It follows from the dis-
cussion at the beginning of this section that the control law (9.33) with
∆ω1

,∆ω3
replaced by ω1, ω3 makes (0, ω∗

2 , 0) an asymptotically stable equi-
librium of the controlled nonlinear system (9.31). �

Example 9.7.3 Theorem 9.3.1 shows that a controllable system can be
stabilized by means of a memoryless state feedback law (9.9). This feed-
back law assumes that all the state variables are available for feedback. In
the next chapter we will discuss how one can proceed when only output
measurements are available. However, as we shall see, the resulting control
laws are dynamic. In the present example we illustrate the limitations that
can result from the use of a memoryless output feedback control law. This
issue is also illustrated in simulation exercise A.1.

Consider the motion of a point mass in a potential field with an external
force as control. Let q denote the position of the point mass with respect
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to some coordinate system, and F the external force exerted on it. This
leads to the equation of motion

d2

dt2
q +G(q) = F,

where the internal force G(q) is due to the potential field. Let us consider
the one-dimensional case, i.e., motion along a line. Thus q : R → R. As
examples, we can think of Newton’s second law (G = 0), the motion of
a mass in a mass–spring combination (G linear), and, interpreting q as
the angle and F as an external torque, the motion of a pendulum (see
Example 9.7.1). Assume that G(0) = 0, and let us consider the question
of how to stabilize the equilibrium point 0 for this system. For the sake of
concreteness, assume that G is linear. In that case we can, with a mild abuse
of notation, write G(q) as Gq, with G now a constant parameter. Let us
try to stabilize this system by means of a memoryless control law that uses
q as measurements. For example, one could hope to achieve stabilization
by always pushing the point mass back to the origin, thus by taking F < 0
if q > 0, and F > 0 if q < 0. It can be shown that this does not result
in asymptotic stability, no matter how subtly F may be chosen. In order
to see this, try first a linear feedback law u = Nq. Then the closed loop
system

d2

dt2
q + (G−N)q = 0

is never asymptotically stable. It is stable if G > N , its solutions are
sinusoidal, and unstable if G ≤ N . If we choose a nonlinear feedback law
F = N(q) instead, then we end up with a system of the form

d2

dt2
q + φ(q) = 0, (9.34)

where φ(q) = Gq − N(q). Can this system be asymptotically stable? We
have already seen that the linearized system cannot be made asymptoti-
cally stable, but could one perhaps choose N(q) cleverly such that 0 is an
asymptotically stable equilibrium of the nonlinear system? The answer is
no. In order to see this, consider the function

V (q,
d

dt
q) =

1

2

(
d

dt
q

)2

+

q∫

0

φ(µ)dµ. (9.35)

Its derivative along solutions of (9.34) is zero. The value of (9.35) is thus
constant along solutions of (9.34). Hence, if we start with an initial con-
dition (q(0), ( d

dtq)(0)) such that V (q(0), ( d
dtq)(0)) 6= V (0, 0), then by conti-

nuity, we simply cannot have that limt→∞(q(t), d
dtq(t)) = (0, 0), excluding

the possibility that 0 is an asymptotically stable equilibrium.
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So in order to stabilize this very simple mechanical system, we either have
to build memory into the feedback processor or measure more than only the
position. Actually, for the case at hand (and assuming G > 0), asymptotic
stability can be obtained by velocity feedback

F = −D d

dt
q. (9.36)

This control law can be implemented by means of a simple damper, or
by a tachometer (a device that measures the velocity) that generates the
required force by means of a transducer (a device that transforms the out-
put of the tacho into a force). Note that when G = 0 (a free point mass)
even (9.36) does not stabilize, and a combination of position and velocity
feedback is required.

This example shows the limitations of memoryless output feedback and
underscores the need for state or dynamic output feedback. �

9.8 Recapitulation

In this chapter we studied pole placement and stabilization of state space systems.
The main ideas are the following:

• Feedback is one of the basic concepts of control theory (Section 9.1). In
feedback control, the control input is chosen as a function of the past and
the present of the observed output. In this chapter, we studied what can
be achieved by means of memoryless linear state feedback control.

• The main result obtained is the pole placement theorem. This theorem
states that controllability is equivalent to the existence of a memoryless
feedback gain matrix such that the closed characteristic polynomial is equal
to an arbitrary preassigned one (Theorem 9.3.1).

• There are effective algorithms for computing this feedback gain matrix
(Algorithm 9.5.1).

• For noncontrollable systems, the closed loop characteristic polynomial al-
ways has the uncontrollable polynomial of the plant as a factor. Thus a
system is stabilizable if and only this uncontrollable polynomial is Hurwitz
(Theorem 9.6.1).

• An equilibrium point of a nonlinear system can be stabilized if the lin-
earized system is controllable or, more generally, stabilizable (Section 9.7).

9.9 Notes and References

Theorem 9.3.1 is one of the most important and elegant results in control theory.

In the single-input case, the result seems to have been more or less known around



340 9. Pole Placement by State Feedback

1960 (see [29]). The first proof appeared in [47]. The multivariable case was

obtained by [45] and [35] in the complex case, which proved to be considerably

easier than the real case. The latter was proven by [64]. Lemma 9.4.4 is known

as Heymann’s lemma [22]. Our proof follows the one in [21]. The algorithm that

is used in the proof of Theorem 9.4.3 is known as Ackermann’s algorithm [2].

9.10 Exercises

9.1 Discuss the distinction between open loop and feedback control as applied
to the scheduling of the red/green settings of a traffic light.

Discuss the distinction between open and feedback control as used by the
player that serves and the one that returns the serve in a tennis match.

9.2 Consider Newton’s second law, M d2

dt2
y = u. Let y(0) = a and ( d

dt
y)(0) = b

be given. Compute a control u : [0, 1] → R such that y(1) = 0 and d
dt
y(1) =

0. This control law obviously stabilizes the system. Now assume that you
use the same control u with slightly different values of a, b, or M . Will this
control still bring the system to rest?

Now assume that both the position y and the velocity d
dt
y are measured,

and consider the control law u = −Kpy −Kv
d
dt
y, with Kp,Kv > 0. Will

this control law drive the system to rest? Does this depend on a, b, or M?

Discuss by means of this example some of the advantages of feedback con-
trol versus open loop control.

9.3 Consider the feedback structure shown in Figure 9.3. View K and µ as

−

µ

K
+

u y

FIGURE 9.3. Feedback structure with static gains.

simple static gains.

(a) Prove that y is given in terms of u by

y =
K

1 + µK
u.

Call the resulting gain K′. Thus K′ = K
1+µK

.

(b) Prove that if K is large, then K′ ≈ 1
µ
. Compute the % change of

K′ in terms of the % change of K. Conclude that K′ is relatively
insensitive to changes in K for large K.
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Note: This seemingly trivial result has far-reaching consequences in am-
plifier design. This can be explained as follows. Let K be the gain of an
active device (for example, a transistor). Typically, K is very sensitive to
operating conditions (such as the temperature and the load). On the other
hand, it is possible to produce simple passive devices that are insensitive;
for example, voltage dividers using passive resistors. Let µ < 1 be the gain
of such a device. Now, using the (sensitive) active device in the forward
loop of a feedback system and the (insensitive) passive device in the feed-
back loop results in an insensitive amplifier with gain approximately equal
to 1/µ. This principle is the basic idea behind the operational amplifier as
invented by Black [12]. For the history surrounding this invention see [10].
For a narrative account of his invention see [13]. That one can make an
insensitive amplifier using a sensitive one sounds like a perpetuum mobile,
but it isn’t: it is one of the ingredients that made reliable long-distance
telephone communication possible. See also the preface to this book.

9.4 Consider a harmonic oscillator with an external force

d2

dt2
y + y = u.

Consider the control law u = f1y+f2
d
dt
y. Is this a linear memoryless state

feedback law? Explain the possible implementation of both terms of the
control law physically (assuming f1 ≤ 0 and f2 ≤ 0).

9.5 Consider the system
d3

dt3
y = u.

Write this system in state form. Is this system open loop stable? Is it con-
trollable? Find (without using the algorithms discussed in this chapter) a
state feedback control law such that the closed loop characteristic polyno-
mial is 1 + 2ξ + ξ2 + ξ3. Is the resulting controlled system asymptotically
stable?

9.6 Find for the systems

A =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , B =




0 0
1 0
0 0
0 1


 ,

and

A =




1 0 0
0 1 0
0 0 −1


 , B =




1 0
0 1
1 1


 ,

matrices K ∈ Rm and N ′ ∈ Rm×n such that (A+BN ′, BK) is controllable.

9.7 Give an example of a system (A,B) ∈ Σcont
4,2 for which there exist no K ∈

R2×1 such that (A,BK) ∈ Σcont
4,1 .

Hint: A matrix M ∈ Rn×m is said to be cyclic if there exists x ∈ Rn such
that the vectors x,Mx, . . . ,Mn−1x are linearly independent; M is cyclic if
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and only if its characteristic polynomial is equal to its minimal polynomial.
Prove that if (A,B) ∈ Σcont

n,1 , then A must be cyclic. Use this to construct
the example.

9.8 Consider the discrete-time analogue of (9.1):

x(t+ 1) = Ax(t) +Bu(t).

Define controllability analogously as in the continuous-time case. Prove
that this system is controllable if and only if for any 0 6= x0 ∈ Rn

there exists a state trajectory x such that x(0) = x0 and such that
x(0), x(1), . . . , x(n− 1) are linearly independent. Show that this result im-
plies part (i) of the proof of Lemma 9.4.4.

9.9 Use the algorithm of Theorem 9.4.3 in order to find a state feedback control
gain matrix for the system

d

dt
x =




0 1 0
−1 0 0
0 0 1


x+




0
1
1


u

such that the closed loop system has a pole of multiplicity 3 at the point
−1. Repeat this for the system

d

dt
x =




0 1 0 0
1 0 0 0
0 0 0 2
0 0 −2 0


x+




1
0
1
0


u

and the closed loop characteristic polynomial 1 + 2ξ + ξ2 + 2ξ3 + ξ4.

9.10 Find a state feedback control gain matrix for the system

d

dt
x =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


x+




0 0
1 0
0 0
0 1


u

such that the closed loop characteristic polynomial is 1+3ξ+4ξ2+3ξ3+ξ4.
Is the controlled system asymptotically stable?
Repeat this for the system

d

dt
x =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


x+




1 0
1 0
0 1
0 1


u

and the closed loop eigenvalues {−1,−2,−3,−4}.
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9.11 Consider single-input systems (9.1) defined by (A,B) matrices of the fol-
lowing special form:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−p0 −p1 −p2 · · · −pn−1



, B =




0
0
...
0
1



.

The resulting system is in controller canonical form (see Section 6.4.2).
Prove (again) that it is controllable. Verify that the pole placement is
basically trivial for systems in controller canonical form. Indeed, prove
that the feedback gain N = [N1 N2 · · ·Nn], applied to (9.1), yields as
closed loop characteristic polynomial r(ξ) = r0+r1ξ+ · · ·+rn−1ξ

n−1+ξn,
if you choose

Nk = pk−1 − rk−1. (9.37)

Prove that you also obtain expression (9.37) from the formula in Theorem
9.4.3 applied to the case at hand.

9.12 Let (A,B) be controllable, with m = 1. Recall from Corollary 6.5.5 that
(A,B) is then similar to a system that is in controller canonical form. Now
use Lemma 9.4.1 and the result of Exercise 9.11 to derive the pole place-
ment result in the single-input case. Note that this yields an alternative
proof to Theorem 9.4.3, without invoking algorithm (9.13). The present
proof is in a sense also algorithmic, in that it requires computing the simi-
larity matrix S that brings (A,B) into controller canonical form, followed
by formula (9.37).

9.13 Use the ideas of Exercises 9.11 and 9.12 to obtain an alternative proof of
Theorem 9.4.3. Proceed as follows. First prove it using Exercise 9.11 when
(9.1) is in controller canonical form. For clarity denote this pair by (Ac, Bc).
Compute Fc as in (9.13) by Fc[Bc AcBc · · ·An−2

c Bc A
n−1
c Bc] = [0 0 · · · 0 1].

Prove that

Nc = −Fcr(Ac). (9.38)

The right-hand side is given by r0Fc− r1FcAc−· · ·− rn−1FcA
n−1
c −FcA

n
c .

The first (n− 1) terms of (9.38) yield [−r0 − r1 · · · − rn−1]. Let χAc(ξ) =
p0 + p1ξ + · · · + pn−1ξ

n−1 + ξn. Observe that by the Cayley–Hamilton
theorem FcA

n
c = −p0Fc−p1FcAc−· · ·−pn−1FcA

n−1
c . Hence the last term

of (9.38) yields [p0 p1 · · · pn−1]. Consequently, (9.38 yields

Nc =
[
p0 − r0 p1 − r1 · · · pn−1 − rn−1

]
.

Now turn to the general case. Let S be the nonsingular matrix that
brings (A,B) into control canonical form SAS−1 = Ac, SB = Bc. Now
prove that N = NcS = −Fcr(Ac)S = −FcSr(A) yields χA+BN (ξ) =
r(ξ). Therefore, defining F by (9.13) yields F [B AB · · ·An−1B] =
FS−1[Bc AcBc · · ·An−1

c Bc] = [0 · · · 0 1]. Therefore FS−1 = Fc. Hence
N = NcS = −Fr(A) yields (9.15) in the general case.
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9.14 Determine exactly the closed loop characteristic polynomials achievable by
memoryless linear state feedback for the following pairs (A,B):

(a) A =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1


 , B =




1 0
1 0
0 1
0 0


 .

(b) A = diag(λ1, λ2, . . . , λn), B = col(b1, b2, . . . , bn).

9.15 Consider the notion of stabilizability as introduced in Section 9.6. Prove
that (9.1) is stabilizable if and only if for all x0 ∈ Rn there exists a (smooth)
input u : R → Rm such that the solution of

d

dt
x = Ax+Bu(t), x(0) = x0

satisfies x(t) → 0 as t→ ∞.

9.16 Call (9.1) marginally stabilizable if there exists a feedback gain matrix
N ∈ Rm×n such that all solutions of (9.10) are bounded on [0,∞). Give
necessary and sufficient conditions for marginal stabilizability assuming
that the uncontrollable polynomial of (9.1) has simple roots. Note that
following Chapter 7 it may have been better to use the term asymptotically
stabilizable for what we have called stabilizable in Chapter 9, and stabilizable
for what we just now decided to call marginally stabilizable.

9.17 Let (A,B) ∈ Σcont
n,m, the set of controllable systems with n states and

m inputs. Consider the map γ : Rm×n → Rn defined by γ(N) :=
(r0, r1, . . . , rn−1), where r0+ r1ξ+ · · ·+ rn−1ξ

n−1+ ξn is the characteristic
polynomial of A + BN . Is γ surjective? Injective? Linear? Affine? Treat
the cases m = 1 and m > 1 separately.

9.18 (a) Prove that the set {M ∈ Rn×n | det M = 0} defines a proper alge-

braic variety of Rn2

.

(b) Let S1, S2 ⊂ RN be proper algebraic varieties. Prove that S1∩S2 and
S1 ∪ S2 are also proper algebraic varieties.

(c) Prove that if S is a proper algebraic variety in RN , then Scomplement

is open and dense.

(d) (For mathematically advanced readers.) Prove that if S is a proper
algebraic variety in RN , then S has Lebesgue measure zero.

Hint: You may use the following fact. Let L be an (N−1)-dimensional
subspace of RN , and z an element of RN , z ∈ L. Now consider the
linear variety Lα := αz + L with α ∈ R. Then S has zero Lebesgue
measure if for all but a finite number of αs, Lα∩S, viewed as a subset
of RN−1 in the obvious way, has zero Lebesgue measure.

9.19 Does Theorem 9.3.1 hold for discrete-time systems x(t+1) = Ax(t)+Bu(t)?
Does it hold for discrete-time systems with A ∈ Fn×n, B ∈ Fn×m, and
r ∈ F[ξ], with F an arbitrary field?
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9.20 Consider Σn,m
∼= Rn2+nm. Prove that the following classes of systems are

generic in the sense that the systems that do not have this property are
contained in a proper algebraic variety:

(a) The controllable systems.

(b) The systems (A,B) such that (A,Bk) is controllable for all k =
1, 2, . . . ,m; Bk denotes the kth column of B.

(c) The systems with A semisimple.

9.21 Theorem 9.3.1 may leave the impression that since for a controllable system
(A,B) the eigenvalues of A+BN can be chosen arbitrarily (in particular,
all with arbitrarily large negative real parts), the transient response of

d

dt
x = (A+BN)x

can be made arbitrarily small. This impression is erroneous. In fact, it can
be shown that

inf
N∈Rn×m

∞∫

0

‖e(A+BN)tx0‖2dt (9.39)

is zero if and only if x0 ∈ imB. Thus a fast settling time (e(A+BN)tx0 small
for t ≥ ǫ > 0 with ǫ small) must be at the expense of a large overshoot
(e(A+BN)tx0 large for 0 ≤ t ≤ ǫ).

Consider the system y + d2

dt2
y = u. Write it in state form as

d

dt
x =

[
0 1

−1 0

]
x+

[
0
1

]
u.

Compute (9.39) for x0 = [ 10 ]. Interpret this result in terms of a mass–spring
combination in which you are allowed to add friction and to modify the
spring constant.

9.22 In Example 9.7.3 we have seen that it is impossible to stabilize the system
d2

dt2
y = u by means of a memoryless (linear or nonlinear) control law u =

N(y). The question arises whether this can be done by means of time
varying control law.

Consider therefore the differential equation

d2

dt2
y +N(t)y = 0.

Prove that whatever N is (but assumed locally integrable), it cannot hap-
pen that the solutions with initial conditions y(0) = 1, d

dt
y(0) = 0 and

y(0) = 0, d
dt
y(0) = 1, both go to zero as t→ ∞.

Hint: You may use the following fact from the theory of differential equa-
tions. Assume that Φ : R → Rn×n and A : R → Rn×n satisfy

d

dt
Φ(t) = A(t)Φ(t), Φ(0) = I.

Then detΦ(t) = exp
t∫
0

TrA(t′)dt′.
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9.23 Consider a partitioned matrix of the form

M =

[
M11 M12

0 M22

]
,

with M11 ∈ Rn1×n1 ,M12 ∈ Rn1×n2 ,M22 ∈ Rn2×n2 . Prove that χM (ξ)
factorizes as χM (ξ) = χM11

(ξ)χM22
(ξ). Generalize this to a partitioned

matrix of the form

M =

[
M11 0
M21 M22

]
.

9.24 We call a matrix partially specified if certain elements are fixed, while the
others can be chosen. Denote the fixed elements by ∗s, and those that
can be chosen by ?s. The following question arises: Can, for given ∗s, the
?s be chosen such that the resulting matrix (assumed square) has preas-
signed eigenvalues? Use the pole placement result to obtain necessary and
sufficient conditions in terms of the ∗s for the following two cases:




∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...
...
...

...
∗ ∗ · · · ∗
? ? · · · ?



,




∗ ∗ · · · ∗ ?
∗ ∗ · · · ∗ ?
...

...
...
...
...

...
...

∗ ∗ · · · ∗ ?


 .

Other cases of interest, but beyond the scope of this book, are:




? · · · ? ∗ · · · ∗
...

...
...
...

...
...

...
...
...

...

? · · · ? ∗
... ∗

∗ · · · ∗ ∗ · · · ∗
...

...
...
...

...
...

...
...
...

...
∗ · · · ∗ ∗ · · · ∗




,




? ∗ · · · ∗
∗ ? · · · ∗

. . .
...

∗ · · · ∗ ?


 .

9.25 Consider the following scalar nonlinear systems:

(a) d
dt
x = sinx+ u.

(b) d
dt
x = xu.

(c) d
dt
x = u2.

For each of these systems, x∗ = 0, u∗ = 0 is an equilibrium point. Linearize
around this equilibrium. Check the controllability of the resulting linearized
systems and of the original nonlinear ones. If the linearized system is con-
trollable, find a linear state feedback law such that the equilibrium x∗ = 0
becomes asymptotically stable. For the other cases, find a nonlinear control
law such that x∗ = 0 becomes asymptotically stable, or prove that no such
(nonlinear) control law exists.



10

Observers and Dynamic Compensators

10.1 Introduction

In Chapter 9 we have seen how feedback control can be applied to a dy-
namical system when the state is measured. The salient result that we
obtained states that with this type of control, stabilization—in fact, pole
placement—is always possible for controllable systems.

In real-life applications it is often not feasible to measure the complete state
vector. Each measurement requires an additional sensor, and some of the
state variables (temperatures inside ovens, concentrations of chemical prod-
ucts, velocities of masses, etc.) may be difficult to measure directly in real
time. We shall see, however, that it is not necessary to measure all the state
variables in order to use the ideas of the previous chapter for the design
of a stabilizing feedback controller. By appropriate signal processing, we
are often able to obtain good estimates of all state variables from the mea-
sured outputs. The algorithm that performs this signal processing is called
an observer. The observers that we obtain in this chapter possess many
appealing features, in particular, the recursivity of the resulting signal pro-
cessing algorithm. By this we mean that the state estimate is continuously
updated. Once this updating has been done, the past observations can be
deleted from the observer memory.

As we have seen in the previous chapter, controllability is the crucial prop-
erty that enables us to choose the state feedback gains so as to achieve pole
placement or stabilization. For observers, it is observability that plays this
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role: for observable systems, the state can be deduced from the measured
output with error dynamics whose poles can be chosen arbitrarily.

By combining a state observer with a static control law, we subsequently
obtain a feedback controller, often called a compensator, that processes the
measured outputs in order to compute the required control input. We will
see that the design of a good feedback compensator requires the combined
properties of controllability and observability.

The observer and feedback compensator algorithms that we develop are
based on a number of appealing cybernetic principles. The first one is the
interaction of an internal model and of error feedback. This principle states
that the estimate of the state can be constructed by implementing the
following idea. If the new observations do not give an indication that our
current estimate is incorrect, then we let the state estimate evolve according
to the model of the plant. The error between the observed output and the
expected observed output produces a signal that is fed back in order to
correct the state evolution as suggested by the model. Thus the observer
consists of an internal model corrected by error feedback. The design of
the feedback compensator is based on the combination of two principles:
separation and certainty equivalence. The feedback compensator uses an
estimate of the state in order to compute the control action. The observer
produces an estimate of the state of the plant. The certainty equivalence
principle states that for the control action we proceed as if the estimate were
equal to the exact value of the state. Thus the controller acts equivalently
as if it were certain of the value of the state. The controller gains that act
on the estimate of the state are computed as if this estimate is correct. This
is the content at the separation principle: the design of the observer and of
the controller gains are carried out separately.

Example 10.1.1 Before plunging into the observer question, let us illus-
trate the difficulties involved by means of an example. Consider a mass
moving under the influence of an external force. For simplicity, assume
that the motion is one-dimensional, yielding the behavioral equations

M
d2

dt2
q = F,

with M > 0 the mass, q the position, and F the external force. We know
that in this case the state is given by the position combined with the velocity

x =





q

d

dt
q



 .

Assume that we can measure the position q and the force F , and that
we want to estimate the state x. In other words, we need to estimate the
velocity d

dtq from q and F . This sounds easy: just differentiate q. However,
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differentiation can be very inaccurate due to measurement noise. In order
to see this, assume that q is measured by a device that is influenced by some
high-frequency vibration, yielding the measurement q̃ that is the sum of q
and a high-frequency signal. It is easy to see that the derivative of q̃ will be
a very corrupted version of the derivative of q. So, numerical differentiation
is ill-advised (see Exercise 10.1).

Since we don’t like differentiation, let us turn to integration. An alternative

way of getting hold of d
dtq would be to integrate F

m , which equals d2

dt2 q, i.e.,
use

v̂(t) = (
d

dt
q)(0) +

t∫

0

F (t′)

m
dt′ (10.1)

as the estimate of the velocity d
dtq(t). Since in (10.1) the (possibly noisy)

measurement F is integrated, we can indeed expect a certain noise immu-
nity. As compared to differentiation, there is a different but equally serious
problem with the estimate (10.1). It gives a perfectly accurate estimate of
d
dtq provided that we know ( d

dtq)(0) exactly. However, if the initial condi-

tion in (10.1) is taken to be ( d
dtq)(0) + ∆ instead of ( d

dtq)(0), with ∆ 6= 0,
then (10.1) gives an estimate that is not even stable, i.e., the estimation
error

d

dt
q(t)− v̂(t)

equals ∆ for all t ≤ 0 and does not converge to zero.

The type of observer that we learn to design in this chapter yields the
following type of algorithm for obtaining v̂, the estimate of d

dtq:

d

dt
z = −z + F

m
− q, v̂ = z + q. (10.2)

Note that d
dtq − v̂ is now governed by

d

dt
(
d

dt
q − v̂) = −( d

dt
q − v̂),

yielding

(
d

dt
q − v̂)(t) = e−t((

d

dt
q)(0)− v̂(0)).

Hence, even if our estimate v̂(0) of ( d
dtq)(0) is inaccurate, we always have

lim
t→∞

(
d

dt
q − v̂)(t) = 0.

Further, (10.2) shows (via the variation of constants formula) that both the
measurements F and q are integrated in the observer, guaranteeing also a
certain noise immunity in addition to good convergence properties. �
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10.2 State Observers

In this section we explain the structure of the observer algorithms. In the
next section we show how to “tune” the observer, how to choose the gains
of the observer. Consider the following plant:

d

dt
x = Ax+Bu , y = Cx, (10.3)

where x is the state, u the input, and y the output. The system parameters
are given by the matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. We
denote the class of systems (10.3) by Σn,m,p, where the subscripts denote
the number of state, input, and output variables, respectively. Since each
element of Σn,m,p is parametrized by a triple of matrices (A,B,C), we
can also write (A,B,C) ∈ Σn,m,p. In (10.3) we assume that the external
(manifest) signals u and y are measured and that we would like to deduce
the internal (latent) signal x for these measurements. An algorithm that
estimates x from u and y is called a (state) observer. Let us denote the
estimate of x by x̂, and define the estimation error as e := x− x̂. Thus an
observer is a dynamical system with u and y as input, x̂ as output, and
that makes e = x− x̂ small in some sense. In this chapter we focus on the
asymptotic behavior of e(t) for t→∞. The signal flow graph of an observer
is shown in Figure 10.1. In Section 5.3.1, we have actually considered the

x̂

Plant

Observer

y

x

u

+

−

e

u

FIGURE 10.1. The signal flow graph of an observer.

problem of deducing the state x from (u, y). In fact, if (A,C) is observable,
then knowledge of (u, y) allows x to be reconstructed. Indeed, consider
(10.3), and repeatedly differentiate y. Substituting d

dtx = Ax + Bu, we
obtain









y
d
dty
d2

dt2 y
...
dn−1

dtn−1 y










=










C
CA
CA2

...
CAn−1










x+










0 0 · · · 0 0
CB 0 · · · 0 0
CAB CB · · · 0 0

...
...

. . .
...

...
CAn−2B CAn−3B · · · CB 0




















u
d
dtu
d2

dt2u
...
dn−1

dtn−1u











.

(10.4)
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Now, since the system is observable, the matrix col(C,CA, . . . , CAn−1) has
a left inverse. Premultiplying (10.4) by this left inverse yields an expression
of the form

x =My(
d

dt
)y +Mu(

d

dt
)u, (10.5)

with My(ξ) ∈ Rn×p[ξ] and Mu(ξ) ∈ Rn×m[ξ] polynomial matrices that
can be computed from (A,B,C), but whose exact values do not matter.
This formula shows that if (A,C) is observable, x can indeed be obtained
from (u, y). However, (10.5) is not a suitable observer because it implies
repeatedly differentiating (u, y), that suffers from the lack of noise immunity
discussed in Example 10.1.1.

How then should we choose the equations governing a state observer? The
design that we put forward has a very appealing logic. The two central
ideas are:

1. the observer contains a copy of the plant, called an internal model.

2. the observer is driven by the innovations, by the error feedback, that
is, by a signal that expresses how far the actual observed output
differs from what we would have expected to observe.

This logic functions not unlike what happens in daily life. Suppose that
we meet a friend. How do we organize our thoughts in order to deduce his
or her mood, or other latent properties, from the observed manifest ones?
Based on past experience, we have an “internal model” of our friend in
mind, and an estimate of the “associated state” of his/her mood. This tells
us what reactions to expect. When we observe an action or hear a response,
then this may cause us to update the state of this internal model. If the
observed reaction agrees with what we expected from our current estimate,
then there is no need to change the estimate. The more the reaction differs
from our expectations, the stronger is the need to update. The difference
between what we actually observe and what we had expected to observe is
what we call the innovations. Thus it is logical to assume that the updating
algorithm for the estimate of the internal model is driven by the innovations.
We may also interpret the innovations as the surprise factor.

Returning to (10.3), it is clear that if our current estimate of the state is
x̂(t), then the innovation at time t equals i(t) = y(t) − Cx̂(t). Indeed, at
time t, we observe y(t) = Cx(t), and on the basis of our estimate of the
state, x̂(t), we would have expected to observe Cx̂(t). Let us denote the
expected observation by ŷ. Hence ŷ = Cx̂, and i = y − ŷ. Coupling the
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internal model with the innovations leads to the observer equations

dx̂

dt
= Ax̂+Bu

︸ ︷︷ ︸

internal model

+ Li,
︸︷︷︸

innovations correction

ŷ = Cx̂,
i = y − ŷ.

(10.6)

The structure of this state observer is shown in Figure 10.2. The only matrix

Internal

u

Model

C

i

ŷ x̂

x̂

−

+

L
y

FIGURE 10.2. The structure of the state observer.

in (10.6) that is not given by the system equations (10.3) is the matrix
L ∈ Rn×p. This matrix is called the observer gain matrix. It expresses the
relative faith that the observer algorithm has in its memory, in the current
estimate x̂, versus the current observation, y. If the values of the elements
of L are small, then the observer gives much weight to the memory x̂, and
relatively little to the most recent observation y. If L is large, then the
situation is the other way around.

10.3 Pole Placement in Observers

In order to capture the role of the observer gain matrix L, let us consider
the dynamics of the estimation error e := x−x̂. Combining equations (10.3)
with (10.6) immediately leads to the following equation for e:

d

dt
e = (A− LC)e.

Note the striking simplicity of this equation. Indeed, as a consequence of
the structure of the observer, consisting of an internal model driven by the
innovations, the error evolves in a completely autonomous way. Consistent
with the definition of system poles introduced in Section 9.3, we call the
eigenvalues of the matrix A−LC the observer poles, and its characteristic
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polynomial χA−LC(ξ) the observer characteristic polynomial. If we rewrite
(10.6) as

d

dt
x̂ = (A− LC)x̂+Bu+ Ly, (10.7)

then we can see that the observer poles are in fact the poles of the transfer
function (Iξ −A+ LC)−1(B L) from (u, y), the inputs to the observer, to
x̂, the output of the observer.

Of course, we want that e(t)→ 0 as t→∞; i.e., A−LC must be Hurwitz.
However, often we need a certain rate of convergence. This leads to the
following question:

What observer pole locations are achievable by choosing the observer gain
matrix L?

In linear algebra terms, this question becomes

Let A ∈ Rn×n and C ∈ Rp×n be given matrices. What is the set of polyno-
mials χA−LC(ξ) obtainable by choosing the matrix L ∈ Rn×p?

Of course, this question looks like déjà vu: it is completely analogous
to the pole location problem studied in Chapter 9. In fact, the result
that we shall obtain states that the observer poles can be chosen arbi-
trarily if and only if the system (10.3) is observable, i.e., if and only if
rank col(C,CA, . . . , CAn−1) = n. The following result is often called the
observer pole placement theorem.

Theorem 10.3.1 Consider the system (10.3). There exists for every real
monic polynomial r(ξ) of degree n an observer gain matrix L such that
the characteristic polynomial for the observer poles χA−LC(ξ) equals r(ξ)
if and only if the system (10.3) is observable.

Proof The easiest way to prove this theorem is by duality. Indeed, by Exer-
cise 5.19, (A,C) is an observable pair if and only if (AT , CT ) is a controllable
pair. Hence by Theorem 9.3.1, for all r(ξ) there exists a matrix N ∈ Rp×n

such that χAT+CTN (ξ) = r(ξ) if and only if (AT , CT ) is controllable. This
shows that observability of (A,C) is a necessary condition. To show the
converse, note that for any real square matrixM , χM (ξ) = χMT (ξ). There-
fore, χA+NTC(ξ) = χAT+CTN (ξ). Now L = −NT yields χA−LC(ξ) = r(ξ).

�

Algorithm 10.3.2 The proof of the above theorem shows that in order
to compute an L ∈ Rn×p such that χA−LC(ξ) = r(ξ), we can immedi-
ately apply Algorithm 9.5.1. Substitute in this algorithm AT for A, CT

for B, and p for m. Compute, using this algorithm, a matrix N such that
χAT+CTN (ξ) = r(ξ). Then L = −NT gives the desired observer gain ma-
trix. �
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Example 10.3.3 Consider a mass–spring–damper combination. The dis-
tance of the mass from its equilibrium position under the influence of the
external force F is assumed to be governed by the (linear or linearized)
behavioral equation

Kq +D
d

dt
q +M

d2

dt2
q = F, (10.8)

with K the spring coefficient, D the friction coefficient, and M the mass.
Assume that the position q and the external force F are measured. The
problem is to build an observer, in particular, to obtain an estimate of the
velocity d

dtq.

Writing (10.8) in state variable form with x1 = q and x2 = d
dtq yields

d

dt
x =

[
0 1
−K

M − D
M

]

x+

[
0
1
M

]

F,

q =
[
1 0

]
x. (10.9)

Let us construct an observer that puts both observer poles at −λ, with
λ > 0 a design parameter. In order to compute the observer gain for the case
at hand, it is not necessary to invoke Algorithm 10.3.2. The computation
of L =

[
L1

L2

]
such that

det

[
ξ + L1 −1
K
M + L2 ξ + D

M

]

= (ξ + λ)2

can be carried out directly, and it yields

L1 = 2λ− D

M
, L2 = (λ− D

M
)2 − K

M
.

The observer algorithm becomes

d

dt
x̂ =





−2λ+ D
M 1

(λ− D
M )2 − D

M



 x̂+





2λ− D
M

(λ− D
M )2 − K

M



 q +





0

1
M



F,

q̂ = x̂1,
d̂q

dt
= x̂2. (10.10)

The error dynamics in this example are given by

d

dt
e =





−2λ+ D
M 1

(λ− D
M )2 − D

M



 e.

Note that this problem is only slightly more complicated than the motiva-
tional Example 10.1.1. The resulting observer (10.10) is two-dimensional,
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while (10.2) was one-dimensional. The possibility of reducing the order of
(10.10) is discussed in Section 10.6.

The important feature of (10.10) is that only integrations need to be em-
ployed in constructing x̂, while guaranteeing (in the noise free case) that
x(t) − x̂(t) → 0 as t → ∞: both noise immunity and asymptotic tracking
are guaranteed by our observer. �

10.4 Unobservable Systems

Recall from Section 4.6 that the dynamical systems (A1, B1, C1) ∈ Σn,m,p

and (A2, B2, C2) ∈ Σn,m,p are called similar if there exist a nonsingular
matrix S such that A1 = SA2S

−1, B1 = SB2, C1 = C2S
−1. Just as with

similarity of matrices, or the type of system similarity introduced in Section
9.4.1, similar systems differ only in that the state coordinates are expressed
with respect to a different basis. The following lemma provides a canonical
form under similarity that puts the observability structure of a system into
evidence.

Lemma 10.4.1 The system (10.3) is similar to a system of the form

d

dt
x′ = A′x′ +B′u ; y = C ′x

in which A′ and C ′ have the following structure:

A′ =

[
A11 0
A12 A22

]

, C ′ = [C1 0], (10.11)

with (A11, C1) observable. All such decompositions lead to matrices A22 that
have the same characteristic polynomial.

Proof See Corollary 5.3.14, or apply Lemma 9.4.2 to (AT , CT ), and take
the transpose of the result. �

The polynomial χA22
(ξ) identified in Lemma 10.4.1 is called the unobserv-

able polynomial of (10.3), and its roots are called the unobservable poles, or
often the unobservable modes. This lemma allows us to state the following
refinement of Theorem 10.3.1.

Theorem 10.4.2 Consider the system (10.3) and assume that χ0(ξ) is
its unobservable polynomial. Then there exists an observer gain matrix
L ∈ Rn×p such that χA−LC(ξ) = r(ξ) if and only if r(ξ) is a real monic
polynomial of degree n that has χ0(ξ) as a factor.
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Proof Apply Theorem 9.6.1 to (AT , CT ). �

An immediate consequence of Theorem 10.4.2 is that there exists an ob-
server (10.3) such that

lim
t→∞

x̂(t)− x(t) = 0, (10.12)

in other words, such that A − LC is Hurwitz, if and only if the unob-
servable polynomial χ0(ξ) of (10.3) is Hurwitz. Actually, from the canon-
ical form (10.11), it follows that this condition is in fact necessary for
the existence of any (linear/nonlinear, time- invariant/time-varying, finite-
dimensional/infinite-dimensional) observer such that (10.12) holds. Hence
χ0(ξ) being Hurwitz is a necessary and sufficient condition for the existence
of an observer that asymptotically reconstructs the state x. Systems (or,
equivalently, pairs (A,C)) that have this property that χ0(ξ) is Hurwitz are
called detectable (see also Section 5.3.2). It follows from the results obtained
there that (A,C) is detectable if and only if

rank

[
λI −A
C

]

= n

for all λ ∈ C with Reλ > 0. It is for these systems that the state is
asymptotically reconstructible from the observations of u and y.

10.5 Feedback Compensators

We are now ready to discuss the main design algorithm of this book: that
of choosing a feedback compensator for the dynamical system (10.3) such
that the closed loop system has a desirable transient response. In the case
of output measurements, we need to use feedback laws with memory. In
other words, rather than having a feedback controller in which the value of
the control at time t depends only on the measured output at time t, we
use a controller such that the control input also uses the past values of the
measured output. Thus, rather than having a memoryless control law of the
type u = Ny, we generate u from y through a feedback compensator that
has a state of its own. This state captures the dependence of u on the past
of y. In Chapter 9, we have seen how using a memoryless state feedback law
can be used to stabilize a system. This feedback law is called memoryless
because the value of the control input at time t depends only on the value
of the measured output. In Chapter 9 we assumed that the whole state
was measured. However, when only output measurements are available,
the situation becomes more involved, and in general it is not possible to
stabilize a system (even a controllable one) by a memoryless control law.
In order to cope with this difficulty, we use dynamic control laws. Thus
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the controllers that we consider themselves have memory, they have their
own state. The input to the controller is the measured output of the plant;
the output of the controller is the control input to the plant. Since the
controller is dynamic, the control input depends on the past observations.
Note that we use the terminology memoryless and static as synonymous;
and similarly, we use the terms dynamic system, state system, and system
with memory as synonymous.

Consider the plant
d

dt
x = Ax+Bu , y = Cx (10.13)

and the linear time-invariant feedback processor with memory, expressed
by the controller state z:

d

dt
z = Kz + Ly , u =Mz +Ny, (10.14)

with z : R→ Rd the state of the feedback processor, and where the matrices
K ∈ Rd×d, L ∈ Rd×p, M ∈ Rm×d, and N ∈ Rm×p denote the parameter
matrices specifying the feedback processor. The controller state dimension
d ∈ N is called the order of the compensator. It is a design parameter.
Typically, we want d to be small, since this requires simple logic for the
compensator. Note that the memoryless feedback control laws studied in
Chapter 9 correspond to feedback compensators of order zero, compensators
with an extremely simple logic. However, this limited logic entails high
measurement requirements (in Chapter 9 all the state components needed
to be measured).

In the plant (10.13), u is the control, and y is the observed output. The
feedback processor (10.14), on the other hand, is a dynamical system that
has the observations y as input and the control u as output. This reverse
input/output structure is characteristic for feedback loops.

By substituting (10.14) in (10.13) we obtain the closed loop system

d

dt

[
x
z

]

=

[
A+BNC BM

LC K

] [
x
z

]

,

y = Cx, u =Mz +Ny.

(10.15)

If we write this in compact form with xe := col(x, z) (the “extended state”)
and with Ae, Ce, and He defined in the obvious way, we obtain the closed
loop system equations

d

dt
xe = Aexe , y = Cexe , u = Hexe.

From this it is clear that the closed loop system is an autonomous dy-
namical system. We call the eigenvalues of Ae the closed loop poles and
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χAe
(ξ) the closed loop characteristic polynomial. Denote the plant (10.13)

by (A,B,C) ∈ Σn,m,p and the feedback processor (10.14) by (K,L,M,N) ∈
Σd,p,m. Note that our notation is a bit sloppy, since we have used the same
notation for systems such as (10.13) without a feedthrough term, and for
systems such as (10.14) with a feedthrough term. However, this does not
cause confusion.

The following question thus arises:

What closed loop pole locations are achievable by choosing (K,L,M,N)?

In linear algebra terms this question becomes,

Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n be given matrices. Determine
the set of polynomials χAe

(ξ) obtainable by choosing an integer d ∈ N and
matrices K ∈ Rd×d, L ∈ Rd×p, M ∈ Rm×d, N ∈ Rm×p, and where Ae is
given by (cf. (10.15))

Ae =

[
A+BNC BM

LC K

]

. (10.16)

The full solution to this problem is unknown at the time of writing. However,
we obtain a very useful partial result in the remainder of this chapter.

In Chapter 9 we have seen how to proceed when C = I, i.e., when the full
state vector is measured. Let

u = N ′x

be a memoryless state feedback control law obtained this way. In Sections
10.2–10.4 we have seen how we can estimate the state x of (10.3) from
(u, y). Let

d

dt
x̂ = (A− L′C)x̂+Bu+ L′y (10.17)

be a suitable observer. Now use the separation principle and the certainty
equivalence principle, introduced in Section 10.1. The separation principle
tells us to combine an observer with a state controller and use the same
controller gains as in the case in which the state is measured), and the
certainty equivalence principle tells us to consider x̂ as being exact. This
yields the following natural feedback controller:

dx̂

dt
= (A− L′C)x̂+BN ′x̂+ L′y, u = N ′x̂. (10.18)

This is, of course, a feedback processor like (10.14), with d = n, K =
A−L′C +BN ′, L = L′, M = N ′, and N = 0. These formulas may seem a
bit complicated, but they have been obtained by two very logical steps: a
state feedback law and an observer combined by separation and certainty
equivalence. The observer (10.17), in turn, was obtained by similar very
logical steps: an internal model driven by the innovations as error feedback.
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Observer
x̂

N

Plant

Controller

u

FIGURE 10.3. Dynamic feedback processor.

The resulting dynamic feedback processor is shown in Figure 10.3. Let us
analyze the closed loop system obtained by using (10.18) as a feedback
processor for (10.13). The closed loop system is governed by

d

dt

[
x
x̂

]

=

[
A BN ′

L′C A− L′C +BN ′

] [
x
x̂

]

,

u = N ′x̂, y = Cx.

(10.19)

We are interested in the characteristic polynomial of the system matrix of
(10.19). This polynomial can be easily calculated by transforming (10.19)
into a similar system. For that purpose, define as new state vector in the
closed loop system

[
x
e

]

=

[
I 0
I −I

] [
x
x̂

]

.

Note that this corresponds to choosing the observer estimation error e :=
x − x̂ instead of x̂ as the second part of the closed loop state vector. The
dynamics of col(x, e) are easily derived from (10.19). This yields






d

dt
x

d

dt
e




 =

[
A+BN ′ −BN ′

0 A− L′C

] [
x
e

]

. (10.20)

Equation (10.20) shows that the closed loop characteristic polynomial
equals the product of χA+BN ′(ξ) and χA−L′C(ξ). Hence, by choosing
the feedback compensator based on the separation principle and the cer-
tainty equivalence principle, we have obtained a closed loop system whose
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characteristic polynomial is the product of the characteristic polynomial
χA+BN ′(ξ) of the state controlled system (using N ′ as the controller gain
matrix) and the observer characteristic polynomial χA−L′C(ξ) (using L

′ as
the observer gain matrix).

Combining Theorems 9.3.1 and 10.3.1 immediately leads to the following
important result.

Theorem 10.5.1 Consider the system (10.3) and assume that (A,B) is
controllable and that (A,C) is observable. Then for every real monic poly-
nomial r(ξ) of degree 2n that is factorizable into two real polynomials of
degree n, there exists a feedback compensator (K,L,M,N) of order n such
that the closed loop system (10.16) has characteristic polynomial r(ξ).

Proof Follow the preamble and take d = n, K = A−L′C +BN ′, L = L′,
M = N ′, and N = 0. Choose N ′ such that χA+BN ′(ξ) = r1(ξ) and L

′ such
that χA−L′C(ξ) = r2(ξ), where r1(ξ) and r2(ξ) are real factors of r(ξ) such
that r(ξ) = r1(ξ)r2(ξ). �

Note that this proof also provides an algorithm for computing the com-
pensator (K,L,M,N). Because of its importance in applications we spell
it out in detail.

Algorithm 10.5.2 for pole placement by dynamic compensation:

Data: A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, with (A,B) controllable and
(A,C) observable;

r(ξ) ∈ R[ξ] with r(ξ) monic of degree 2n, factored as r(ξ) = r1(ξ)r2(ξ) with
r1(ξ), r2(ξ) ∈ R[ξ] both of degree n.

Required: K ∈ Rn×n, L ∈ Rn×p, M ∈ Rm×n, and N ∈ Rm×p such that
χAe

(ξ) = r(ξ) where Ae is given by (10.16).

Algorithm:

1. Apply Algorithm 9.5.1 with data A, B, and r1(ξ). Call the result of
this computation N1.

2. Apply Algorithm 9.5.1 with data AT , CT , and r2(ξ). Call the result
of this computation N2.

3. Compute K = A+NT
2 C +BN1, L = −NT

2 , M = N1, N = 0.

Result: (K,L,M,N) ∈ Σn,p,m is the desired feedback compensator for the
plant (A,B,C) ∈ Σn,m,p.

�

Theorem 10.5.1 is one of the important results in linear system theory. It
shows in particular that plants (10.3) that are controllable and observable
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can always be stabilized. In fact, the theorem tells us that in a certain sense
we can achieve arbitrary pole location in the closed loop system. Note that
the required factorizability of r(ξ) into r1(ξ)r2(ξ) induces a slight loss of
generality in the achievable r(ξ)s when n, the dimension of the state of the
plant, is odd. However, we remark, without proof, and without entering
into details, that it is possible to avoid this restriction and that for any
r(ξ) of order 2n (not necessarily factorizable into two real factors of order
n) a compensator exists. It is easy to sharpen Theorem 10.5.1 so that it
yields a necessary and sufficient condition for stabilization. In the theorem
that follows, the uncontrollable polynomial of (10.3) should be understood
relative to (A,B), while the unobservable polynomial should be understood
relative to (A,C).

Theorem 10.5.3 Consider the system (10.3) and assume that χu(ξ) is its
uncontrollable polynomial, and that χ0(ξ) is its unobservable polynomial.
Then

(i) For any real monic polynomials r1(ξ) and r2(ξ) of degree n such that
r1(ξ) has χu(ξ) as a factor and r2(ξ) has χ0(ξ) as a factor, there exists
a feedback compensator (K,L,M,N) of order n such that the closed
loop system (10.16) has characteristic polynomial r(ξ) = r1(ξ)r2(ξ).

(ii) There exists a feedback compensator (K,L,M,N) as in (10.14) such
that the closed loop system (10.15) is asymptotically stable if and
only if both χu(ξ) and χ0(ξ) are Hurwitz, i.e., if and only if (A,B)
is stabilizable and (A,C) is detectable.

Proof (i) Let (K,L,M,N) be as in the proof of Theorem 10.5.1 and use
Theorems 9.6.1 and 10.4.2.

(ii) The “if” part follows from (i). To prove the “only if” part, observe first
that if (A,B,C) and (A′, B′, C ′) are similar systems, then the closed loop
systems obtained by using the same compensator (K,L,M,N) are also
similar. Hence the achievable closed loop characteristic polynomials remain
unchanged after we change the basis in the state space of the plant. Assume
therefore that (A,B) is in the canonical form (9.12). Then, whatever be
the compensator (K,L,M,N), the component x2 is always governed by
d
dtx2 = A22x2. This implies that χu(ξ) = χA22

(ξ) is a factor of χAe
(ξ).

Next, observe that if we use the compensator (KT ,MT , LT , NT ) on the
plant (AT , CT , BT ), then the resulting closed loop characteristic polynomial
is AT

e , with Ae given by (10.15). Since χ0(ξ) is the uncontrollable polynomial
for (AT , CT ), it follows from the first part of our proof that χ0(ξ) is also a
factor of χAT

e
(ξ) = χAe

(ξ).

We conclude that for χAe
(ξ) to be Hurwitz, both χu(ξ) and χ0(ξ) need to

be Hurwitz. �
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It follows from the above results that for (10.3) to be stabilizable (in the
sense that Ae is Hurwitz) by means of a dynamic compensator (K,L,M,N),
it is necessary and sufficient that (A,B) be stabilizable and (A,C) de-
tectable. Actually, it is easily seen that this is, in fact, a necessary condi-
tion for the existence of any (linear/nonlinear, time-invariant/time-varying,
finite-dimensional/infinite-dimensional) stabilizing feedback compensator.

Example 10.5.4 Consider the equation of a pendulum as in Example
9.1.3 with an external torque:

ML2 d
2

dt2
φ+MLg sinφ = T,

where M is the mass of the pendulum, L its length, g the constant of
gravity, φ the angle, and T the torque. Consider the following equilibria:

1. φ∗ = 0 and T ∗ = 0;

2. φ∗ = π and T ∗ = 0.

Linearizing around these equilibria yields respectively:

1.
d2

dt2
∆ϕ +

g

L
∆ϕ =

1

ML2
∆T ;

2.
d2

dt2
∆ϕ −

g

L
∆ϕ =

1

ML2
∆T .

Writing state equations with x1 = ∆ϕ and x2 = d
dt∆ϕ, u = ∆T , and

y = ∆ϕ, yields

1.
d

dt
x =





0 1

−g/L 0



x+





0

1
ML2



u, y =
[
1 0

]
x;

2.
d

dt
x =





0 1

g/L 0



x+





0

1
ML2



u, y =
[
1 0

]
x.

It is easy to verify that both these systems are controllable and observable.
The first linearized system is stable but not asymptotically stable. Actually,
with T = 0, the first equilibrium point is stable but not asymptotically
stable (in the linear as well as in the nonlinear system). With T = 0, the
second equilibrium is unstable (in the linear as well as in the nonlinear
system). Hence, in order to stabilize (in the sense of achieving asymptotic
stability), control has to be exercised for either of these equilibria. Further,
Example 9.7.3 shows that a successful controller has to be dynamic.
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Let us first consider the first equilibrium point. The motions without control

(T = 0) are periodic motions with period 2π
√

L
g . Let us strive for a closed

loop behavior with a settling time of the same order of magnitude as the
period of the oscillation of the uncontrolled system. Since the plant is of
order two, we will, following the theory that we have developed, design a
compensator also of order two, and obtain a closed loop system of order
four. Choose (−1 ± i

2 )
√

g
L to be the controller poles and − 1

2

√
g
L , −

√
g
L

to be the observer poles. Hence r1(ξ) = 5
4

g
L + 2

√
g
Lξ + ξ2 and r2(ξ) =

1
2

g
L + 3

2

√
g
Lξ + ξ2.

In order to compute the controller gain matrix, we should choose a
[N ′

1 N ′

2 ] ∈ R1×2 such that the characteristic polynomial of

[
0 1

−g
L +

N ′

1

ML2

N ′

2

ML2

]

is r1(ξ). For the case at hand, there is no need to invoke Algorithm 9.5.1 in
order to figure out N ′

1 and N ′
2. The characteristic polynomial of the above

matrix is
g

L
− N ′

1

ML2
− N ′

2

ML2
ξ + ξ2.

Hence N ′
1 = − 1

4MLg , N ′
2 = −2ML

√
gL. In order to compute the observer

gain matrix, we should choose

[
L′
1

L′
2

]

∈ R2 such that the characteristic

polynomial of
[

−L′
1 1

− g
L − L′

2 0

]

(10.21)

is r2(ξ). The characteristic polynomial of (10.21) is g
L + L′

2 + L′
1ξ + ξ2.

Hence L′
1 = 3

2

√
g
L , L

′
2 = − 1

2
g
L . The resulting observer is given by

d

dt
x̂ =

[
0 1
− g

L 0

]

x̂+

[
3
2

√
g
L

− 1
2

g
L

]

(y − x̂1) +
[

0
1

ML2

]

u.

Equivalently,

d

dt
x̂ =

[
− 3

2

√
g
L 1

− 1
2

g
L 0

]

x̂+

[
3
2

√
g
L

− 1
2

g
L

]

y +

[
0
1

ML2

]

u.

The resulting feedback compensator, using equations (10.19), is given by

dx̂

dt
=





− 3
2

√
g
L 1

− 3
4

g
L −2

√
g
L



 x̂+

[
3
2

√
g
L

− 1
2

g
L

]

y,

u =
[
− 1

4MLg − 2ML
√
gL
]
x̂.
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A similar calculation for the second, the unstable, equilibrium leads to

N ′
1 = − 9

4MLg, N ′
2 = −2ML

√
gL,

L′
1 = 3

2

√
g
L , L′

2 = 3
2

g
L .

The observer is now

d

dt
x̂ =

[
− 3

2

√
g
L 1

− 1
2

g
L 0

]

x̂+

[
3
2

√
g
L

3
2

g
L

]

y +

[
0
1

ML2

]

u,

and the resulting feedback compensator becomes

dx̂

dt
=

[
− 3

2

√
g
L 1

− 11
4

g
L −2

√
g
L

]

x̂+

[
3
2

√
g
L

3
2

g
L

]

y,

u =
[
− 9

4MLg − 2ML
√
gL
]
x̂.

�

10.6 Reduced Order Observers and Compensators

Let us take a new look at the design of a state observer as discussed in
Section 10.1. The observer

d

dt
x̂ = Ax̂+Bu+ L(y − Cx̂)

has the curious property that it estimates even the output, i.e., the compo-
nents Cx of the state that are directly observed are reestimated in the ob-
server. For instance, in Example 10.3.3, we constructed the observer (10.10)
that computes x̂1 as an estimate of q even though q was observed. The ques-
tion arises whether it is possible to avoid this inefficiency and design an
observer that yields an estimate x̂ of x with at least Cx̂ = y = Cx. This is
indeed possible. The order of the resulting observer will actually be smaller
than the order of the plant. We briefly outline how such a reduced order
observer may be obtained. Assume that C has full column rank. Note that
this assumption entails no real loss of generality. For otherwise, simply con-
sider the image of C as the output space. If C has full column rank, then
the system (A,B,C) ∈ Σn,m,p is similar to one of the form

A′ =

[
A11 A12

A21 A22

]

, B′ =

[
B1

B2

]

, C ′ = [0 I]. (10.22)

Assume that the basis in the state space was chosen such that (A,B,C) ∈
Σn,m,p is in this canonical form (10.22). Partition x conformably as [ x1

x2
].
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Then the behavioral equations are given by

d

dt
x1 = A11x1 +A12x2 +B1u,

d

dt
x2 = A21x1 +A22x2 +B2u,

y = x2.

(10.23)

These equations can be rewritten as

d

dt
x1 = A11x1 +A12y +B1u, (10.24)

d

dt
y = A21x1 +A22y +B2u. (10.25)

We want to obtain an observer that estimates x1. Together with y = x2,
which is measured directly, this provides an estimate for the full state vector
x. Equation (10.25) shows the information about x1 that is present in the
observations (u, y). It tells us that we can basically consider

A21x1 =
d

dt
y −A22y −B2u (10.26)

as being directly observed. Now, it is easy to show that (A,C) is observable
if and only if (A11, A21) is (see Exercise 10.13). Use equation (10.24) and
the internal model/innovation idea explained in Section 10.2 in order to
obtain the following observer for x1:

d

dt
x̂1 = A11x̂1 +A12y +B1u+ L1(A21x1 −A21x̂1).

Equivalently,

d

dt
x̂1 = A11x̂1 +A12y +B1u+ L1(

d

dt
y −A22y −B2u−A21x̂1). (10.27)

It is easily verified that the estimation error e1 = x1 − x̂1 is then governed
by

d

dt
e1 = (A11 − L1A21)e1. (10.28)

Consequently, by Theorem 10.3.1, if (A,C) is observable (equivalently, if
(A11, A21) is observable), there exists for any desired real monic polynomial
of degree (n− rankC), a matrix L1 such that the characteristic polynomial
χA11−L1A21

is equal to this polynomial.

As it stands, equation (10.27) has a serious drawback as a dynamic algo-
rithm for the estimation of x1, since it uses the derivative

d
dty of the obser-

vations on the right-hand side of the equation. Differentiating observations
is not a good idea in applications, since differentiation has the tendency
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to amplify noise, particularly the all-too-common high-frequency noise (see
Exercise 10.1). However, it is possible to modify (10.27) so as to avoid
differentiation. Introduce therefore

v = x̂1 − L1y

and rewrite (10.28) to obtain

dv

dt
= A11(v + L1y) +A12y +B1u

−L1(A22y +B2u+A21(v + L1y)).

This yields the reduced-order observer

dv

dt
= (A11 − L1A21)v + (B1 − L1B2)u

+(A11L1 +A12 − L1A22 − L1A21L1)y,
(10.29)

x̂1 = v + L1y,
x̂2 = y.

(10.30)

Of course, since y = x2, the estimate x̂2 is error free, while the error
e1 = x1 − x̂1 is governed by (10.28). Whence (10.29, 10.30) defines an
observer of dimension n− dim(C) that estimates x2 error free, and x1 with
a preassigned observer error characteristic polynomial.

This reduced-order observer can also be used in feedback controllers. The
result obtained in Theorem 10.5.1 shows that for nth-order systems (10.3)
that are controllable and observable, there exists, for any preassigned monic
polynomial of degree 2n, an nth-order compensator such that the closed
loop characteristic polynomial is equal to this preassigned polynomial at
least when it is factorizable into the product of two real polynomials of de-
gree n. If we measure the complexity of a dynamical system by its dynamic
order, i.e., by the dimension of the state space, then the construction of
Theorem 10.5.1 yields a feedback compensator whose complexity is equal
to that of the plant. Most classical control schemes use much simpler con-
trol algorithms. Often, in fact, a simple proportional output gain is used.
Nowadays, the use of simple controllers is less important, since micropro-
cessors provide an inexpensive and reliable way of implementing complex
control algorithms with a high degree of intelligence. The question never-
theless arises whether this complexity is really necessary. In particular, is it
possible to obtain a lower order compensator when the number of actuators
(i.e., the dimension m of the control input space of the plant (10.3)) or the
number of sensors (i.e., the dimension p of the measurement output space
of the plant (10.3)) is increased?

One way of obtaining a stabilizing feedback compensator of lower order is to
use a reduced-order observer combined with the separation and the certainty
equivalence principles used before. Thus it is easy to prove (see Exercise
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10.14) that if (A,B) is controllable and (A,C) is observable, the reduced-
order observer of Section 10.6 yields a controller of order (n − rankC)
that actually achieves the desired closed loop characteristic polynomial,
provided that it is factorizable into a real polynomial of degree n and one
of degree (n−rankC). Using the same idea on the dual system (see Exercise
10.15), we can obtain a controller of order (n − rank B). Such feedback
compensators are called reduced order compensators.

Example 10.6.1 Return to Example 10.1.1. Assume that we wish to sta-
bilize the point mass in the equilibrium state q = 0 using a first-order
position output controller. Let (1+ξ)(1+ξ+ξ2) be the desired closed loop
characteristic polynomial.

It is easily verified that the state feedback law

F = −M(q +
d

dt
q) (10.31)

achieves the closed loop characteristic polynomial (1 + ξ + ξ2). However,
the control law (10.31) uses the velocity d

dtq, which is not measured. We

need therefore to replace in this expression d
dtq by its estimate obtained

from an observer.

We can estimate d
dtq using a reduced-order observer. The equations of mo-

tion written in state form with the state chosen as x = col( d
dtq, q), so that

(10.22) is satisfied, are

d

dt
x =

[
0 0
1 0

]

x+

[
1
M
0

]

F, q =
[
0 1

]
x. (10.32)

Equations (10.24) and (10.26) for the case at hand are

d

dt
x1 =

1

M
F ; x1 =

d

dt
q. (10.33)

The observer (10.27) corresponding to the characteristic polynomial (1+ξ)
becomes

d

dt
x̂1 =

1

M
F +

d

dt
q − x̂1. (10.34)

Rewriting in terms of v = x̂1 − q, so as to avoid differentiation, yields

d

dt
v = v − q + 1

M
F ; x̂1 = v + q. (10.35)

Since x1 = d
dtq, this yields an estimate x̂1 for d

dtq from q and F that does
not require differentiation. Using this observer with the control law (10.31)
yields the controller

d

dt
v = v − q + F

m
,

x̂ = v + q, (10.36a)

F = −M(q + x̂1). (10.36b)
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After substitution, this expression can be simplified to

d

dt
v = −2v − 3q,

F = −2q − v. (10.37a)

This controller can thus be written as

2F +
d

dt
F = −M(q + 2

d

dt
q).

Combining this with

M
d2

dt2
q = F,

we obtain a closed loop characteristic polynomial that is indeed (1 + 2ξ +
2ξ2 + ξ3), as we set out to make it be. �

The following theorem (which we merely state, without proof) shows that
Theorem 10.5.1 can be improved in such a way that it gives a controller
of lower complexity, which at the same time avoids the factorizability of
r(ξ) into the product of two real factors. Consider the system (10.3), and
assume that it is controllable and observable. Define its controllability index
as

κ = min{k ∈ N | rank[B,AB, . . . , Ak−1B] = n}
and its observability index as

ν = min{k ∈ N | rank col [C,CA, . . . , CAk−1] = n}.

Theorem 10.6.2 Consider the plant (10.3) and assume that it is control-
lable and observable. Let κ be its controllability index and ν its observability
index. Then for any n′ ≥ min (κ, ν)−1, and any real monic polynomial p(ξ)
of degree n+ n′, there exists a feedback compensator (10.14) such that the
closed loop characteristic polynomial χAcl

(ξ) equals p(ξ), with Ae defined
by (10.16).

Proof See [64]. �

10.7 Stabilization of Nonlinear Systems

The results of Theorem 10.5.3, combined with the stability properties of the
linearized system, lead to stabilization of equilibrium points of nonlinear
systems, using output feedback. The idea is completely analogous to what
has been explained in Section 9.7. Consider the nonlinear system

d
dtx = f(x, u),
y = h(x, u),

(10.38)
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with equilibrium point (x∗, u∗, y∗); i.e., assume that f(x∗, u∗) = 0 and
h(x∗, u∗) = y∗. In Section 4.7 we have introduced the linearization of this
system around this equilibrium point. This leads to the system

d∆x

dt
= A∆x +B∆u,

∆y = C∆x +D∆u,
(10.39)

with (A,B,C,D) computed from f and h as given by formulas (4.60) and
(4.61). The relation between these two systems is that (10.39) describes the
behavior of (10.38) in the neighborhood of the equilibrium (x∗, u∗, y∗), up
to first-order terms in x− x∗, u− u∗, and y − y∗.
In Section 7.5 we learned that for the nonlinear system

d

dt
x = f̃(x)

the equilibrium point x∗ (hence f̃(x∗) = 0) is asymptotically stable if the
linearized system

d

dt
∆x = f̃ ′(x∗)∆x

is asymptotically stable, i.e., if the Jacobi matrix f̃ ′(x∗) is a Hurwitz matrix.
See (7.26) for the definition of f̃ ′.

This result and the theory developed in Section 10.6 allows us to stabilize
a nonlinear system around an equilibrium. Indeed, assume that (10.39) is
controllable and observable. Then by Theorem 10.5.1 there exist a feedback
compensator

d

dt
z = Kz + L∆y,

∆u = Mz +N∆y

such that the closed loop (linear) system is asymptotically stable, that is,
such that

Ae =

[
A+BNC BM

LC K

]

is a Hurwitz matrix. Now use this linear control law for the nonlinear
system, using the interpretation ∆y ≈ y − y∗ and ∆u ≈ u− u∗. This leads
to the control law

d

dt
z = Kz + L(y − y∗),
u = u∗ +Mz +N(y − y∗).

(10.40)
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The resulting nonlinear closed loop system is given by

d

dt
x = f(x, u),

d

dt
z = Kz + L(h(x, u)− y∗),
u = u∗ +Mz +N(h(x, u)− y∗),
y = h(x, u).

(10.41)

Obviously, x = x∗, z∗ = 0, u = u∗, y = y∗ defines an equilibrium point of
(10.41). Also, it is easy to verify that the linearization of (10.41) around
this equilibrium point equals

d

dt

[
∆x

∆z

]

= Ae

[
∆x

∆z

]

.

Since Ae is Hurwitz, this implies, by Theorem 7.5.2, that the control law
(10.40) stabilizes the equilibrium point x∗, u∗, y∗ of the nonlinear system
(10.38).

The condition of controllability and observability of the linearized system
(10.39) is more serious than may appear at first glance. Often, in fact, the
nonlinear terms are essential for achieving controllability and observability.

10.8 Control in a Behavioral Setting

10.8.1 Motivation

The purpose of this section is to briefly introduce a novel way of looking
at controllers and at control problems. In the preface we explained that
it is customary to view a controller as a signal processor that processes
measured outputs in order to compute control inputs. In Chapter 9 (see
in particular Section 9.1) and in the previous sections of Chapter 10, we
have used this very idea of intelligent control, of a controller viewed as
a signal processor, in order to obtain feedback controllers that stabilize
linear systems or equilibrium points of nonlinear systems. The signal flow
graph underlying such controllers is shown in Figure 10.4. The controller
processes the sensor outputs in order to compute the actuator inputs that
control the plant. In this section we look at controllers from a different
vantage point: instead of considering a controller as a signal processor, we
view a controller as a dynamical system that is interconnected to the plant.
Before this interconnection takes place, the trajectories generated by the
plant variables are constrained only to belong to the behavior of the plant.
However, when the controller is put into place, after the interconnection,
the plant variables are constrained to obey the laws of both the plant and the
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PLANT

CONTROLLER
FEEDBACK

SensorsActuators

exogenous inputs to-be-controlled outputs

outputs
measured

inputs
control

FIGURE 10.4. Intelligent control.

controller. In this way we can hope that the controller retains from all the
trajectories in the plant behavior only desirable ones, and rejects those that
are not. The idea of controller interconnection is illustrated in Figure 10.5.

Controller

exogeneous

variables

Plant

control

variables

FIGURE 10.5. Controller interconnection.

In this figure the control terminals mean the variables that are available to
the controller to interface with. The remaining terminals signify exogenous
variables that are not available to the controller to interact with, although
the controller of course influences them indirectly through the plant.

Example 10.8.1 In order to focus these ideas, we now analyze a very
widespread automatic control mechanism, namely the traditional devices
that ensure the automatic closing of doors. A typical such mechanism is
schematically shown in Figure 10.6. This device consists of a spring in order
to force the closing of the door and a damper in order to make sure that
it closes gently. These mechanisms often have considerable weight, so that
their mass cannot be neglected as compared to the mass of the door itself.
We model such a mechanism as a mass–spring–damper combination, as
shown in Figure 10.7. Neglecting friction in the hinges, we model the door
as a free mass M ′ on which two forces are acting. The first force, Fc, is
the force exerted by the door-closing device, while the second force, Fe, is
an exogenous force (exerted, for example, by a person pushing the door in
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hinges

wall

door
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FIGURE 10.6. A door-closing mechanism.

Fe

θ

K

D

M ′′

M ′

Fc

Fc

FIGURE 10.7. A mass–spring–damper representation.

order to open it). The equation of motion for the door becomes

M ′ d
2

dt2
θ = Fc + Fe, (10.42)

where θ denotes the opening angle of the door and M ′ its mass. The door-
closing mechanism, modeled as a mass–spring–damper combination, yields

Kθ +D
d

dt
θ +M ′′ d

2

dt2
θ = −Fc. (10.43)

Here M ′′ denotes the mass of the door-closing mechanism, D its damping
coefficient, and K its spring constant. Combining (10.42) and (10.43) leads
to

Kθ +D
d

dt
θ + (M ′ +M ′′)

d2

dt2
θ = Fe. (10.44)

In order to ensure proper functioning of the door-closing device, the de-
signer can to some extent choose M ′′, D, and K (all of which must, for
physical reasons, be positive). The desired response requirements are small
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overshoot (to avoid banging of the door), fast settling time, and a not-too-
low steady-state gain from Fe to θ (in order to avoid having to use an exces-
sive force when opening the door). A good design is achieved by choosing
a light mechanism (M ′′ small) with a reasonably strong spring (K large),
but not too strong, so as to avoid having to exert excessive force in order
to open the door, and with the value of D chosen so as to achieve slightly
less than critical damping (see Section 8.5.2 for an analysis of second-order
systems such as (10.44)). �

10.8.2 Control as interconnection

In this section we describe mathematically how one can view control as the
interconnection of a plant and a controller. We do this first very generally,
in the context of the behavioral approach to dynamical systems introduced
in Chapter 1. Recall that a dynamical system Σ is defined as a triple,
Σ = (T,W,B), with T ⊆ R the time-axis, W a set called the signal space,
and B ⊆WT the behavior. Thus T denotes the set of time instances relevant
to the dynamical system under consideration. In the present section we
exclusively deal with continuous-time systems with T = R. The signal space
denotes the set in which the time trajectories that the system generates
take on their values. The prescription of the behavior B can, as we have
seen, occur in many different ways. In this book we have mainly studied
situations in which the behavior is defined through the solution set of a
system of differential equations.

Let Σ1 = (T,W,B1) and Σ2 = (T,W,B2) be two dynamical systems with
the same time-axis and the same signal space. The interconnection of Σ1

and Σ2, denoted by Σ1 ∧Σ2, is defined as Σ1 ∧Σ2 := (T,W,B1 ∩B2). The
behavior of the interconnection Σ1∧Σ2 consists simply of those trajectories
w : T → W that are compatible with the laws of both Σ1 (i.e., w belongs
to B1) and of Σ2 (i.e., w belongs also to B2). Thus in the interconnected
system, the trajectories that can be generated must be acceptable to both Σ1

and Σ2. The control problem can now be described as follows. We proceed

ControllerPlant

control

variables

FIGURE 10.8. Controller interconnection without latent variables.

from the mental picture shown in Figure 10.8 but without the exogenous
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variables. Actually, the fact that the controller can act only on certain
variables, the control variables, can be taken into consideration by defining
the set of admissible controllers appropriately. Assume that the plant, a
dynamical system Σp = (T,W,Bp), is given. Let C be a family of dynamical
systems, all with T as common time axis andW as common signal space. We
call C the set of admissible controllers. An element Σc ∈ C, Σc = (T,W,Bc),
is called an admissible controller. The interconnected system Σp∧Σc is called
the controlled system. The controller Σc should be chosen so as to make sure
that Σp ∧Σc meets certain specifications. The problem of control theory is
first, to describe the set of admissible controllers; second, to describe what
desirable properties the controlled system should have; and, third, to find
an admissible controller Σc such that Σp ∧Σc has these desired properties.

We now specialize this definition for linear time-invariant differential sys-
tems. Assume that R(ξ) ∈ Rg×q[ξ] and that the plant is described by

R(
d

dt
)w = 0. (10.45)

This induces the dynamical system ΣR = (R,Rq,BR) with BR the set of
weak solutions of (10.45).

Assume that the class of admissible controllers consists of the set of lin-
ear time-invariant differential systems. Thus an admissible controller is de-
scribed through a polynomial matrix C(ξ) ∈ Rg′×q[ξ] by

C(
d

dt
)w = 0. (10.46)

Let ΣC = (R,Rq,Bc) be the dynamical system induced by (10.46). Thus
ΣC is the controller. The controlled system is hence given by ΣR ∧ ΣC =
(R,Rq,BR ∩ BC) and is obviously described by the combined equations
(10.45) and (10.46), i.e., by






R(
d

dt
)

C(
d

dt
)




w = 0. (10.47)

The problem then is to find, for a given R(ξ), a C(ξ) such that the controlled
system (10.47) has certain desired properties.

Example 10.8.2 (Example 10.8.1 revisited) In Example 10.8.1 we
have q = 3, the variables involved being θ, Fc, and Fe. The plant is de-
scribed by (10.42). Hence g = 1, and R(ξ) = [M ′ξ2 −1 −1 ]. The controller
is given by (10.43). Hence g′ = 1, and C(ξ) = [K+Dξ+M ′′ξ2 1 0 ]. The closed
loop is hence specified by the combination of (10.42) and (10.43). After
elimination (in the sense of Chapter 6) of Fc, this yields (10.44) as the
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equation governing the manifest behavior of the variables (θ, Fe) in the
controlled system.

What are, in this example, desirable properties of the controlled system?
To begin with, Fe should remain free: it should still be possible to exert
an arbitrary exogenous force Fe ∈ Lloc

1 (R,R) on the controlled system.
From the result of Section 3.3, it follows that Fe is indeed free in (10.44).
Other desirable properties are asymptotic stability, slightly less than critical
damping, and a small steady-state gain 1

K from Fe to θ. �

10.8.3 Pole placement

We now develop the problem of pole placement by means of controllers
specified as interconnections, as explained in Section 10.8.2. For simplicity
we only consider the case of a plant with two variables constrained by one
equation (the single-input/single-output case, if you like to view it that
way). The plant is thus assumed to be governed by

a(
d

dt
)w1 + b(

d

dt
)w2 = 0, (10.48)

with a(ξ), b(ξ) ∈ R[ξ]. We assume that a(ξ) and b(ξ) are not both zero. The
set of admissible controllers consists of the linear time-invariant differential
systems that are also governed by one equation (thus only one control law
is imposed). Denote such a controller by

c(
d

dt
)w1 + d(

d

dt
)w2 = 0. (10.49)

The controlled system is then governed by

[
a( d

dt ) b( d
dt )

c( d
dt ) d( d

dt )

] [
w1

w2

]

= 0. (10.50)

The associated polynomial system matrix is

[
a(ξ) b(ξ)
c(ξ) d(ξ)

]

(10.51)

Note that typically (since we expect the determinant of (10.51) to be
nonzero), the system governed by (10.50) is autonomous. Thus, as we have
seen in Section 3.2, the main properties of the behavior of (10.50), its stabil-
ity, settling time, frequencies of oscillation, etc., are effectively characterized
by the singularities of (10.51), i.e., by the roots of its determinant

e(ξ) = a(ξ)d(ξ)− b(ξ)c(ξ). (10.52)
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The question thus arises as to what polynomials e(ξ) can be obtained by
choosing c(ξ) and d(ξ) for given a(ξ) and b(ξ). In analogy of what we ex-
plained in Chapter 9, we call the roots of e(ξ) the poles of the controlled
system. The question just asked is hence (for single-input/single-output sys-
tems) the complete analogue in a behavioral context of the pole placement
problem studied in Chapter 9 and in Sections 10.5 and 10.6. The following
result is readily obtained.

Theorem 10.8.3 Consider the plant (10.48) and assume that a(ξ) and
b(ξ) are not both zero. Then for any e(ξ) ∈ R[ξ], there exists a controller
(10.49) such that

det

[
a(ξ) b(ξ)
c(ξ) d(ξ)

]

= e(ξ) (10.53)

if and only if the plant is controllable (equivalently, if and only if a(ξ) and
b(ξ) are coprime).

Proof (if): From the Bezout identity (see Section 2.5) it follows that a(ξ)
and b(ξ) coprime implies the existence of polynomials c1(ξ), d1(ξ) such that
a(ξ)d1(ξ)−b(ξ)c1(ξ) = 1. Now take c(ξ) = e(ξ)c1(ξ), d(ξ) = e(ξ)d1(ξ). This
yields (10.53).

(only if): Assume that a(ξ) and b(ξ) are not coprime. Let h(ξ) be a common
factor. Then obviously, the determinant in (10.53) also has h(ξ) as a factor.

�

The above theorem can easily be refined so as to specify exactly what the
achievable polynomials e(ξ) are. Motivated by the discussion in Section
9.6, we call the greatest common divisor of a(ξ) and b(ξ) the uncontrollable
polynomial of the plant (10.48). Denote this polynomial by χu(ξ).

Theorem 10.8.4 Consider the plant (10.48) and assume that a(ξ) and
b(ξ) are not both zero. Let e(ξ) ∈ R[ξ] be given. Then there exists a con-
troller (10.49) such that (10.53) holds if and only if the uncontrollable poly-
nomial χu(ξ) of the plant is a factor of e(ξ).

Proof (if): Write a(ξ) = χu(ξ)a
′(ξ), b(ξ) = χu(ξ)b

′(ξ) with χu(ξ) the
greatest common divisor of a(ξ) and b(ξ). Since a′(ξ) and b′(ξ) are coprime,
there exist c′1(ξ), d

′
1(ξ) such that a′(ξ)d′1(ξ) − b′(ξ)c′1(ξ) = 1. Since χu(ξ)

divides e(ξ), e(ξ) can be written as e(ξ) = χu(ξ)e
′(ξ). Now use c(ξ) =

e′(ξ)c′1(ξ), d(ξ) = e′(ξ)d′1(ξ).

(only if): This part of the proof is completely analogous to the “only if”
part of the proof of Theorem 10.8.3. �

An important special case of the above result refers to asymptotic sta-
bility. Recall that we call the plant (10.48) stabilizable (see Section 5.2.2)
if for all (w1, w2) in its behavior B there exists (w′

1, w
′
2) ∈ B such that
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(w1, w2)(t) = (w′
1, w

′
2)(t) for t < 0, and (w′

1, w
′
2)(t)→ 0 as t→∞. We have

seen that (10.48) is stabilizable if and only if a(ξ) and b(ξ) have no common
factor with roots in the closed right half plane, equivalently, if and only if
the uncontrollable polynomial χu(ξ) of (10.48) is Hurwitz. This yields the
following result.

Corollary 10.8.5 Consider the plant (10.48) and assume that a(ξ) and
b(ξ) are not both zero. Then the following are equivalent:

(i) (10.48) is stabilizable.

(ii) Its uncontrollable polynomial χu(ξ) is Hurwitz.

(iii) There exists a controller (10.49) for (10.48) such that the controlled
system (10.50) is asymptotically stable, i.e., such that (10.52) is Hur-
witz.

Remark 10.8.6 In the control problem just considered, we have assumed
that the purpose of the controller is to control the dynamics of both vari-
ables (w1, w2) in the controlled system. Often, however, our interest in the
controlled system is on only one of these variables, say w1. For instance,
in the door-closing example treated in Example 10.8.1, we are principally
interested in the dynamics of θ in the controlled system. Assume therefore
that we wish to design the controller (10.49) such that in the controlled
system the variable w1 is governed by

e(
d

dt
)w1 = 0, (10.54)

with e(ξ) ∈ R[ξ] a given polynomial. In other words, given (10.48), we wish
to find (10.49) such that the dynamics of (10.50) yield, after eliminating
w2 (in the sense explained in Chapter 6) (10.54) for the dynamics of w1.

Assume that (10.48) is controllable. Then by Theorem 10.8.3, there exists
a controller (10.49) such that

a(ξ)d(ξ)− b(ξ)c(ξ) = e(ξ). (10.55)

If b(ξ) and e(ξ) are also coprime, then this equation implies that b(ξ) and
d(ξ) must also be coprime. Now use the result of Exercise 6.11 to conclude
that w1 is then indeed governed by (10.54). Thus under the added assump-
tion that the plant polynomial b(ξ) and the desired polynomial e(ξ) are also
coprime, Theorem 10.8.3 shows how to obtain a controller that regulates
the dynamics of w1. �

10.8.4 An algorithm for pole placement

The proof of Theorem 10.8.3, while in principle constructive, does not pro-
vide a particularly effective algorithm for computing (10.49) as the solu-
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tion to (10.52). In addition, the controller obtained in the proof does not
have particularly good properties, since the resulting degrees of the con-
troller polynomials c(ξ), d(ξ) may turn out to be unnecessarily high. We now
present an algorithm that keeps the degrees of c(ξ), d(ξ) under control.

Let a(ξ), b(ξ) ∈ R[ξ] be given. Define the Bezout map Ba,b : R[ξ]× R[ξ]→
R[ξ] by

c(ξ), d(ξ)
Ba,b7−→ d(ξ)a(ξ)− c(ξ)b(ξ). (10.56)

The map Ba,b is surjective if and only if a(ξ) and b(ξ) are coprime (see
Exercise 2.24). More generally, the image of Ba,b consists exactly of the
polynomials that have the greatest common divisor of a(ξ) and b(ξ) as a
factor. It is easy to see that the solution to (10.52) is not unique. We now
impose restrictions on the degrees of c(ξ) and d(ξ) so that (10.55) does have
a unique solution that satisfies certain degree properties.

Lemma 10.8.7 Assume that the greatest common factor g(ξ) of a(ξ) and
b(ξ) is also a factor of e(ξ). Then equation (10.52) has a unique solution
c(ξ), d(ξ) such that

deg c(ξ) < deg
a(ξ)

g(ξ)
. (10.57)

This solution has the following further degree properties: If for some m ∈
Z+ deg e(ξ) ≤ deg a(ξ) +m− 1 and deg b(ξ) ≤ m, then

deg d(ξ) ≤ m− 1. (10.58)

If deg b(ξ) < deg a(ξ), and deg e(ξ) ≥ 2 deg a(ξ)− 1, then

deg c(ξ) ≤ deg d(ξ) = deg e(ξ)− deg a(ξ). (10.59)

Proof The first part of the proof involves existence and uniqueness of the
solution to (10.52) satisfying (10.57).

Consider initially the case that a(ξ) and b(ξ) are coprime. Denote by Rk[ξ]
the set of elements of R[ξ] that have degree less than or equal to k. Note
that Rk[ξ] is a real vector space of dimension k + 1.

Let deg a(ξ) = n and let m ∈ Z+ be such that e(ξ) ∈ Rn+m−1[ξ]
and b(ξ) ∈ Rm[ξ]. Now consider the Bezout map (10.56) restricted to
Rn−1[ξ]×Rm−1[ξ]. This restriction obviously maps Rn−1[ξ]×Rm−1[ξ] into
Rn+m−1[ξ]. Hence Ba,b restricted to Rm−1[ξ]× Rn−1[ξ] maps an (n+m)-
dimensional real vector space into an (n+m)-dimensional real vector space.
This map is injective. To see this assume that a(ξ)d(ξ) − b(ξ)c(ξ) = 0
for some nonzero polynomials c(ξ and d(ξ) with deg c(ξ) < deg a(ξ). Now
a(ξ)d(ξ) − b(ξ)c(ξ) = 0 implies that a−1(ξ)b(ξ) = c−1(ξ)d(ξ). Since by as-
sumption deg c(ξ) < deg ξ), this can only be the case when a(ξ) and b(ξ)
have a factor in common. See Exercise 10.25. This contradicts the assump-
tion that a(ξ) and b(ξ) are coprime. Since a linear map from an (n +m)-
dimensional real vector space into an (n+m)-dimensional real vector space
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is injective if and only if it is surjective, this implies that the solution to
(10.52) satisfying (10.57) exists and is unique.

To prove existence and uniqueness in the case that a(ξ) and b(ξ) are not
coprime, factor a(ξ) = a′(ξ)f(ξ), b(ξ) = b′(ξ)f(ξ), and e(ξ) = e′(ξ)f(ξ),
with a′(ξ) and b′(ξ) coprime and apply the result obtained in the coprime
case for a′(ξ), b′(ξ), and e′(ξ).

Now consider the two other degree estimates in the lemma. The first es-
timate, (10.58), is an immediate consequence of the previous part of the
proof. To show the second degree estimate, (10.59), observe that if deg b(ξ)
and deg c(ξ) are both less than n = deg a(ξ), and if deg e(ξ) ≥ 2n − 1,
then a(ξ)d(ξ) − b(ξ)c(ξ) = e(ξ) implies deg a(ξ)d(ξ) = deg e(ξ). Hence
deg d(ξ) ≥ n− 1 and deg c(ξ) ≤ n− 1 ≤ deg d(ξ) = deg e(ξ)− deg a(ξ), as
claimed. �

The above lemma only gives conditions for the existence of solutions to
(10.52), but its proof also provides an algorithm for computing a solution.
Moreover, equation (10.52), viewed as an equation with the polynomials
a(ξ), b(ξ), e(ξ) given and c(ξ), d(ξ) unknown is, of course, a linear one. But
without an estimate on the degrees of c(ξ), d(ξ), this equation is infinite-
dimensional. However, the lemma provides such an estimate. This allows to
reduce the problem of finding a solution c(ξ), d(ξ) to a finite-dimensional
linear equation. For the case that a(ξ) and b(ξ) are coprime this can be
done as follows. Denote as in the proof of Lemma 10.8.7 n = deg a(ξ),m =
deg b(ξ), and assume that deg e(ξ) < n+m. Now express the polynomials
in terms of their coefficients, using the fact that, by the above lemma, we
may assume deg c(ξ) < n, deg d(ξ) < m. Then equate equal powers of ξ on
the left- and right hand sides of (10.52), and write the resulting expressions
in vector/matrix notation. Then equation (10.52) becomes the Sylvester
equation

[e0 e1 . . . en+m−1] = [d0 d1 . . . dm−1 − cn−1 . . .− c1 − c0]S,

where S is the Sylvester resultant

S =
















a0 a1 · · · an
a0 · · · an−1 an

. . .
. . .

a0 a1 · · · an
b0 b1 · · · bm

b0 b1 · · · bm
. .
.

. .
.

b0 b1 · · · · · · bm






















m rows







n rows

and where the aks, bks, cks, dks, and eks are the coefficients of the polyno-
mials a(ξ), b(ξ), c(ξ), d(ξ), and e(ξ).
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The second degree estimate in Lemma 10.8.7, (10.59), has important con-
sequences for the control problem at hand. We have argued that controllers
need not be endowed with the signal flow graph structure suggested by
the intelligent control paradigm of Figure 10.4. Indeed, the door-closing
mechanism of Figure 10.7 and many other industrial control mechanisms
do not function as signal processors that process observed outputs in or-
der to generate control inputs. In Theorem 10.8.4 we have seen that useful
controller design procedures can be set up while ignoring the input/output
structure of the plant (10.48) and the controller (10.49). Nevertheless, it is
of interest to determine conditions under which Theorem 10.8.4 allows us
to recover a controller such that the input/output structure of the plant
and controller are reversed. More precisely, we say that the plant (10.48)
and the controller (10.49) have reversed input/output structure if either w1

is the input to the plant and w2 the output, and w2 is the input to the
controller and w1 the output; or, vice versa, if w2 is the output to the plant
and w1 the output, and w1 is the input to the controller and w2 the output.

In Chapters 2 and 3, this input/output structure has been studied exten-
sively in terms of the degrees of the polynomials involved in the behavioral
differential equations. Thus the reversed input/output structure holds if
and only if either a−1(ξ)b(ξ) and d−1(ξ)c(ξ) are both proper, or b−1(ξ)a(ξ)
and c−1(ξ)d(ξ) are both proper.

The second degree estimate in Lemma 10.8.7, (10.59), leads to the following
important refinement of Theorem 10.8.4 and Corollary 10.8.5.

Theorem 10.8.8 Consider the plant (10.48) and assume that a−1(ξ)b(ξ)
is strictly proper, i.e., that in the plant w2 is input and w1 is output. As-
sume further that e(ξ) ∈ R[ξ] has deg e(ξ) ≥ 2 deg a(ξ) − 1, and that the
greatest common factor of a(ξ) and b(ξ) is also a factor of e(ξ). Then there
exists a controller (10.49) such that (10.53) holds and such that d−1(ξ)c(ξ)
is proper, i.e., such that the plant and the controller have reversed in-
put/output structure.

Proof Lemma 10.8.7 implies that (10.52) has a solution with deg c(ξ) ≤
deg d(ξ). �

Controllers that have a reversed input/output structure can in principle be
implemented by means of sensors and actuators, and still have a reasonable
robustness with respect to sensor noise, since no differentiators are required
for their implementation. Note, finally, that the controllers obtained in
Theorem 10.8.8 yield the (reduced order) compensators obtained in the
SISO case in Sections 10.5 and 10.6.

Example 10.8.9 Consider the electrical circuit shown in Figure 10.9. As-
sume that L,C > 0. The differential equation relating the port variables V
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FIGURE 10.9. Electrical circuit: plant.

and I is

C
d

dt
V = (1 + LC

d2

dt2
)I.

This system is controllable. For simplicity, take L = 1 and C = 1. Assume
that we would like to stabilize this circuit and obtain as controlled dynamics
for the voltage V ,

2V + 4
d

dt
V + 3

d2

dt2
V +

d3

dt3
V = 0. (10.60)

Thus the desired controlled characteristic polynomial is 2 + 4ξ + 3ξ2 + ξ3.
The roots of this polynomial are −1,−1 ± i. Note that since 1 + ξ2 and
2 + 4ξ + 3ξ2 + ξ3 are coprime, we can use Remark 10.8.6. The controller

c(
d

dt
)V = d(

d

dt
)I

leads to the desired controlled dynamics, provided that c(ξ) and d(ξ) are
chosen such that c(ξ)(1+ ξ2)− d(ξ)ξ = 2+4ξ+3ξ2 + ξ3. The polynomials
c(ξ) = 2+ξ, d(ξ) = −(3+ξ) solve this equation. The resulting controller can
be implemented in a number of ways, for example by terminating the circuit
of Figure 10.9 by the circuit shown in Figure 10.10. The differential equation

1

2
1

1
I

+

V

−

FIGURE 10.10. Electrical circuit: controller.

relating V and I in this circuit is indeed given by (2 + d
dt )V = −(3 + d

dt )I,
and hence it yields the desired control law. The controlled circuit is shown
in Figure 10.11. One can readily verify that in this circuit the voltage V
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FIGURE 10.11. Electrical circuit: controlled system.

is indeed governed by (10.60). Actually, for the case at hand, it turns out
that also the other voltages and currents in this circuit are governed by the
same differential equation. �

10.9 Recapitulation

In this chapter we studied the construction of observers and of output feedback
compensators. The main results were the following:

• An observer is an algorithm that uses the system equations in order to
deduce from the measured signals (e.g. inputs and outputs) the state of a
system, or, more generally, another nonobserved output.

• The observers that we considered are a combination of an internal model
and error feedback. This error, the innovation, is the difference between
the measured output and its estimate (Section 10.2).

• There exists an observer with a prescribed characteristic polynomial for
the error dynamics if and only if the plant is observable (Theorem 10.3.1).

• The combination of the separation principle and the certainty equivalence
principle leads to an effective way for obtaining an output feedback con-
troller. This design is based on a state observer combined with a state
feedback law (Theorem 10.5.1).

• There exists an output feedback compensator with a prescribed charac-
teristic polynomial for the closed loop system if and only if the plant is
controllable and observable (Theorem 10.5.3).

• These linear system techniques applied to the linearized system can be
used to stabilize a nonlinear system around an equilibrium point (Section
10.7).

• Instead of viewing controllers as feedback processors, it is sometimes more
appropriate to view them as an interconnected subsystem. This point of
view leads to design principles in which the behavioral point of view be-
comes essential. The algorithms for pole placement can be generalized to
this setting. (Sections 10.8.1 and 10.8.2).
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10.10 Notes and References

Observers were formally introduced by Luenberger in his Ph.D. dissertation in

1963 (see [37] for an expository paper on the subject). The observers discussed

in this chapter are actually nonoptimal, nonstochastic versions of the celebrated

Kalman filter. The Kalman filter has been the topic of numerous papers and texts

(see [26, 30] for historical references and [33, 4] for textbooks which treat this topic

in detail). It is somewhat surprising that using the measurement of one variable

combined with the system dynamics, one can actually design an algorithm that

functions as a reliable sensor for another variable. The full technological impact

of this is only being felt recently, and these techniques go under a variety of

names, such as: soft sensors, sensor fusion, smart sensors. The combination of state

estimators with state feedback control laws originated in the context of the linear-

quadratic-gaussian problem (see [5] for some early survey papers on this topic

and [33, 3] for texts that treat this topic in detail). It is interesting to note that

observers and the certainty equivalence and the separation principles originated

in the context of optimality questions and stochastic systems first, and that the

nonoptimal, nonstochastic versions were discovered only later. A very elegant

geometric way of looking at observers, and at many other questions surrounding

the problems discussed in Chapters 9 and 10, is developed in [65]. A proof of

Theorem 10.6.2 can be found there. Looking at controllers as interconnections of

subsystems, as discussed in Section 10.8, originates with the second author of the

present book [61].

10.11 Exercises

As a simulation exercise illustrating the material covered in this chapter
we suggest A.6.

10.1 Assume that a sinusoidal signal is measured in the background of additive
high-frequency sinusoidal noise, yielding

y(t) = As sinωst︸ ︷︷ ︸
signal

+An sinωnt︸ ︷︷ ︸
noise

.

Define the signal-to-noise ratio to be |As|
|An| . Compute the signal-to-noise

ratio of the derivative d
dt
y. Prove that for a given signal-to-noise ratio of

the observation, the signal-to-noise ratio of its derivative goes to zero as
ωn → ∞. Conclude that it is not a good idea to differentiate a signal when
there is high-frequency noise present in the measurement.

10.2 Consider the system (10.3) with

A =

[
0 1
1 1

]
, B =

[
0
1

]
, C =

[
1 0

]
.
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Construct an observer with error dynamics characteristic polynomial
r(ξ) = 1 + ξ + ξ2. Repeat for

A =




0 1 0
0 0 1
0 0 0


 , B =




0
0
1


 , C =

[
1 0 0

]
,

and r(ξ) = 1 + 2ξ + 2ξ2 + ξ3.

10.3 Assume that for the system

d

dt
x = Ax+Bu, y = Cx, z = Hx

we wish to estimate z from observations of (u, y). Construct an observer
for z, assuming that (A,C) is observable.

10.4 Extend the observer (10.7) and Theorem 10.3.1 to systems with a
feedthrough term

d

dt
x = Ax+Bu, y = Cx+Du.

10.5 Consider the discrete-time analogue of (10.3),

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t). (10.61)

The linear system

x̂(t+ 1) = Kx̂(t) + Ly(t) +Mu(t)

is said to be a deadbeat observer for (10.61) if there exists a T ∈ Z+ such
that for all x(0), x̂(0), and u there holds x̂(t) = x(t) for t ≥ T . Assume
that (A,C) is observable. Construct a deadbeat observer for (10.61). Prove
that T can be taken to be equal to n, the dimension of the state space of
(10.61).

10.6 Let 0 = ω0 < ω1 < · · · < ωN . Consider the linear system

d

dt
x =




ω0

0 ω1

−ω1 0

. . .

0 ωN

−ωN 0



x, (10.62)

y =
[
1 0 1 · · · 0 1

]
x.

Assume that the output y is observed at t = 0,∆, 2∆, . . .. Define yk =
y(k∆). Prove that yk is governed by the discrete-time system

xk+1 = eA∆xk, yk = Cxk, (10.63)
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with A and C defined in terms of (10.62) in the obvious way. Deduce neces-
sary and sufficient conditions in terms of ω0, ω1, . . . , ωN and ∆ for (10.63)
to be an observable discrete-time system. Deduce from there the best ∆max,
with ∆max a function of ω1, ω2, . . . , ωN , guaranteeing observability for all
0 < ∆ < ∆max. Readers familiar with the sampling theorem may wish to
interpret this condition in these terms.

Assuming that (10.63) is observable, construct an observer that asymp-
totically reconstructs x(0) from y0, y1, y2, . . .. Refine this algorithm using
the ideas of Exercise 10.5 in order to compute x(0) from a finite sample
y0, y1, . . . , yT . What is the minimum required T?

10.7 Consider the system ω2y + d2

dt2
y = 0. The general solution to this differ-

ential equation is A cos(ωt + ϕ), with A ∈ [0,∞) and ϕ ∈ [0, 2π). The
problem considered in this exercise is to design an observer that estimates
A and ϕ by observing y. Introduce the state x = col(y, d

dt
y). Construct

an asymptotically stable observer for x. Deduce from there an estimate
Â(t), ϕ̂(t) such that (Â(t), ϕ̂(t)) −→

t→∞
(A,ϕ).

10.8 Consider the electrical circuit shown in Figure 10.12 Assume that the port

L

R1 R2

C

+

VC

−
IL

I
+

V

−

FIGURE 10.12. An electrical circuit.

variables V and I are observed. Construct an observer that estimates VC

and IL with asymptotically convergent estimates. Take for simplicity R1 =
R2 = 1, L = 1, and C = 1.

10.9 For what values of the parameters is the following system (a) controllable,
(b) observable, (c) stabilizable, (d) detectable?

d

dt
x =



λ1 0 0
0 λ2 0
0 0 λ3


x+



β1
β2
β3


u,

y =
[
γ1 γ2 γ3

]
x.

10.10 Is the system

d

dt
x =

[
0 1

−1 −1

]
x, y =

[
0 1

]
x

detectable? If it is, construct an asymptotically convergent state observer.
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10.11 Prove that (A,C) is detectable if and only if (AT , CT ) is stabilizable.

10.12 Consider the dynamical system described by the behavioral equation
d4

dt4
y = u. Write state equations with x1 = y, x2 = d

dt
y, x3 = d2

dt2
y,

x4 = d3

dt3
y. Find a feedback compensator such that the closed loop charac-

teristic polynomial equals (1 + ξ + ξ2)2(1 + 2ξ + ξ2)2.

10.13 Consider the dynamical system described by (10.23). Prove that this system
is observable if and only if (A11, A21) is an observable pair. Prove that it
is detectable if and only if (A11, A21) is.

10.14 Consider the system (10.3). Use the controller u = Nx̂ with x̂ the output
of the observer (10.29, 10.30). Prove that the closed loop characteristic
polynomial is given by χA+BN (ξ)χA11−L1A22

(ξ). Use this to show that if
(10.3) is controllable and observable, then for any real monic polynomial
r(ξ) of deg 2n−rank C that is factorizable into a real polynomial of degree
n and one of degree n− rankC, there exists a feedback compensator such
that r(ξ) is the closed loop characteristic polynomial.

10.15 Consider the system (10.3), called the primal system, and its dual

d

dt
x̄ = AT x̄+ CT ū ; ȳ = BT x̄.

Design a controller

d

dt
w̄ = Kw̄ + Lȳ ; ū =Mw̄ +Nȳ

for the dual system. Let χ̄cl(ξ) denote the resulting closed loop characteris-
tic polynomial for the controlled dual system. Now use the dual controller
(KT ,MT , LT , NT ) on the primal system. Let χcl(ξ) denote the closed loop
characteristic polynomial obtained by using this controller on the primal
system. Prove that χcl(ξ) = χ̄cl(ξ). Use this and Exercise 10.14 to show
that if (10.3) is controllable and observable, then for any real monic polyno-
mial r(ξ) of degree 2n−rankB that is factorizable into a real polynomial of
degree n and one of degree n−rankB, there exists a feedback compensator
such that r(ξ) is the closed loop characteristic polynomial.

10.16 Consider the system (10.3). Let χv(ξ) be the least common multiple of the
uncontrollable polynomial χu(ξ) and the unobservable polynomial χ0(ξ).
Let (K,L,M,N) be any compensator (of any order) and let χAe(ξ) be the
resulting closed loop characteristic polynomial. Prove that χv(ξ) is a factor
of χAe(ξ).

10.17 This exercise is concerned with robustness. Loosely speaking, we call a
controlled system robust if small errors in the model or in the controller
have small effects on the controlled behavior. In this exercise, we consider
robustness both with respect to measurement errors and with respect to
parameter uncertainty. Consider the i/o system

6y − 5
d

dt
y +

d2

dt2
y = u. (10.64)
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(a) Show that this system is open-loop (u = 0) unstable.

Assume that we want to stabilize the system using feedback control. Our
first attempt is

u = −5
d

dt
y +

d2

dt2
y. (10.65)

It appears that this yields an extremely fast and accurate controller, since
the system output is

y = 0.

We now investigate whether the proposed controller is indeed such a su-
perior controller. If we were able to implement the controller with infinite
precision, then, there seems to be no problem. Suppose, however, that this
controller is implemented by means of a sensor that does not measure y
exactly. Assume that the sensor output is y + v, where v is a noise term.
The controller is then given by

u = −5
d

dt
(y + v) +

d2

dt2
(y + v).

(b) Determine the output y for the case that v(t) = ǫ sin(2πft), ǫ > 0,
and f ∈ R. Conclude that an arbitrarily small disturbance can have a
significant impact if f is sufficiently large. Thus, the controller (10.65)
is not robust with respect to measurement noise.

(c) Determine the controller canonical form for the system (10.64).

Determine a state feedback that assigns the closed-loop poles to
−1,−2. Design an observer with observer poles equal to −3,−4. Com-
bine the controller and the observer to obtain a feedback compensator
with poles at −1,−2,−3,−4.

(d) Suppose that this observer has the noisy sensor output as input. The
observer equation then becomes

d

dt
x̂ = Ax̂+ bu+ k(y + v)− kcx̂.

Does this observer lead to an acceptable controlled system? Compare
your conclusion with the one obtained in part 10.17b.

(e) Another inaccuracy with respect to which the controller (10.65) is
very sensitive is parameter uncertainty. Suppose that the plant pa-
rameters deviate from their nominal values and that the plant is given
by

(6 + ǫ2)y − (5 + ǫ1)
d

dt
y +

d2

dt2
y = u. (10.66)

Determine behavioral equations for the output y of the controlled
system (10.66, 10.65). Conclude that the controller (10.65) is again
not robust, this time with respect to parameter uncertainty.

(f) Determine the output when the system (10.66) is controlled by the
compensator obtained in part 10.17c.
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10.18 Consider the discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t). (10.67)

Formulate the analogue of Theorems 10.3.1 and 10.5.1. Are the theorems
valid when the variables in (10.67) and of the required observer and output
feedback controller take values in an arbitrary field?

10.19 Construct reduced order observers for the systems given in Exercise 10.2
with the desired error characteristic polynomials given by 1 + ξ and 1 +
2ξ + ξ2 respectively.

10.20 Consider the plant

d

dt
x =

[
0 1
−1 0

]
x+

[
0
1

]
u, y =

[
1 0

]
x.

Construct, using the theory developed in Section 10.6, a first-order com-
pensator such that the closed loop system has characteristic polynomial
1 + 2ξ + 2ξ2 + ξ3.

10.21 Find a linear output feedback compensator that stabilizes the equilibrium
point y∗ = 0, u∗ = 0 of the nonlinear system

y3 +
d2

dt2
y + sin y = u(u− 1).

10.22 Extend the theory explained in Section 10.7 in which you use a reduced
order compensator. Use this to find a first-order linear compensator that
stabilizes the pendulum of Example 10.5.4 in its upright position. Choose
reasonable values of M and L and simulate the linearized and nonlinear
closed loop systems for a number of initial conditions for the plant and the
compensator.

10.23 Use the theory developed in Section 10.8 and equation (10.48) to find a
control law that makes the following plant asymptotically stable:

(1− d

dt
+

d2

dt2
)w1 = w2.

Repeat for

(1 +
d3

dt3
)w1 = (1− d

dt
)w2.

10.24 Let a(ξ), b(ξ) ∈ R[ξ] be coprime. Prove that there exist polynomials
c(ξ), d(ξ) ∈ R[ξ] such that the control law

c(
d2

dt2
)w1 = d(

d2

dt2
)w2

stabilizes (in the sense that all solutions are bounded on [0,∞)) the plant

a(
d2

dt2
)w1 = b(

d2

dt2
)w2.

Assume that a−1(ξ2)b(ξ2) is proper. Prove that d−1(ξ2)c(ξ2) can be taken
to be proper as well.
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10.25 In the proof of Lemma 10.8.7 we claimed that if a−1(ξ)b(ξ) = c−1(ξ)d(ξ)
with deg c(ξ) < deg a(ξ), then a(ξ) and b(ξ) cannot be coprime. Prove this
by viewing a−1(s)b(s) and c−1(s)d(s) as complex functions and counting
their poles. This property may, however, also be proven by purely algebraic
means, i.e., by using the fact that R[ξ] is a Euclidean ring. Can you find a
proof in this spirit? See also Exercise 2.24.

10.26 Prove the following generalization of Theorem 10.8.4. Let R(ξ) ∈
Rp×(p+m)[ξ] and assume that rank R(λ) = p for all λ ∈ C. Note that
this implies that the plant

R(
d

dt
)w = 0 (10.68)

is controllable. Prove that for any r(ξ) ∈ R[ξ] there exists C(ξ) ∈
Rm×(p+m)[ξ], inducing the control law

C(
d

dt
)w = 0 (10.69)

such that the controlled system



R(

d

dt
)

C(
d

dt
)


w = 0

satisfies det(
[
R(ξ)
C(ξ)

]
(ξ)) = r(ξ). Generalize this result to noncontrollable

systems and obtain necessary and sufficient conditions for stabilizability of
(10.68) by means of (10.69).

Hint: Consider the Smith form of (10.68).

10.27 Consider the nonlinear system

d2

dt2
w1 = f(w1,

d

dt
w1, w2,

d

dt
w2,

d2

dt2
w2). (10.70)

All variables are assumed to be scalar, and f : R5 → R. Assume that
w∗

1 , w
∗
2 ∈ R is such that f(w∗

1 , 0, w
∗
2 , 0, 0) = 0. Define in what sense you can

consider (w∗
1 , w

∗
2) to be an equilibrium point of (10.70). Linearize (10.70)

around this equilibrium, obtaining

d2

dt2
∆1 = a0∆1 + a1

d

dt
∆1 + b0∆2 + b1

d

dt
∆2 + b2

d2

dt2
∆2, (10.71)

where a0 = f ′
1(w

∗
1 , 0, w

∗
0 , 0, 0), a1 = f ′

2(w
∗
1 , 0, w

∗
2 , 0, 0), b0 =

f ′
3(w

∗
1 , 0, w

∗
2 , 0, 0), b1 = f ′

4(w
∗
1 , 0, w

∗
2 , 0, 0), b2 = f ′

4(w
∗
1 , 0, w

∗
2 , 0, 0), and

f ′
k denotes the derivative of f with respect tot the kth variable.

Let a(ξ) = a0 + a1ξ− ξ2, and b(ξ) = b0 + b1ξ+ b2ξ
2. Assume that a(ξ) and

b(ξ) are coprime polynomials. Prove that there exist first-order polynomials
c(ξ), d(ξ) such that a(ξ)d(ξ) + b(ξ)c(ξ) = 1+ 2ξ + 2ξ2 + ξ3. Prove that the
control law

c(
d

dt
)∆1 = d(

d

dt
)∆2
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makes (10.71) asymptotically stable, and that the control law

c(
d

dt
)(w1 − w∗

1) = d(
d

dt
)(w2 − w∗

2)

makes the equilibrium (w∗
1 , w

∗
2) of (10.70) asymptotically stable. Explain

clearly what you mean by this last statement.

Apply these ideas to stabilize a pendulum in its upright position.
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Simulation Exercises

In this appendix, we present some exercises that require the aid of a computer.
They aim at giving the student insight into some simple modeling examples and
control problems. These exercises are most easily carried out using a numerical
software package such as MATLAB© with its CONTROL SYSTEM© toolbox
for the design of the controller parameters, and its SIMULINK© toolbox for
dynamic simulation. In the last exercise, a formula manipulation package, such
as Mathematica©, is also required.

A.1 Stabilization of a Cart

This is a very simple exercise. We recommend that it be assigned at the very
beginning of the course, before much theory development has been done, in or-
der to familiarize the students with MATLAB©, and to give them a feeling for
the difficulties that already emerge in a very simple stabilization problem. This
exercise treats stabilization of the position of a mass by means of a linear control
law. The same problem is treated in Example 9.7.3 for nonlinear control laws.

Consider a cart that moves horizontally under the influence of an external force.
The relevant geometry is shown in Figure A.1. The system variables are u, the
external force acting on the cart; and y, the horizontal displacement of the cart
relative to some reference point. The system has only one parameter:M the mass
of the cart (take M = 1 throughout).
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M

y

u

FIGURE A.1. A cart.

The dynamic relation between the variables u and y has been known since the
beginning of (modern) scientific time, and it is given by Newton’s second law:

M
d2y

dt2
= u. (A.1)

Assume that we want to keep this mass at the position y = 0. Of course, one
could nail the mass at the position y = 0, but we frown on taking such crude
measures. What we would like to do is to achieve this goal by choosing the force
u judiciously as a function of the measured position y of the cart.

1. What is more natural than simply to push the mass back to its desired
equilibrium? That is, if the mass is to the (far) right of the equilibrium,
push it (hard) to the left, and if it is to the (far) left, push it (hard) to the
right. So, use a position sensor and apply the control law

u = −Kpy (A.2)

with Kp > 0 a to-be-chosen constant.

Substitute (A.2) into (A.1) and examine, using MATLAB©, the perfor-
mance of this control law. Take y(0) = 1 and dy

dt
(0) = 0 and simulate the

response y for various values of Kp, say Kp = 0.1, Kp = 1, and Kp = 10.
This control law does not seem to work. Explain mathematically why this
is so.

2. Challenged by the failure of the obvious, let’s try something more subtle.
Perhaps it is more logical to counter the velocity and push the cart back
to its equilibrium against the direction in which it is moving away from it.
So, use a tachometer (a device that measures velocity) that senses dy

dt
, and

apply the control law

u = −Kv
dy

dt
(A.3)

with Kv > 0 a to-be-chosen constant.

Substitute (A.3) in (A.1) and examine, using MATLAB©, the performance
of this control law. Take y(0) = 0, dy

dt
(0) = 1, and simulate the response y

for various values of Kv, say Kv = 0.1,Kv = 1,Kv = 10. Still not perfect,
but better, it seems. In fact, for high Kv, this control law seems to work
very well. So take Kv very large, say Kv = 100, and simulate the response
again, but now with the different initial condition y(0) = 1 and dy

dt
(0) = 1.

Conclude that also this control law is no good. Explain mathematically
why this is so.
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3. Annoyed by these failures, let’s think even harder. Maybe we should use a
combination of the laws (A.2) and (A.3)? So, let’s apply the control law

u = −Kpy −Kv
dy

dt
(A.4)

with Kp > 0 and Kv > 0 to be chosen.

Substitute (A.4) into (A.1) and simulate y with the initial conditions y(0) =
1, dy

dt
(0) = 0, and with y(0) = 0, dy

dt
(0) = 1, for the following values of

Kp and Kv: Kp = 0.1, 1, 10 ; Kv = 0.1, 1, 10. In total there are thus 9
combinations of the gains (Kp,Kv). Which one do you like best? Why?
Try some more values, and reach the conclusion that Kp ≈ (Kv)

2 means
small overshoot (explain what you mean by this), while Kp and Kv both
large means fast settling time (explain what you mean by this). So simulate
again with Kp = 100,Kv = 14, and be happy with what you see.

4. In practice, of course, the position sensor and the tachometer may not work
perfectly. So let us assume that the result of the measurement at time t is

η(t) = y(t) + ǫ(t), (A.5)

with ǫ(t) measurement noise. Take for ǫ the omnipresent 50– (or 60–) cycle
noise

ǫ(t) = |A cos(50.2πt)|. (A.6)

Take the amplitude of the noise small (in comparison to the distances we
have been using), say A = 0.01.

Now (A.4) leads to the control law

u = −Kpη −Kv
dη

dt
. (A.7)

Substitute (A.7) into (A.1), with the gains Kp = 100,Kv = 14 found in
the previous part of this exercise, with η given by (A.5) and ǫ by (A.6),
and simulate the response y with y(0) = 1, dy

dt
(0) = 0, and with y(0) = 0,

dy
dt
(0) = 1. Comment on the quality of the response.

A.2 Temperature Control of a Container

This simulation exercise is also a simple one. We recommend that it be assigned
as soon as the student has some familiarity with input/state/output equations.

It aims at familiarizing the students with MATLAB© and to give them a feeling
for control problems. It also illustrates some of the concepts of Chapter 8.

Consider the control of the temperature in a container (or a room). The relevant
geometry is shown in Figure A.2. The purpose is to analyze a controller that
regulates, by means of a valve, the amount of heat supplied to the container. The
decision of how to set the valve is based on the measurements performed by a
thermometer. The temperature of the container is also influenced by the ambient
temperature. The thermometer is assumed to be a mercury thermometer. The



394 Appendix A. Simulation Exercises
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FIGURE A.2. Temperature control.

measurement taken is thus not the temperature of the container directly, but the
height of the mercury column which is, of course, related to the temperature in
the container. We now set out to model these dynamic relations.

1. The following are the manifest variables, the primary variables whose dy-
namics we wish to model:
u: the valve setting (the control variable)
Ta: the ambient temperature (a disturbance)
Tc: the temperature in the container (the to-be-controlled variable)
h: the height of the mercury column (the measured variable)

In order to obtain a model for the relation between the manifest variables, it
is useful to introduce a number of auxiliary (latent) variables. In particular,
introduce
q: the rate of heat supplied to the container by the heat valve
qa: the rate of heat supplied to the container from the environment
qg: the rate of heat supplied to the thermometer glass from the

container
qHg: the rate of heat supplied to the thermometer mercury from the

thermometer glass
Tg: the temperature of the thermometer glass
THg: the temperature of the mercury
Ag: the internal cross section of the thermometer glass
Vg: the volume inside the thermometer glass
VHg: the volume of the mercury

Consider the following relations:

q = a0u,

qa = a1(Ta − Tc), qg = a2(Tc − Tg), qHg = a3(Tg − THg),

dTc

dt
= b1(qa + q − qg),

dTg

dt
= b2(qg − qHg),

dTHg

dt
= b3qHg.

Explain each of these relations, noting that it is reasonable to assume that
the heat flow through a boundary is proportional to the difference of the
temperatures on both sides of the boundary, and that the temperature
change of a medium is proportional to the heat supplied to it.
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We still need to set up the equation for h. Assume that materials expand
by an amount proportional to their temperatures. Hence Ag is proportional
T 2
g , Vg is proportional to T 3

g , while VHg is proportional to T 3
Hg. Therefore,

Ag = c1T
2
g , Vg = c2T

3
g , VHg = c3T

3
Hg, h =

VHg − Vg

Ag
. (A.9)

The system parameters a0, a1, a2, a3, b1, b2, b3, c1, c2, c3, are positive con-
stants depending on the geometry and the material properties. In a ther-
mometer that works well, c3 must be larger than c2, for when both THg

and Tg reach a higher steady state value, we want h to increase. This is
the reason why materials such as mercury are used in thermometers: their
temperature expansion coefficient is large.

The above equations can be put into i/s/o form, with u and Ta as input
variables, h and Tc as output variables, and by keeping the latent variables
Tc, Tg, and THg as state variables and eliminating the other latent variables.
Observe that for u∗ = 0, all the temperatures equal 273 degrees Kelvin,
and h∗ the corresponding value given by (A.9) is an equilibrium point.
Linearizing around this equilibrium yields a system of equations of the
following form:

dTc

dt
= α1(Ta − Tc) + β1u,

dTg

dt
= α2(Tc − Tg) + α3(THg − Tg),

dTHg

dt
= α4(Tg − THg),

h = γ1THg − γ2Tg.

The parameters appearing in the above equation are all positive, with
γ1 > γ2. In the remainder of this exercise, take the following values for
these parameters: β1 = 0.1, α1 = 0.5, α2 = 1, α3 = 0.1, α4 = 0.2, γ1 =
0.7, γ2 = 0.05.

2. Let us first consider the system without control: Take u = 0. Assume that
the ambient temperature increases by a unit amount; i.e., take for Ta the
unit step

Ta(t) =

{
1 for t ≥ 0,
0 for t < 0.

(A.10)

Take Tc(0) = Tg(0) = THg(0) = 0. Plot (all on the same graph) the re-
sponses Tc, TG, THg. Plot on a separate graph the response h. Zoom in on
the small time behavior of h. Explain physically why this happens. The
phenomenon that you observe is called an adverse response.

3. Let us now use control. It is logical to use as control law a proportional
law:

u = KPh. (A.11)

So if the measured temperature goes down, we supply more heat, etc. Now
study the performance of this control law for several values of KP . Put
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Ta = 0, Tc(0) = 1, TG(0) = 0, THg(0) = 0, and plot the response Tc for a
wide range of values of KP . Show that for KP small, the performance, in
particular the settling time (explain what you mean by this), is not very
good. Show that for KP large the performance becomes awful (the poor
performance obtained from such an all-too-enthusiastic controller is called
overcompensation). This is due to the adverse response. You are welcome to
try to explain this. Show the response for the KP that has your preference.

4. Now use this controller (A.11) and examine the step response of the con-
trolled system. Take for Ta again the unit step (A.10) and Tc(0) = Tg(0) =
THg(0) = 0, and simulate the response Tc again for a wide range of values of
KP . Pay special attention to the steady-state value. Plot the steady-state
as a function of KP . Now, taking into account settling time, overshoot,
steady-state error, what value of KP do you now prefer? Plot the step
response from Ta to Tc for this controller.

5. You should be unhappy still, since your control was unable to compensate
the effect of a steady-state increase in the ambient temperature. One way
(a very clever idea of early—1920s—control theory) is to control not only
on the basis of h, but also on the basis of the integral of h. Think about
it: a controller that acts on the integral of h cannot accept a steady-state
error. It generates an unbounded correction signal if a steady-state error is
present.

Consider therefore the following control law:

dz

dt
= h, u = KPh+KIz.

Now take for Ta step (6), and for the initial conditions Tc(0) = Tg(0) =
THg(0) = 0, z(0) = 0. Take for KP the value obtained in the previous part
of this exercise, and simulate for a wide range of KIs. Settle on a preferred
value of KI . Show the resulting step response from Ta to Tc.

A.3 Autonomous Dynamics of Coupled Masses

The purpose of this simulation exercise is to study some interesting oscillatory
phenomena using the theory of autonomous behaviors as developed in Section
3.2. Consider the mass–spring system of Figure A.3. The two masses are taken
to be unity. For a theoretical analysis see Exercise 3.13.

1. Derive the behavioral equations for this system and write them in the form
P ( d

dt
)w = 0 for a suitable matrix P (ξ) ∈ R2×2[ξ].

2. Determine the characteristic polynomial and the characteristic values of
this system.

3. Derive the general form of the trajectories in the behavior of the system.
Write it in trigonometric form as follows:

w1(t) = α cos
√
k1t+ β sin

√
k1t+ γ cos

√
k1 + 2k2t+ δ sin

√
k1 + 2k2t,

w2(t) = α cos
√
k1t+ β sin

√
k1t− γ cos

√
k1 + 2k2t− δ sin

√
k1 + 2k2t.

(A.12)
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FIGURE A.3. Mass–spring system.

4. Take k1 = 25 and k2 = 1. Physically this means that the masses are
connected to the walls by means of relatively strong springs, whereas their
mutual spring connection is rather weak. Assume that at time t = 0 both
masses have velocity zero, with the first mass displaced from its equilibrium
by one unit, and the second mass in its equilibrium. Simulate the behavior
of (w1, w2) with this initial condition. Observe that it appears as if the
periodic motion of the two masses is periodically exchanged between them.

5. Use the formula cos p + cos q = 2 cos p−q
2

cos p+q
2

to explain that the be-
havior of w1 and w2 given by (A.12) can be seen as a fast oscillation mod-
ulated by a slowly oscillating amplitude. Determine the slow and the fast
frequencies.

6. Show for the solution derived above that the slowly oscillating amplitudes
of w1 and w2 are in antiphase. Explain what you mean by this.

7. Now take k1 = 1 and k2 = 25. This corresponds to the situation where the
two masses are connected to each other by means of a strong spring and are
connected to the walls by weak springs. Simulate the behavior of (w1, w2),
and observe that the masses appear to oscillate in antiphase with relatively
high frequency about “equilibria” that are themselves slowly oscillating in
phase with each other.

8. Explain this behavior mathematically, and determine the slow and the fast
frequencies.

A.4 Satellite Dynamics

The purpose of this exercise is to illustrate the modeling of the dynamics of a
satellite and the determination of a desired equilibrium. Subsequently, the motion
is linearized, and stability, controllability, and observability are analyzed. Through
simulation, we finally also illustrate the extent to which linearized equations
approximate the nonlinear ones. The exercise illustrates the theory covered in
Chapter 5.
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A.4.1 Motivation

The most important civilian spin-off of the space program is undoubtedly commu-
nication via satellites. The idea is a simple one: instead of transmitting a message
over a wire, it is beamed up from a transmitter to a satellite, and from there the
message is routed further to a receiver. For obvious reasons it is desirable that
the satellite be located in a position in the firmament that is fixed for an observer
on Earth. Not only does this avoid having to track the satellite continuously,
but it also results in the fact that the satellite can be used at all times, since it
never disappears below the horizon. Satellites that sit at a fixed position in the
sky are employed for telephone and TV communication, in navigation for ships
and airplanes, for weather prediction, etc. Such satellites are called geostationary
satellites. In principle, a geostationary orbit could be achieved by exerting forces
on the satellite such that it remains in the desired orbit. Such forces can be pro-
duced by means of small jets that are mounted on the satellites. However, it is
undesirable to require that forces be exerted continuously. These jets get their
energy from fuel that the satellite must take along at launch (present space pro-
grams aim at refueling satellites) or from solar panels. However, energy is a scarce
resource far up in the sky, and as such it is desirable that the jets not be used
for continuously steering the satellite, but only for unavoidable orbit corrections
and other maneuvers.

The question thus arises, Is there a geostationary equilibrium orbit for a satellite
when the only force exerted on it is the gravitational force field of the earth? Is
this orbit stable? If not, what controls are required in order to keep the satellite
in its orbit?

If we assume that the satellite is only influenced by the gravitational field of the
earth, then its orbit obeys Kepler’s laws. Hence the satellite moves in an elliptical
orbit with the center of the earth at one of the foci. Thus, as a consequence of
the fact that the earth turns around its North Pole/South Pole axis at a rate
of 2π radians/day, a geostationary orbit must be circular and in the equatorial
plane. Kepler’s laws also imply that there is a relation between the diameter
of the circular orbit and its period of revolution, which for the satellite to be
geostationary, must be the same as that of the earth. Our first order of business
is to determine the height of such a circular orbit.

A.4.2 Mathematical modeling

We now derive the dynamical equations of the motion of the satellite. It is subject
to four kinds of forces:

1. The inertial force, ~Fin.

2. The gravitational pull of the earth, ~Fg.

3. External forces due to the jets ~Fjet : these are our controls.

4. Other external forces such as the gravitational pull of the moon and the sun
and solar wind. We denote these forces by ~Fd. These are disturbances, and
it is precisely the aim of the controls to compensate for the unpredictable
influence of these disturbances.
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FIGURE A.4. Satellite in Earth orbit.

The position of the satellite can be described by its polar coordinates (r, ψ, θ).
Figure A.4 shows the relevant geometry. In principle, the motions of these coor-
dinates are coupled. However, we study the motion in the equatorial plane only.
The resulting geometry is shown in Figure A.5.

x

~1r

r

y

θ

~1θ

FIGURE A.5. The vectors ~1θ and ~1r.

We now set up the equations of motion by expressing equality of forces. Denote
the unit vectors in the radial and tangential direction by ~1r and ~1θ respectively.
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Then ~r = r ·~1r. Next, observe that

d

dt
~1r =

dθ

dt
~1θ and

d

dt
~1θ = −dθ

dt
~1r,

d

dt
~r =

dr

dt
~1r + r

dθ

dt
~1θ,

d2

dt2
~r = (

d2r

dt2
− r

(
dθ

dt

)2

)~1r + (r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)~1θ.

(A.13)

The inertial force ~Fin is hence given by

m
d2

dt2
~r = m(

d2r

dt2
− r

(
d2θ

dt

)2

)~1r +m(r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)~1θ,

where m denotes the mass of the satellite. The gravitational pull of the earth on
the satellite ~Fg is given by the inverse square law

~Fg = −km
r2
~1r,

with k = 4.1014 m3/sec2, which is obtained by multiplying the gravitational
constant by the mass of the earth.

We assume that the jets of the satellite exert a force ~Fjet. Decompose this force into
a control force ur in the radial direction and a control force uθ in the tangential
direction. The disturbance force ~Fd is similarly decomposed into a force dr in the
radial direction and a force dθ in the tangential direction. Hence ~Fjet = ur~1r+uθ~1θ
and ~Fd = dr~1r + dθ~1θ.

Expressing that the sum of the forces acting on the satellite is zero yields

m(
d2r

dt2
− r

(
dθ

dt

)2

)~1r +m(r
d2θ

dt2
+ 2

dr

dt

dθ

dt
)~1θ +

km

r2
~1r = ~Fjet + ~Fd.

Taking the components in the radial and tangential directions yields

d2r

dt2
= r

(
dθ

dt

)2

− k

r2
+
ur

m
+
dr
m
,

d2θ

dt2
= −2 dr

dt
dθ
dt

r
+

uθ

r ·m +
dθ
r ·m.

(A.14)

These differential equations give us the dynamical equations linking the variables
r, θ to the control inputs ur, uθ and the disturbance inputs dr and dθ.

These equations of motion can also be derived from the Euler–Lagrange equations.
In order to do that, we should first express the potential and the kinetic energy
of the satellite. Introduce the variables ṙ, the radial velocity of the satellite, and
θ̇, the rate of change of θ. The energy is a function of r, θ, ṙ, and θ̇. The potential
energy P and the kinetic energy K are given by

P (r, θ, ṙ, θ̇) = −km
r
, K(r, θ, ṙ, θ̇) =

1

2
m(ṙ2 + r2(θ̇)2).
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The Lagrangian L is K−P . According to the principle of Lagrange, the equations
of motion are then given by (please take careful note of the notation)

d
dt

∂L
∂ṙ

(r, θ, dr
dt
, dθ
dt
)− ∂L

∂r
(r, θ, dr

dt
, dθ
dt
) = ur + dr,

d
dt

∂L

∂θ̇
(r, θ, dr

dt
, dθ
dt
)− ∂L

∂θ
(r, θ, dr

dt
, dθ
dt
) = uθ + dθ.

Derive equations (A.14) from Lagrange’s equations.

A.4.3 Equilibrium Analysis

Prove that there exists an R such that the trajectory r(t) = R, θ(t) = Ωt, with Ω =
2π/day, ur(t) = 0, uθ(t) = 0, dr(t) = 0, dθ(t) = 0, is a solution of the equations
of motion. Explain why this corresponds to a geostationary orbit. Compute R in
meters.

This calculation lets you conclude that a geostationary orbit sits at a distance of
42,000 km from the center of the earth, hence approximately 36,000 km above
the surface of the earth. In two-way telephone communication this yields a delay
of at least 4× 36, 000 km/speed of light ≈ 1

2
sec. This delay can be cumbersome

in two-way intercontinental voice communication.

Introduce the new variable φ(t) = θ(t)− Ωt. The equations for r, φ become

d2r

dt2
= r

(
dφ

dt
+Ω

)2

− k

r2
+
ur

m
+
dr
m
,

d2φ

dt2
= −2 dr

dt
( dφ
dt

+Ω)

r
+

uθ

r ·m +
dθ
r ·m.

(A.15)

In order to complete the model, we now specify the observed output. Take the
sighting angle, φ(t) = θ(t) − Ωt, as the measured output. Note that we have
thus obtained a system with control inputs ur, uθ; disturbance inputs dr, dθ;
variables r, φ, ṙ, φ̇; measured output φ; and to-be-controlled output φ. Verify that
r∗ = R, φ∗ = 0, u∗

r = 0, u∗
θ = 0, d∗r = 0, d∗θ = 0 is an equilibrium solution of (A.15).

It is in this position that we hope to find the satellite at all times. We now verify
the stability of this equilibrium.

Prove that r(t) = 3
√
k/(Ω +∆)2, φ(t) = ∆t, with ∆ ∈ R satisfying Ω +∆ > 0, is

also a solution of (A.15). Show that this implies that the geostationary orbit is not
stable without controls. In other words, a small deviation from the equilibrium
may cause the sighting angle to drift further and further away. The uncontrolled
motion is hence unstable, and control action is required in order to keep a satellite
in a geostationary orbit.

A.4.4 Linearization

Introduce the state variables r, dr
dt
, φ, dφ

dt
, and write (A.15) in state space form.

Linearize the dynamical equations around the geostationary equilibrium. For ver-
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ification, you should now have obtained the following linearized system:

d

dt




∆r
∆ṙ
∆φ

∆φ̇


 =




0 1 0 0
3Ω2 0 0 2RΩ
0 0 0 1
0 − 2Ω

R
0 0







∆r
∆ṙ
∆φ

∆φ̇


+




0
1
m

0
0


ur +




0
0
0
1

Rm


uθ

+




0
1
m

0
0


 dr +




0
0
0
1

Rm


 dθ,

∆ϕ =
[
0 0 1 0

]



∆r
∆ṙ
∆φ

∆φ̇


 ,

where Ω = 7.3× 10−5 rad/sec, m = the mass of the satellite, and R = 4.2× 107

meters. If you were unable to derive these as the equations, continue with these
equations of motion and try to figure out what went wrong.

A.4.5 Analysis of the model

Is the linearized system stable, asymptotically stable, or unstable? Explain the
eigenvalues of the linearized A-matrix using Kepler’s laws. Is the linearized system
controllable with control ur, or uθ, or both? Is it observable?

A.4.6 Simulation

The final part of this exercise consists in simulating typical responses in order to
obtain a feeling for the dynamics of this system and for the difference between
the behavior of the nonlinear and the linearized equations of motion.

Simulate the response for r and φ for both the linearized and the nonlinear system
for the following situations.

1. Take a small (1%) initial disturbance for r(0). Repeat with a small initial
disturbance for φ(0).

2. Plot responses for a radial step disturbance input equal to 5% of the gravita-
tional pull of the earth. You could think of this disturbance as being due to the
gravitational pull of the moon.

3. Repeat with a radial disturbance of that magnitude, but assume it to be
periodic with period equal to the period of revolution of the earth.

A.5 Dynamics of a Motorbike

The purpose of this exercise is to analyze the dynamics of a motorbike riding over
a rough road. This exercise illustrates the theory developed in Chapter 8.
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Consider a motorbike that rides over a rough road, as shown in Figure A.6. We

����
����
����

����
����
����

1

spring

y

Hy1h1y2h2

2

x
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FIGURE A.6. A motorbike.

are interested in the relation between the road profile and the vertical motion of
the driver. We assume that the motorbike has constant forward velocity. Conse-
quently, we can assume that the height of the wheels is a certain function of time,
with the height of the rear wheel a delayed version of the height of the front wheel.
Initially, we ignore this time delay. Throughout, we neglect rotational motions of
the motorbike that would occur in reality.

1. L = 0. When we neglect the length of the bike as compared to the rate of
change in the road profile, we obtain the following equations of motion:

M
d2

dt2
y = −2K(y − h)− 2D(

d

dt
y − d

dt
h), h(t) = H(V t), (A.16)

where M denotes the mass of the motorbike plus driver, K the spring
constant of each of the springs, D the friction coefficient of the dashpots,
V the forward velocity of the bike, and H(x) the height of the road at
distance x from a reference point.
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2. L 6= 0. When we do not neglect the length of the bike as compared to the
rate of change in the road profile, we obtain the equations

M

2

d2

dt2
y1 = −K(y1 − h1)−D(

d

dt
y1 −

d

dt
h1),

M

2

d2

dt2
y2 = −K(y2 − h2)−D(

d

dt
y2 −

d

dt
h2),

y =
1

2
(y1 + y2), h1(t) = H(V t), h2(t) = h(V t− L).

Explain each of these equations. Explain why it is logical to consider H
and y as the manifest variables and h, h1, h2, y1, y2 as latent variables. The
system parameters are M,K,D, L, and V . Take as values for the system
parameters M = 300 kg, K = 10, 000 kg/sec2, D = 3, 000 kg/sec, L = 1
meter, V = 90 km/hour. Argue that these figures are in the correct ballpark
by reasoning about what sort of value you would expect for the natural
frequency, for the steady-state gain obtained by putting a weight on the
bike, and for the damping coefficient as observed from the overshoot after
taking the weight back off.

3. Simulation. Plot the step response in the case L = 0. Determine the reso-
nant frequency, the peak gain, and the pass-band. Repeat when L is not ne-
glected. What happens to these plots when the forward velocity V changes?
Repeat this for the case that the bike has a defective damper so that its
damping coefficient is first reduced to 50%, and subsequently to 10% of its
original value. Repeat this again for the case that the bike has a defective
spring so that its spring coefficient is first reduced to 50%, and subsequently
to 10% of its original value.

A.6 Stabilization of a Double Pendulum

The purpose of this exercise is to illustrate the full extent of the theory developed
in Chapters 9 and 10. The exercise uses many of the concepts introduced in this
book (modeling, controllability, observability, stability, pole placement, observers,
feedback compensation). We recommend that it be assigned after all the theory
has been covered, as a challenging illustration of it. This exercise requires extensive
use of computer aids: Mathematica© for formula manipulation, and MATLAB©

for control system design and numerical simulation.

A.6.1 Modeling

We study the stabilization of a double pendulum mounted on a movable cart. The
relevant geometry is shown in Figure A.7. It is assumed that the motion takes
place in a vertical plane. The significance of the system parameters is as follows:



A.6 Stabilization of a Double Pendulum 405

θ2

M1

M

q

θ1
L1

M2

L2

u

FIGURE A.7. A double pendulum on a cart.

M : mass of the cart
M1: mass of the first pendulum
M2: mass of the second pendulum
L1: length of the first pendulum
L2: length of the second pendulum

The cart and the pendula are all assumed to be point masses, with the masses of
the pendula concentrated at the top. It is instructive, however, to consider how
the equations would change if the masses of the pendula are uniformly distributed
along the bars.

The significance of the system variables is as follows:

u: the external force on the cart
q: the position of the cart
θ1: the inclination angle of the first pendulum
θ2: the inclination angle of the second pendulum

For the output y we take the 3-vector consisting of the horizontal positions of the
cart and of the masses at the top of the pendula.

The purpose of this exercise is to develop and test a control law that holds the
cart at a particular position with the pendula in upright position. We assume
that all three components of the output y are measured and that the force u is
the control input. Our first order of business is to find the dynamical relation
between u and y. For this, we use Lagrange’s equations. In order to express the
energy of this system, introduce also the variables

q̇: the velocity of the cart

θ̇1: the rate of change of θ1
θ̇2: the rate of change of θ2

The kinetic energy is given by

K(q, θ1, θ2, q̇, θ̇1, θ̇2) = 1
2
Mq̇2 + 1

2
M1[(q̇ + L1θ̇1 cos θ1)

2 + (L1θ̇1 sin θ1)
2]

+ 1
2
M2[(q̇ + L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2))

2

+(L1θ̇1 sin θ1 + L2(θ̇1 + θ̇2) sin(θ1 + θ2))
2].
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The potential energy is given by

P (q, θ1, θ2, q̇, θ̇1, θ̇2) =M1gL1 cos θ1 +M2g[L1 cos θ1 + L2 cos(θ1 + θ2)].

Lagrange’s principle lets us write the equations of motion directly from K and P .
In other words, once we have modeled K and P , we have the dynamical equations
that we are looking for. Lagrange’s principle is a truly amazingly effective model-
ing tool for mechanical systems. An alternative but much more cumbersome way
of obtaining the equations of motion would be to express equality of forces for
each of the masses involved. Define the Lagrangian L := K − P and obtain the
equations of motion as (please take note of the notation)

d

dt

∂L

∂q̇
(q, θ1, θ2,

dq

dt
,
dθ1
dt
,
dθ2
dt

)− ∂L

∂q
(q, θ1, θ2,

dq

dt
,
dθ1
dt
,
dθ2
dt

) = u,

d

dt

∂L

∂θ̇1
(q, θ1, θ2,

dq

dt
,
dθ1
dt
,
dθ2
dt

)− ∂L

∂θ1
(q, θ1, θ2,

dq

dt
,
dθ1
dt
,
dθ2
dt

) = 0,

d

dt

∂L

∂θ̇2
(q, θ1, θ2,

dq

dt
,
dθ1
dt
,
dθ2
dt

)− ∂L

∂θ2
(q, θ1, θ2,

dq

dt
,
dθ1
dt
,
dθ2
dt

) = 0.

Note that these equations contain many partial derivatives of the functions K
and P , which are rather complex expressions of their arguments. Carrying out
such differentiations by hand is not something one looks forward to. However,
there are computer tools that do this for us. Use Mathematica© to derive the
dynamical equations. You should obtain

−(L1M1 + L1M2)(
dθ1
dt

)2 sin θ1 − L2M2
dθ1
dt

dθ2
dt

sin(θ1 + θ2)

−L2M2(
dθ2
dt

)2 sin(θ1 + θ2) + (M +M1 +M2)
d2q
dt2

+(L1M1 + L1M2)
d2θ1
dt2

cos θ1 + L2M2
d2θ2
dt2

cos(θ1 + θ2) = u,

−gL1(M1 +M2) sin θ1 − gL2M2 sin(θ1 + θ2)

+L2M2
dq
dt

dθ2
dt

sin(θ1 + θ2)− L1L2M2(
dθ2
dt

)2 sin θ2

+(L1M1 + L1M2)
d2q
dt2

cos θ1 + L2
1(M1 +M2)

d2θ1
dt2

+L1L2M2
d2θ2
dt2

cos θ2 = 0,

(A.19a)

−gL2M2 sin(θ1 + θ2)− L2M2
dq
dt

dθ1
dt

sin(θ1 + θ2)

+L2M2
d2q
dt2

cos(θ1 + θ2) + L1L2M2
d2θ1
dt2

cos θ2 + L2
2M2

d2θ2
dt2

= 0.
(A.19b)

Completed with the output equation

y =




q
g + L1 sin θ1

q + L1 sin θ1 + L2 sin(θ1 + θ2)


 , (A.20)

we obtain a full system of equations relating the input to the output.

A.6.2 Linearization

Prove that u∗ = 0, q∗ = 0, θ∗1 = 0, θ∗2 = 0, y∗ = 0 is an equilibrium. Explain
physically that this is as expected. Do you see other equilibria?
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Introduce as state variables x1 = q, x2 = θ1, x3 = θ2, x4 = q̇, x5 = θ̇1, x6 = θ̇2.
Derive the input/state/output equations; i.e., write the equations in the form

dx

dt
= f(x, u), y = h(x). (A.21)

Note that in order to do this, you have to invert a matrix. It is recommended
that you use Mathematica©: who wants to invert matrices by hand if you can
let a computer do this for you? Use Mathematica© to linearize the nonlinear in-
put/state/output equations around the equilibrium that you derived. You should
obtain the following equations:

(M +M1 +M2)
d2∆q

dt2
+ (L1M1 + L1M2)

d2∆θ1
dt2

+ L2M2
d2∆θ2
dt2

= ∆u,

(L1M1 + L1M2)
d2∆q
dt2

− g(L1(M1 +M2) + L2M2)∆θ1

+L2
1(M1 +M2)

d2∆θ1
dt2

− gL2M2∆θ2 + L1L2M2
d2∆θ2
dt2

= 0,
(A.22a)

L2M2
d2∆q
dt2

− gL2M2∆θ1 + L1L2M2
d2∆θ1
dt2

−gL2M2∆θ2 + L2
2M2

d2∆θ2
dt2

= 0,
(A.22b)




∆q
∆q + L1∆θ1

∆q + (L1 + L2)∆θ1 + L2∆θ2


 = ∆y. (A.22c)

Or in state space form,

d∆x
dt

= A∆x+B∆u, ∆y = C∆x,

with

A=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 − g(L1(M1+M2)+L2M2)
L1M

− gL2M2

L1M
0 0 0

0 g(L1M1(M+M1+M2)+L2M2(M+M1))

L2
1
MM1

gM2(−L1M+L2(M+M1))

L2
1
MM1

0 0 0

0 − gM2

L1M1

g(L1(M1+M2)−L2M2)
L1L2M1

0 0 0




,

B =




0
0
0
1
M

− 1
L1M

0



, C =




1 0 0 0 0 0
1 L1 0 0 0 0
1 L1 + L2 L2 0 0 0


 .

A.6.3 Analysis

For what values of the system parameters M,M1,M2, L1, L2 (all > 0) is this
linearized system stable/asymptotically stable/unstable? Controllable? Observ-
able? Is the equilibrium a stable/asymptotically stable/unstable equilibrium of
the nonlinear system?
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Assume henceforth the following reasonable choices for the system parameters:
M = 100 kg,M1 = 10 kg,M2 = 10 kg, L1 = 2 m, L2 = 1 m.

Use MATLAB© to compute the eigenvalues of the resulting system matrix A
and plot them in the complex plane. Plot the Bode diagrams, with u as input
and y as output. Note that you should have three diagrams, one for each of the
output components.

A.6.4 Stabilization

• We first stabilize the system using state feedback. The system is sixth
order, the control is a scalar. Thus we have to choose six eigenvalues,
λ1, λ2, λ3, λ4, λ5, λ6, in the left half plane and compute the six com-
ponents of the feedback gain such that the closed loop system matrix
has the desired eigenvalues. In order to pick the λs (and from there
the feedback gain matrix), you should experiment a bit, using the lin-
earized system. Use the following initial conditions in your experiment:
x1(0) = −5m, x2(0) = 0, x3(0) = 0, x4(0) = 0, x5(0) = 0, x6(0) = 0. This
corresponds to making a maneuver: the cart is moved from one equilibrium
position to the desired one, with the cart at the origin. You should choose
the λs such that the transient response does not have excessive overshoot
and a reasonable settling time. We suggest that you try the following λs:
−7.5± 0.3i,−6.5± 0.9i,−3.3± 2.3i. Plot the transient responses x1, x2, x3
for the linearized system, and subsequently for the nonlinear system, with
your chosen λs. Explain why you liked your λs better than the others that
you tried.

Note that you obtained a good transient response notwithstanding a rather
high initial disturbance. Observe in particular the interesting small time
behavior of x1 = q.

• Obtain a state observer based on the measured output y and the input u.
Choose the eigenvalues of the error dynamics matrix µ1, µ2, µ3, µ4, µ5, µ6

by considering the initial estimation error e1(0) = 5m, e2(0) = 0, e3(0) =
0, e4(0) = 0, e5(0) = 0, e6(0) = 0, and tuning the µs so that the resulting
error transients e1, e2, e3 show a reasonable settling time without excessive
overshoot. Plot these transients for the µs that you selected, for the lin-
earized system, and subsequently for the nonlinear system. Note that the
observer gains are not unique in this case, since the observed output is
three-dimensional. In this case, MATLAB© optimizes the chosen gains in
a judicious way: it minimizes the sensitivity of the error dynamics eigen-
values.

It appears not easy to obtain a reasonable performance for the observer.
The following µs gave us some of the best results: −10,−10,−5,−3,−1,−1.

• Combine the state feedback gains and the observer gains obtained be-
fore in order to obtain a controller from y to u. Test this controller by
plotting the transient responses of x1, x2, x3 for the linearized system,
and subsequently for the nonlinear system, with the initial disturbances:
x1(0) = −5m, x2(0) = 0, x3(0) = 0, x4(0) = 0, x5(0) = 0, x6(0) = 0. This
corresponds to the same maneuver used before. The initial state estimates
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are x̂(0) = x(0), x̂(0) = x(0)+ a small error, and x̂(0) = [1, 0, 0, 0, 0, 0].
The results for the first two initial conditions are good (explain), but not
for the third. Conclude that in order to use this controller, one should
always reset the observer so that its initial state estimate is accurate.

• Test the robustness of your controller against parameter changes. More
concretely, you have obtained a controller that stabilizes the equilibrium
for specific values of M,M1,M2, L1, L2. Now keep the controller fixed, and
compute the range of values of M for which this controller remains stabi-
lizing.

A.7 Notes and References

The advent of easy-to-use software packages such as MATLAB© and
Mathematica© greatly enhances the applicability of mathematical methods
in engineering. There are many recent texts (for example [36]) that aim at famil-
iarizing students with MATLAB©, applied to the analysis of linear systems and
the design of control systems. The impossibility of stabilizing a point mass using
memoryless position feedback in A.1 is a well-known phenomenon. In [52] it is
also used as an example motivating the need for control theory. The occurrence
of an adverse response in thermal systems, demonstrated in A.2, is a typical non
minimum phase phenomenon. It implies, for example, that high-gain feedback
leads to instability and illustrates the need for careful tuning of controller gains.
The interesting dynamical response of (weakly) coupled oscillators illustrated in
A.3 was already observed by Huygens, and has been the subject of numerous
analyses since. The need for control in order to stabilize a geostationary satellite
in its station-keeping equilibrium position explained in A.4 is a convincing and
very relevant example of a control problem. There is a large literature on this
and related topics. See [14] for a recent reference and an entry into the literature.
In A.5 we discuss only some very simple aspects of the dynamics of a motor-
bike. Designing an autonomous device (for example, a robot) that stably rides
a bicycle is one of the perennial challenges for control engineering laboratories.
Stabilization of a double pendulum in its upright positions (see A.6) is a neat
application of the theory of stabilization of a nonlinear system around a very
unstable equilibrium. Many control laboratories have an experimental setup in
which such a control law is implemented. Note that our results only discuss local
stability. Recent papers [6] and experimental setups implement also the swing-up
of a double pendulum. Such control laws must, of course, be nonlinear: the double
pendulum starts in an initial position in which both pendula hang in a downward
position, and by exerting a force on the supporting mass, the pendula swing up
to the stabilized upright equilibrium.
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Appendix B

Background Material

B.1 Polynomial Matrices

In this section we have collected some results on polynomial matrices that we
have used in the book. We state the results for polynomial matrices with real
coefficients. However, all the results hold for matrices with entries in C or in
a more general Euclidean ring, and the reader is encouraged to translate these
results for matrices with entries in the integers. In the latter case degree should
be replaced by absolute value. Unless otherwise stated, R(ξ) is a fixed polynomial
matrix in Rg×q[ξ]. To streamline the proofs we will sometimes cover only the
square case (g = q) in full detail. The general case is then left as an exercise.

Theorem B.1.1 (upper triangular form) There exists a unimodular matrix
U(ξ) ∈ Rg×g[ξ] such that U(ξ)R(ξ) = T (ξ) and Tij(ξ) = 0 for i = 1, . . . , n, j < i.

Proof Consider the first nonzero column of R(ξ). Choose in that column a
nonzero element of minimal degree and use that element to carry out division
with remainder on the other elements in that column. More precisely, let j1 be the
index of the first nonzero column. If necessary interchange rows (premultiplication
by a permutation matrix) so as to achieve that the (1, j1) element is nonzero and
has minimal degree within the j1th column. Call this element R1,j1(ξ). Division
with remainder yields

Ri,j1(ξ) = Qi,j1(ξ)R1,j1(ξ) + ri,j1(ξ), deg ri,j1(ξ) < degRi,j1(ξ), i = 2, . . . , g.



412 Appendix B. Background Material

Consider




1 0 · · · · · · 0

−Q2,j1(ξ) 1 0 · · · 0
...

. . .

...
. . .

−Qg,j1(ξ) 0 · · · 0 1




, R·,j1(ξ) =




R1,j1(ξ)

r2,j1(ξ)
...
...

rg,j1(ξ)




, (B.1)

where R·,j1(ξ) denotes the j1th column of R(ξ). Obviously, the matrix in (B.1)
is unimodular. Search for the nonzero entry of minimal degree in the right-hand
side of (B.1). Interchange the first row and the row in which this entry appears.
Again, this is achieved by premultiplication by a permutation matrix. Repeat the
division with remainder procedure. Every time that we apply this procedure, the
minimal degree decreases by at least one. Also, we can apply the procedure as
long as more than one entry in the j1th column is nonzero. Since degrees are
always nonnegative, this process stops within a finite number of steps. We have
then transformed the j1th column into a column consisting of a nonzero element
in the top entry and all the other elements being zero. Remember that this has
been achieved by premultiplication by unimodular matrices. Call the product of
these unimodular matrices (from right to left in the order in which they appear)
U1(ξ). We then have obtained

U1(ξ)R(ξ) =




0 · · · 0 R̃1,j1(ξ) ∗ · · · ∗
...

... 0
...

...
...

...
...

...
...

0 · · · 0 0 ∗ · · · ∗




(an asterisk denotes an arbitrary element).

If j1 = q or g = 1, we are done. Otherwise, we consider the submatrix of the
transformed matrix U1(ξ)R(ξ) consisting of the last q−j1 columns and the second
through the last row. Repeat the whole procedure. It follows that there exists a
unimodular matrix U2(ξ) such that

U2(ξ)U1(ξ)R(ξ) =




0 · · · 0 R̃1,j1(ξ) ∗ · · · · · · · · · · · · · · · ∗
...

... 0 0 · · · 0 R̃2,j2(ξ) ∗ · · · ∗
...

...
...

...
... 0

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 ∗ · · · ∗




.

Finally, after a finite number of steps, we end up with a matrix of the required
form. �

Remark B.1.2 The lower triangular form is defined analogously. �
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Theorem B.1.3 A unimodular matrix U(ξ) ∈ Rg×g[ξ] can be written as the
product of elementary unimodular matrices.

Proof Define the unimodular matrix V (ξ) as V (ξ) := U−1(ξ). Inspection of the
proof of Theorem B.1.1 yields that the triangular form of V (ξ) is obtained by
premultiplication by unimodular matrices of the form (all entries that are not
indicated explicitly or by dots are zero)




1

. . .

1
−qlj(ξ) 1

...
. . .

...
. . .

...
. . .

−qgj(ξ) 1




=

g∏

i=l




1

. . .

1
0 1
...

. . .

−qij(ξ)
. . .

...
. . .

0 1




(B.2)

and permutation matrices (to interchange two rows). Furthermore, every factor
on the right-hand side of (B.2) is the product of elementary unimodular matrices,
since (without loss of generality we assume that the polynomial term appears in
the first column)




1

. . .
k∑

i=0

qiξ
i 1

. . .

1




=

k∏

i=0




1

. . .

qiξ
i 1

. . .

1




,
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and if qi 6= 0, we have



1

. . .

qiξ
i 1

. . .

1




=




1

. . .

qi
. . .

1







1

. . .

ξi 1

. . .

1







1

. . .
1

qi
. . .

1




,

The conclusion is that the upper triangular form of V (ξ) is obtained by premulti-
plication by elementary unimodular matrices, sayNk(ξ)DkMk · · ·N1(ξ)D1M1V (ξ) =
T (ξ). Since T (ξ) is unimodular, its diagonal elements are nonzero constants. With-
out loss of generality we may, in fact, assume that the elementary factors have
been chosen such that the diagonal elements of T (ξ) are all equal to 1. Now
consider the last column of T (ξ). Since its last element is 1, we can annihilate
the upper part of that column by premultiplication by matrices of the form
(B.2). Analogously, we can use the remaining diagonal elements to annihilate
the elements above them. All these operations correspond to premultiplication
by matrices of the form (B.2). We have seen that these matrices can be written
as the product of elementary factors. Combining this with the triangularization
part of the proof, we conclude that by premultiplication of V (ξ) by elementary
unimodular matrices, we obtain the identity matrix:

Nm(ξ)DmMm · · ·N1(ξ)D1M1V (ξ) = I.

Since V (ξ) is the inverse of U(ξ),it follows that

U(ξ) = Nm(ξ)DmMm · · ·N1(ξ)D1M1.

�

Theorem B.1.4 (Smith form, square case) Let R(ξ) ∈ Rg×q[ξ]. Assume
g = q. There exist unimodular matrices U(ξ), V (ξ) ∈ Rg×g such that

1. U(ξ)R(ξ)V (ξ) = diag(d1(ξ), . . . , dg(ξ)).

2. di(ξ) divides di+1(ξ); i.e., there exist (scalar) polynomials qi(ξ) such that
di+1(ξ) = qi(ξ)di(ξ), i = 1, . . . , g − 1.

Proof The proof is an algorithm. Assume that R(ξ) is nonzero. Apply row and
column permutations so as to achieve that the nonzero element of minimal degree
of R(ξ) appears at the (1, 1) spot. Use this element to carry out division with
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remainder on both the first column (premultiplication by unimodular matrices)
and the first row (postmultiplication by unimodular matrices). Repeat the whole
procedure as many times as possible. Notice that every time, the degree of the
nonzero element of minimal degree decreases by at least one. Also, as long as
the first row or column contains at least two nonzero elements, we can apply the
procedure once more. Since degrees are nonnegative, this implies that within a
finite number of steps we reach the following situation:




∗ 0 · · · 0
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗


 . (B.3)

Either the (1, 1) element in (B.3) divides all the other elements in the matrix, or
there exists a column that contains an element that is not a multiple of the (1, 1)
element. If the latter is true, add this column to the first column of (B.3) and
start all over again. Again after a finite number of steps we arrive at a matrix
of the form (B.3), but with a (1, 1) element of strictly smaller degree. As long as
there is an element in the matrix that is not divisible by the (1, 1) element, we
can repeat this process. As a consequence, we obtain, in a finite number of steps,
a matrix of the form (B.3) where the (1, 1) element divides all the other elements.
Then we move on to the (g − 1) × (g − 1) right-lower submatrix and apply the
whole procedure to that matrix. Of course, the (1, 1) element from the previous
step keeps dividing the elements of the (g − 1) × (g − 1) right-lower submatrix,
and hence we obtain a matrix of the form




∗ 0 · · · · · · 0
0 ∗ 0 · · · 0
... 0 ∗ · · · ∗
...

...
...

...
0 0 ∗ · · · ∗



. (B.4)

The (1, 1) element of (B.4) divides all the other elements of the matrix, and the
(2, 2) element divides all the elements of the (g− 2)× (g− 2) right-lower matrix.
Next we move on the (g − 3)× (g − 3) right-lower matrix, and so on.

Finally, we end up with the desired diagonal matrix. �

Remark B.1.5 If R(ξ) is not square, then the Smith form can also be defined,
and it is obtained via the same algorithm. If R(ξ) is wide (g < q) or if R(ξ) is
tall (g > q), the Smith forms are given by



d1(ξ) 0 · · · 0

. . .
...

...
dg(ξ) 0 · · · 0


 ,




d1(ξ)

. . .

dq(ξ)
0 · · · 0
...

...
0 · · · 0
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respectively. �

Theorem B.1.6 Let r1(ξ), . . . , rk(ξ) ∈ R[ξ]. Assume that r1(ξ), . . . , rk(ξ) have
no common factor. Then there exists a unimodular matrix U(ξ) ∈ Rk×k[ξ] such
that the last row of U(ξ) equals [r1(ξ), . . . , rk(ξ)].

Proof Define the vector r(ξ) := [r1(ξ) · · · rk(ξ)]. Take an entry of r(ξ) of minimal
degree. Carry out “division with remainder” on the other entries. This comes down
to right multiplication by a unimodular matrix V1(ξ). Now consider the result
r(ξ)V1(ξ). Take an entry of r(ξ)V1(ξ) of minimal degree and repeat the procedure
of the first step. Again, this can be seen as postmultiplication by a unimodular
matrix V2(ξ). After repeating this procedure as many times as possible, we get
the following result:

r(ξ)V1(ξ)V2(ξ) · · ·Vℓ(ξ) =
[
0 · · · 0 g(ξ) 0 · · · 0

]
. (B.5)

It is easy to see that g(ξ) is a common divisor of r1(ξ), . . . , rk(ξ), and by the
coprimeness assumption it follows that we may assume that in fact g(ξ) = 1;
see Exercise B.1. Finally, by postmultiplication by a suitable unimodular matrix
Vl+1(ξ), we get

r(ξ)V1(ξ)V2(ξ) · · ·Vℓ+1(ξ) =
[
0 · · · 0 1

]
. (B.6)

Define V (ξ) := V1(ξ)V2(ξ) · · ·Vℓ+1(ξ). Then V (ξ) is unimodular, and hence
U(ξ) := V −1(ξ) is also unimodular. From (B.6) it follows that

r(ξ) =
[
0 · · · 0 1

]
U(ξ).

This implies that the last row of U(ξ) is r(ξ), and the proof is finished. �

As a bonus we obtain from the proof of Theorem B.1.6 the following result, called
the Bezout equation.

Corollary B.1.7 (Bezout) Let r1(ξ), . . . , rk(ξ) ∈ R[ξ]. Assume that r1(ξ), . . . , rk(ξ)
have no common factor. Then there exist polynomials a1(ξ), . . . , ak(ξ) ∈ R[ξ],
such that

r1(ξ)a1(ξ) + · · ·+ rk(ξ)ak(ξ) = 1.

Proof From (B.6) it follows that there exists a unimodular matrix V (ξ) such
that

r(ξ)V (ξ) =
[
0 · · · 0 1

]
.

This shows that we can take

a1(ξ) := V1k(ξ), . . . , ak(ξ) := Vkk(ξ).

�
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B.2 Partial Fraction Expansion

Theorem B.2.1 (Partial fraction expansion, scalar case) Let p(ξ), q(ξ) ∈
R[ξ] and deg q(ξ) = m ≤ n = deg p(ξ). Suppose p(ξ) =

∏N
i=1(ξ − λi)

ni , with
λi 6= λj for i 6= j. Then there exist a0 and aij ∈ C such that

q(ξ)

p(ξ)
= a0 +

N∑

i=1

ni∑

j=1

aij
(ξ − λi)j

.

The proof of Theorem B.2.1 is divided into two parts.

Lemma B.2.2 Let p(ξ), q(ξ) ∈ C[ξ], p(ξ) =
∏N

i=1(ξ − λi)
ni , and deg q(ξ) <

deg p(ξ). (Notice the strict inequality.) Then there exist polynomials qi(ξ) ∈ C[ξ],
with deg qi(ξ) < ni for i = 1, . . . N , such that

q(ξ)

p(ξ)
=

N∑

i=1

qi(ξ)

(ξ − λi)ni
.

Proof The proof goes by induction on N . For N = 1 there is nothing to prove.
Suppose that the statement is true for all q(ξ), p(ξ) for which p(ξ) has at most
N distinct roots, and let p(ξ) have N + 1 distinct roots. Factorize p(ξ) as

p(ξ) = p1(ξ)p2(ξ),

where p1(ξ) and p2(ξ) have no common factor, and the number of distinct roots
of both p1(ξ) and p2(ξ) is at most equal to N . By Corollary B.1.7 there exist
polynomials a1(ξ) and a2(ξ) such that

a1(ξ)p1(ξ) + a2(ξ)p2(ξ) = 1.

Define bi(ξ) := q(ξ)ai(ξ) (i = 1, 2). Then

b1(ξ)p1(ξ) + b2(ξ)p2(ξ) = q(ξ).

By (2.25), there exist r1(ξ) and c1(ξ) such that

b1(ξ) = c1(ξ)p2(ξ) + r1(ξ), with deg r1(ξ) < deg p2(ξ).

This implies
r1(ξ)︸ ︷︷ ︸
b̃1(ξ)

p1(ξ) + (b2(ξ) + c1(ξ)p1(ξ))︸ ︷︷ ︸
b̃2(ξ)

p2(ξ) = q(ξ).

Suppose that deg b̃2(ξ) ≥ deg p1(ξ). Then

deg q(ξ) = deg(r1(ξ)p1(ξ) + (b2(ξ) + c1(ξ)p1(ξ))p2(ξ))

= deg((b2(ξ) + c1(ξ)p1(ξ))p2(ξ))

= deg(b2(ξ) + c1(ξ)p1(ξ)) + deg p2(ξ)

≥ deg(p1(ξ)) + deg(p2(ξ)) = deg p(ξ).
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This contradicts the assumption that deg q(ξ) < deg p(ξ), and hence deg b̃2(ξ) <
deg p1(ξ). Define q2(ξ) := b̃1(ξ) and q1(ξ) := b̃2(ξ). Then

q2(ξ)p1(ξ) + q1(ξ)p2(ξ) = q(ξ), deg qi(ξ) < deg pi(ξ), i = 1, 2.

Now,
q1(ξ)

p1(ξ)
+
q2(ξ)

p2(ξ)
=
q2(ξ)p1(ξ) + q1(ξ)p2(ξ)

p1(ξ)p2(ξ)
=
q(ξ)

p(ξ)
.

By the induction hypothesis,
q1(ξ)

p1(ξ)
and

q2(ξ)

p2(ξ)
can be expanded in the desired

form. The statement follows. �

Lemma B.2.3 Let p(ξ) = (ξ − λ)n and q(ξ) be a polynomial of degree smaller
than n. There exist a1, . . . , an ∈ C such that

q(ξ)

p(ξ)
=

n∑

j=1

aj
(ξ − λ)j

. (B.7)

Proof Let a(ξ) = a1(ξ − λ)n−1 + a2(ξ − λ)n−2 + · · ·+ an. This is a polynomial
of degree ≤ n− 1. For (B.7) to be true we should have

q(ξ) =
n∑

j=1

aj(ξ − λ)(n−j) = a(ξ). (B.8)

By equating the coefficients of the left-hand side and the right-hand side of (B.8),
we obtain the values of the ajs. �

Proof of Theorem B.2.1 By (2.25) there exist polynomials r(ξ), a(ξ) such

that q(ξ) = p(ξ)a(ξ) + r(ξ), with deg r(ξ) < deg p(ξ). This implies that q(ξ)
p(ξ)

=

a(ξ) + r(ξ)
p(ξ)

. It is easily seen that since deg q(ξ) ≤ deg p(ξ), a(ξ) is a constant,

say a0. The theorem now follows by first applying Lemma B.2.2 to r(ξ)
p(ξ)

and
subsequently Lemma B.2.3 to the result. �

B.3 Fourier and Laplace Transforms

In order to make this book reasonably self-contained, we provide in this section
of the appendix for easy reference the basics about the Fourier and Laplace
transforms. We assume, however, that the reader has some previous acquaintance
with these ideas. We start by explaining the notation. In this appendix, and
throughout the book, we use the following notation. Let A be a (possibly infinite)
interval in R, and B = Rn or Cn for some n ∈ N. An important family of maps
are the Lp-functions. For 1 ≤ p < ∞,Lp(A,B) denotes the set of maps from A
to B such that

(

∫

A

‖f(t)‖pdt)1/p <∞. (B.9)
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If (B.9) holds, then the left-hand side is defined to be the Lp-norm of f , denoted
by ‖f‖Lp . The space L∞(A,B) denotes the set of maps from A to B with the
following property: f ∈ L∞(A,B) if f : A → B and if there exists M < ∞ such
that

‖f(t)‖ ≤M for almost all t ∈ A. (B.10)

The smallestM for which (B.10) holds is defined to be the L∞-norm of f , denoted
by ‖f‖L∞

. The spaces Lp(A,B) for 1 ≤ p ≤ ∞ are normed linear spaces (in fact,
Banach spaces, but we do not need this property). The space L2(A,B) has even
more structure. It is a Hilbert space with the inner product defined as

< f1, f2 >L2
:=

∫

A

f̄T
1 (t)f2(t)dt.

The fact that it is a Hilbert space implies that if fk is a Cauchy sequence in
in L2(A,B), i.e., for k ∈ N and if for all ǫ > 0, there exists an N such that
‖fk′ − fk′′‖L2

< ǫ for k′, k′′ > N , then there exists an f ∈ L2(A,B) such that
fk −→

k→∞
f , with convergence understood in the sense of L2; i.e.,

∫

A

‖f(t)− fk(t)‖2dt −→
k→∞

0.

B.3.1 Fourier transform

Let f : R → C. Assume first that f is integrable; i.e., f ∈ L1(R,C). Let ω ∈ R,
and define

f̂(iω) =

+∞∫

−∞

f(t)e−iωtdt. (B.11)

Obviously, |f̂(iω)| ≤ ‖f‖L1
, and hence f̂ : R → C is bounded; i.e., f̂ ∈ L∞(R,C).

The function f̂ is called the Fourier transform of f . Sometimes, in order to
emphasize that (B.11) is defined for L1-functions, it is called the L1-Fourier
transform. The Fourier transform can nicely be generalized to L2-functions as
follows. Let f ∈ L2(R,C). Define fT : R → C as

fT (t) =

{
f(t) for |t| ≤ T,
0 for |t| > T.

Then it can be shown that for all T ∈ R, fT ∈ L1(R,C). Hence its L1-Fourier
transform, f̂T , is well-defined. The Fourier transforms f̂T have the following in-
teresting behavior for T → ∞. It can be shown that there exists a function
f̂ ∈ L2(R,C) such that

lim
T→∞

+∞∫

−∞

|f̂(iω)− f̂T (iω)|2dω = 0.

This limit function f̂ is called the l.i.m. (limit-in-the-mean), or the L2-Fourier
transform of f . Since for f ∈ L1(R,C) ∩ L2(R,C), the L1- and L2-Fourier trans-
forms coincide, the same notation, f̂ , is used for both.
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The advantage of using the L2-Fourier transform instead of the L1-Fourier trans-
form lies in the fact that it maps L2(R,C) into L2(R,C), which makes it possible
to define the inverse transform. Indeed, for the L1-Fourier transform, the inverse
transform presents difficulties, since the L1-transform of f ∈ L1(R,C) belongs to
L∞(R,C), but in general not to L1(R,C) nor to L2(R,C). Thus if in turn we want
to calculate the transform of f̂ , we run into difficulties, since

+∞∫

−∞

f̂(iω)eiωtdω (B.12)

may not be well-defined, at least not as an ordinary integral, when f̂ ∈ L1(R,C). A
second feature of the L2-Fourier transform is the following. Let f, g ∈ L2(R,C).
Denote by f̂ , ĝ their L2-Fourier transform. Let < ·, · >L2

denote the L2-inner
product. Then

+∞∫

−∞

f̂(iω)eiωtdω =
1

2π
f(t) a.e., (B.13)

< f, g >L2
=

1

2π
< f̂, ĝ >L2

, (B.14)

‖f‖L2
=

1√
2π

‖f̂‖L2
. (B.15)

These formulas have nice interpretations. The left-hand side of (B.13) is called the
inverse Fourier transform. Note that it differs from the Fourier transform only in
that the term eiωt instead of e−iωt appears in the integral. Formula (B.13) states
that the inverse L2-Fourier transform of f̂ equals f up to the factor 1

2π
. Formula

(B.14) states that the L2-Fourier transform preserves the L2-inner product up to
the factor 1

2π
. Applying (B.14) with g = f yields (B.15), which states that the

L2-Fourier transform preserves the L2-norm up to a factor 1√
2π

.

One of the reasons for the importance of Fourier transforms is their interplay
with convolutions. Thus, let h, f ∈ L1(R,C). Define their convolution by

(h ∗ f)(t) :=
+∞∫

−∞

h(t− t′)f(t′)dt′. (B.16)

Then it is easy to show that h ∗ f ∈ L1(R,C), and that

ĥ ∗ f = ĥf̂ . (B.17)

In the above formula, all the transforms should be interpreted as L1-Fourier
transforms. However, if h ∈ L1(R,C) and f ∈ L2(R,C), then (B.16) is still well-
defined. Indeed, h ∗ f ∈ L2(R,C), and in fact, (B.17) holds. Note, however, that

now ĥ ∗ f and f̂ are L2-Fourier transforms, whereas ĥ is the L1-Fourier transform.

Similarly as with convolutions, the Fourier transform also acts very conveniently
on differential operators. Thus if f ∈ L1(R,C) is such that d

dt
f ∈ L1(R,C), then

d̂

dt
f(iω) = iωf̂(iω).
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More generally, if p(ξ) ∈ R[ξ] is such that p( d
dt
)f ∈ L1(R,C), then

̂
p(
d

dt
)f(iω) = p(iω)f̂(iω).

Similar expressions hold for the L2-Fourier transform.

The Fourier transform is easily extended to vector- or matrix-valued functions,
and there are obvious analogues of the above formulas for convolutions and dif-
ferential operators, but there is no need to show the formulas explicitly.

B.3.2 Laplace transform

Let s ∈ C. Denote by exps : R → C the exponential function defined by exps(t) :=
est. Let f ∈ R → C, and consider the formula

f̂(s) =

+∞∫

−∞

f(t)e−stdt. (B.18)

Note that the improper integral in (B.18) converges if f exps ∈ L1(R,C). If such
an s ∈ C exists, then we call the function f Laplace transformable. In general,
(B.18) defines a function from a subset of C to C. Such a function (a map from
a subset of C into C) is called a complex function; the particular function f̂ is
called the two-sided Laplace transform of f . The set of s ∈ C for which (B.18)
exists is called the region of convergence of f̂ . Note that the s ∈ C such that
f exps ∈ L1(R,C) defines a vertical strip in C, but this strip may be closed, (half-
) open, a half-space, or all of C (or even empty, in which case f is not Laplace
transformable).

Laplace transforms have properties that are very similar to those of Fourier trans-
forms. In particular, for the convolution h ∗ f , there holds

ĥ ∗ f(s) = h(s)f(s),

and the region of convergence of ĥ ∗ f contains the intersection of those of ĥ and
ĝ.

The one-sided Laplace transform is defined for functions f : [0,∞) → C and is
given by

f̂(s) =

∞∫

0

f(t)e−stdt.

The region of convergence is now a half-plane {s ∈ C|Re(s) ≥ σ} or {s ∈
C|Re(s) > σ} or all of C.

B.4 Notes and References

The theory of polynomial matrices is a special case of the theory of rings. There are
numerous books in mathematics and in systems theory that treat these topics. For
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introductory mathematics texts, see for example [34, 43], and for systems theory
references, see [8, 48, 63]. Fourier and Laplace transforms are central techniques
in systems and control theory. See [50] for a mathematical introduction to Fourier
analysis.

B.5 Exercises

B.1 Prove that g(ξ) in (B.5) is equal to the greatest common divisor of
r1(ξ), . . . , rk(ξ). (You have to prove that g(ξ) divides r1(ξ), . . . , rk(ξ) and
that moreover, every common divisor of r1(ξ), . . . , rk(ξ) divides g(ξ)).

B.2 Give functions f : R → C such that 1
1+s

is its two-sided Laplace transform
with region of convergence

1. {s ∈ C|Re(s) < −1}.
2. {s ∈ C|Re(s) > −1}.

B.3 Prove Theorem 8.2.1, Part (ii)′. Note that the transforms involved are the
L2-Fourier transforms for û and ŷ, and the L1-Fourier transform for H.

B.4 Consider the system (8.5). Let H be its impulse response. Compute its
Fourier transform. Note that since H ∈ L1(R,R) ∩ L2(R,R), the Fourier
transform is both the L1- and the L2-Fourier transform. Prove that the
Fourier transform Ĥ(iω) = 2 sinω∆

ω
does not belong to L1(R,C), but that it

belongs to L2(R,C). Compute the L2-Fourier transform of Ĥ. This exercise
illustrates the need of L2-transforms.



Notation

Symbol Short description Page

R+ set of nonnegative real numbers
Z+ set of nonnegative integers
Rn1×n2 set of real n1 × n2 matrices
N set of positive integers
Z set of integers
Q set of rational numbers
R set of real numbers
C set of complex numbers

WT set of functions T → W 9
σ, σt shift-operator 16

Ck(R,Rq) set of k times continuously differentiable functions 22
R[ξ] set of polynomials with real coefficients 29
Rn1×n2 [ξ] set of real polynomial n1 × n2 matrices 29
R•×n[ξ] set of real polynomial matrices with n columns 29
C∞(R,Rq) set of infinitely differentiable functions 34

L
loc
1 (R,Rq) set of locally integrable functions 34
φ ∗ w convolution product 40
deg degree of polynomial 44
det determinant 45

P (k)(ξ) kth formal derivative of polynomial 72(
j
ℓ

)
Binomial coefficient 72

Tr trace 151
C controllabilty matrix 168
im image of linear map 172
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O observability matrix 182
ker kernel of linear map 184
χA(ξ) characteristic polynomial of the square matrix A 278
exps exponential function 289
L1(R,R

q) set of integrable functions 289
L2(R,R

q) set of square integrable functions 290
E(s) exponential behavior 292
Σn,m set of systems with m inputs and n states 326
Σcont

n,m set of controllable systems with m inputs and n states 329
Σn,m,p set of systems, n states, m inputs, and p outputs 350
Lp(R,R

q) 418
L∞(R,Rq) set of bounded functions 419
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Index

A
A-invariant subspace, 168
actuator, xv, 371
admissible controllers, 374
adverse response, 299
affine subspace, 90
algebraic curve in R2, 210
algebraic multiplicity, 136
algebraic set, 210
algebraic variety, 332
almost

all, 35
everywhere, 35

annihilate, 278
anticipating

strictly non-, 93
anticipating, non-, 93
asymptotic stabilizability, 344
asymptotically stable, 268
attractor, 268
autonomous

behavior, 69
system, 68, 79

auxiliary variables, 2

B
backward shift, 16

band-pass, 303
bandwidth, 303
behavior, xviii, 2, 3, 9
behavioral

difference equation, 17
differential equation, 18
equation representation, 4
equations, 2, 4
inequalities, 5

behavioral approach, xviii
Bezout

equation, 54, 64, 416
generalization, 54, 416
identity, 54
map, 378

black box, xv
Bode plot, 302
Bohl function, 103, 288
bounded input–bounded output-

stability, 272
brachystochrone, xiii

C
calculus of variations, xiv
cancellation, 308
canonical form, 230
Cayley–Hamilton, 169, 173
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certainty equivalence principle, 348,
358

characteristic frequency, 305
characteristic polynomial, 72, 278

closed loop , 324
of autonomous behavior, 81

characteristic time, 305
characteristic values of autonomous

behavior, 72, 81
classical control theory, xiii
closed loop characteristic polyno-

mial, 358
closed loop equations, 323
closed loop poles, 324
column rank, 58
common factor, 54
compact support, 98
compensator, 348
continuous-time systems, 9
control input, xv
controllability, xvi, xix, 156, 157
controllability index, 368
controllability matrix, 168
controllable pair, 168
controller

PI, 396
PID, xi

controller canonical form, 225, 226
convergence in L

loc
1 , 38

convolution product, 40
convolution systems, 99, 289
coprime, 54
Cramer’s rule, 48
critically damped, 306
cut-off frequency, 303

D
damping coefficient, 305
dB, 302
deadbeat observer, 384
deadtime, 299
decade, 302
decibel, 302
detectable, 187, 356
detectable pair, 188
determinism, 132
dimension of state space representa-

tion, 124
discrete-event systems, 9

discrete-time systems, 9
distributed systems, 9
disturbance

attenuation, xvi
rejection, 300

division with remainder, 44
dual system, 386
duality, 182
dynamic control law, 356
dynamic feedback, 323
dynamical, 8

system, 1, 9
with latent variables, 10

E
elementary operations, 49
elementary unimodular matrix, 51
elimination

exact, 213
procedure, 210

equating space, 4, 17, 18
equilibrium, 24

point, 144, 268
solution, 144

equivalence
class, 230
relation, 230

equivalent differential equations, 45
error feedback, 348
estimate, 350
estimation error, 350
Euclidean norm, 34
Euclidean ring, 45
Euler equations, 285
Euler–Lagrange equations, 321, 400
exact elimination, 213
exclusion law, 1
exogenous inputs, xv
exponential behavior, 292
exponential of a matrix, 128, 133
extended state, 357
external

behavior, 7
variable, 7

F
feedback, x, xv, 318

amplifier, xii
compensator, 356
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controller, xv
gain matrix, 323
interconnection, 238
processor, 322
stabilization, 324

feedthrough term, 126
free variable, 84
frequency response, 288
full behavior, 7, 8, 10, 120
full column rank, 58
full row rank, 58

representation, 59, 106
future, 79

G
gain, 301
gain equivalent, 316
geometric multiplicity, 136
governor, x
greatest common divisor, 54

H
H∞ problem, xvii
Hautus tests, 184
Heaviside step function, 297
high-frequency noise, 383
high-frequency roll-off, 303
high-pass, 303
Hurwitz

matrix, 254
polynomial, 254
test, 257

I
i/o stability, 272
image representation, 235
impulse response, 99, 288, 297
independence

of functions, 74
of polynomials, 58

initially at rest system, 101
innovations, 351
input, xviii, 84
input/output partition, 84
input/output equivalent, 142
input/output form, 91
input/state/output systems, 126
instability, 251
integral representation, 34

interconnection, 373
elimination in, 214
feedback, 296
parallel, 238, 296
series, 215, 242, 296
transfer function of, 296

internal model, 348, 351
internal variable, 7
invariant subspace, 168

J
Jordan form, 135

K
Kalman decomposition, 189
kernel representation, 234
kernel, convolution, 98, 99
Kirchhoff’s laws, 5, 6

L
L∞-i/o-stable, 272
Lp-i/o-stable, 272
lag, 17
latent

variable, xix, 2, 5, 206
variable model, 7
variable representation, 7, 10

leading principal minor, 257
left unimodular transformation, 55
linear time-invariant differential sys-

tem, xviii, 18, 28, 31
linearity, 16, 43
linearization, 143, 147, 268, 335, 369
locally integrable, 34
locally specified, 19
low-pass, 303
lower triangular form, 412
LQG problem, xvi
lumped systems, 9
Lyapunov

equation, 259, 263, 266
function, 260
function, quadratic, 262

M
manifest

behavior, 7, 10, 120
dynamical system, 10
mathematical model, 7
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variable, xix, 2, 7, 206
marginal stabilizability, 344
mathematical model, 1, 3
matrix exponential, 128, 133
matrix of proper rational functions,

85
maximally free, 84, 90
maximum principle, xiv
measured outputs, xv
memory, 119, 123
memoryless feedback, 323, 357
minimal polynomial, 278
minimal representation, 59, 106
minimal state representation, 234
minimum phase system, 316
minor, 257
modern control theory, xvii
monic polynomial, 54
multiplicity

algebraic, 136
geometric, 136

N
negative definite, 262
nonanticipating, 93, 99

strictly, 93
nonnegative definite, 262
nonpositive definite, 262
Nyquist plot, 303
Nyquist stability criterion, xiii

O
observability, xvi, xix, 178

index, 368
matrix, 182
of i/s/o systems, 181

observable pair, 182
observer, 347, 350

canonical form, 221, 222
characteristic polynomial, 353
gain matrix, 352
pole placement theorem, 353
poles, 352

octave, 302
open loop characteristic polynomial,

324
open loop control, 318
open loop poles, 324
optimal control, 324

order of compensator, 357
order of state space representation,

124
output, xviii, 84
overcompensation, xi
overdamped, 306
overshoot, 298

P
parallel interconnection, 238
partial fraction expansion

multivariable, 87
scalar, 86, 417

pass-band, 303
peak frequency, 303
peak gain, 303
permutation matrix, 50
phase, 301
PI-controller, 396
PID controller, xi
plant, ix, xv, 322
pole, 308
pole placement

algorithm
behavioral, 377
dynamic, 360
static, 331

in observers, 352
problem, 324

pole/zero diagram, 308
poles, 324
poles of controlled system, 376
polynomial matrix, 44
positive definite, 262
primal system, 386
principal minor, 257
proper, 85

strictly, 85
proper algebraic variety, 332
property of state, 123, 132
Proportional–Integral–Differential

controller, xi

Q
quadratic form, 262

R
rank of polynomial matrix, 58
rational function, 48
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reachable subspace, 174
read-out map, 144
recursivity, 347
reduced order compensator, 367
reduced order observer, 364
regulation, ix
relative degree, 116
relative gain, 303
resonance, 275
resonant frequency, 275, 303
reversed input/output structure, 380
right unimodular transformation, 55

static, 55
ring, 44
robustness, xvi, 258, 386
Routh test, 255
Routh–Hurwitz conditions, 254, 257
row rank, 58

S
sampling theorem, 385
Schur polynomial, 282
semisimple, 251, 253
sensor, xv, 371
separation principle, 348, 358
series interconnection, 214
set of measure zero, 35
settling time, 298
shift-invariance, 16
signal space, 9
similarity

of pairs, 326
of quadruples, 143, 230
of triples, 355

simple root, 251
singular value, 160
singularities, 251
SISO systems, 68
Smith form, 56, 414
solution of differential equation, 31
stability, 251, 268
stabilizable, 376

behavior, 176
pair, 177, 334

stabilization, xvi, 333
of nonlinear systems, 368

state
controllable, 168
evolution function, 144

observability, 181
observer, 350
system, 357
transition matrix, 137

state space, 124
representation problem, 221
model, xvi, 123
transformations, 142

static feedback, 323, 357
static gain, 298
static right unimodular transforma-

tion, 55
steady state, 298
step response, 297
strictly nonanticipating, 93
strictly proper

input/output system, 94
matrix of rational functions, 85

strong solution, 33
structural stability, 248
superposition principle, 16
Sylvester

equation, 379
resultant, 196, 379

system with memory, 357

T
three-term controller, xi
time axis, 9
time-invariant, 16, 43
time-reversible, 25
timeconstant, 299
to-be-controlled-outputs, xv
tracking, xvi, 300
trajectory optimization, ix, xiii
transfer function, xvi, 288, 292
transfer matrix, 86
transition matrix, 137
trim canonical form, 230

U
uncontrollable

mode, 334
pole, 334
polynomial, 334, 361, 376

uncontrollable modes, 176
underdamped, 306
undershoot, 299
unimodular matrix, 47
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unit step, 297
universum, 3
unobservable

mode, 355
pole, 355
polynomial, 355, 361

unstable, 251, 268
upper triangular form, 56, 411

V
Vandermonde matrix, 79, 112
variation of the constants formula,

131

W
weak solution, 34, 35

Z
zero, 308
zero measure, 35


