UNIVERSITY OF TWENTE.

Matcont Tutorial

A numerical approach to bifurcation anaysis Hil Meijer

Overview

Software

Part 1: Equilibria
 Short review of bifurcations of equilibria Numerical Continuation

Part 2: Periodic and Connecting Orbits Bifurcations of Periodic orbits
 Visualization Connecting Orbits

Motivation

Consider a system of smooth nonlinear ODE's

$$
\begin{equation*}
f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}, \quad \frac{d x}{d t}=f(x, \alpha) . \tag{1}
\end{equation*}
$$

- What are the equilibria? Are they stable?
- Are there any periodic orbits? Are they stable?

Not restricted to one value of α but a range of parameters: A bifurcation diagram classifies regions in parameter space with qualitatively similar dynamics.
A numerical toolbox might be very useful because f is nonlinear.

Capabilities of Auto, Content, Matcont

	A	C	M
time-integration		+	+
continuation of equilibria	+	+	+
detection of branch points and codim 1 bifurcations of equilibria	+	+	+
computation of normal forms for codim 2 bifurcations of equilibria		+	+
continuation of codim 2 equilibrium bifurcations in three parameters		+	
branch-switching from codim 2 equilibria to codim 1 bifurcations of cycles			+

Capabilities of Auto, Content, Matcont

	A	C	M
continuation of limit cycles	+	+	+
computation of phase response curve\& derivative			+
detection of branch points and codim 1 bifurcations of cycles	+	+	+
continuation of codim 1 bifurcations of cycles	+		+
computation of normal forms for codim 1 bifurcations of cycles			+
detection of codim 2 bifurcations of cycles			+
computation of connecting orbits	+		+

Not better or faster than AUTO, but Matcont has a GUI and other features

General Overview of Tutorial

AIM: KNOW that such software exists and FEEL CONFIDENT that you can use it.

Skills come through experience: try, fail and learn.
Part 1 ODEs: Simulations, Numerical Continuation, Equilibria and codimension 1 bifurcations
Part 2 ODEs: Periodic orbits (cycles) and their codim 1 bifurcations, Homoclinic orbits
Part 3 Maps: Fixed points and cycles, codim 1 bifurcations Short presentations (30 min) + 1hr Exercise Tuesday morning part 4 is meant for questions Also if it is about your own model/research.

Overview

Software

Part 1: Equilibria
 Short review of bifurcations of equilibria Numerical Continuation

Part 2: Periodic and Connecting Orbits Bifurcations of Periodic orbits
 Visualization Connecting Orbits

Equilibria

An equilibrium x_{0} satisfies $f\left(x_{0}, \alpha\right)=0$.
It is asymptotically stable if all the eigenvalues of
$A:=D f_{x}\left(x_{0}, \alpha\right)$ have negative real part.
Eigenvalues depend continuously on parameter α. Varying α, an equilibrium loses stability in two ways generically:

(a)
saddle-node

(b)

Hopf

Saddle-Node bifurcation

Two equilibria, one stable and one unstable, collide and disappear.

Saddle-Node bifurcation

Two equilibria, one stable and one unstable, collide and disappear.

Other names: Limit Point (LP), Fold, Tangent bifurcation

Hopf bifurcation

A complex pair of eigenvalues passes through imaginary axis. Normal form: $z^{\prime}=(\alpha+i \omega) z+(c+d i) z|z|^{2}, \quad z \in \mathbb{C}$ c is the Lyapunov coefficient.

Case $c<0$: Supercritical Hopf, soft bifurcation Appearance of a stable periodic orbit

Hopf bifurcation

A complex pair of eigenvalues passes through imaginary axis. Normal form: $z^{\prime}=(\alpha+i \omega) z+(c+d i) z|z|^{2}, \quad z \in \mathbb{C}$ c is the Lyapunov coefficient.

$\alpha<0$

$\alpha=0$

Case $c>0$: Subcritical Hopf, hard bifurcation Disappearance of an unstable periodic orbit

Hopf bifurcation

A complex pair of eigenvalues passes through imaginary axis. Normal form: $z^{\prime}=(\alpha+i \omega) z+(c+d i) z|z|^{2}, \quad z \in \mathbb{C}$ c is the Lyapunov coefficient.

Higher dimensions

Decompose phase space W near equilibrium into invariant unstable, center and stable manifolds:

$$
W=W_{u} \oplus W_{c} \oplus W_{s}
$$

Bifurcations occur on the center manifold W_{c}.

In general, only look at the least stable eigenvalues.
Bifurcations still occur if W_{u} is non-empty.

Hierarchy of Bifurcations of Equilibria and Cycles (Labels as in MatCont)

codim

Normal Forms

- For a Limit Point bifurcation the dynamics restricted to a 1D center manifold is given by

$$
\xi^{\prime}=\alpha+a \xi^{2}+\ldots, \quad \xi \in \mathbb{R}
$$

- For a Hopf bifurcation the dynamics restricted to a 2D center manifold is given by

$$
z^{\prime}=(\alpha+i \omega)+(c+d i) z|z|^{2}+\ldots, \quad z \in \mathbb{C}
$$

When LP or H is detected, Matcont reports a and c on the Matlab command line.
Formulas for a, c are based on center-manifold reduction (not discussed here).

Numerical Continuation

Defining system F with n equations and $n+1$ variables:

$$
F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}, \quad F(x, \alpha)=0 .
$$

We assume $\operatorname{rank}\left(D f_{x, \alpha}\right)=n$, i.e. a regular system.
By the Implicit Function Theorem this defines a curve.
Example: hyperbolic equilibria $f(x, p)=0$.
Locally, we find a curve $x(\alpha)$, since $\operatorname{rank}\left(D f_{x}\right)=n$.
For numerical approximations of the curve:

- Fix a component, e.g. the parameter
- Use additional equation, pseudo-arclength condition

Numerical Continuation Algorithms

Fixing the parameter at every step Without or with tangent vector

Initial point $y_{0} \rightarrow$ Predict new point $\tilde{y}_{1} \rightarrow$ Newton corrections to obtain y_{1}

Numerical Continuation Algorithms

Search for new point in space orthogonal to tangent vector

$$
\left\langle\phi_{0}, \tilde{y}_{1}-\left(y_{0}+h \phi_{0}\right)\right\rangle=0 .
$$

Matcont uses Moore-Penrose, but you could switch.
Initial point $y_{0} \rightarrow$ Predict new point $\tilde{y}_{1} \rightarrow$ Newton corrections to obtain y_{1}

Continuation of equilibria in 1 parameter

We need

- a system $x^{\prime}=f(x, \alpha)$.
- an initial point $y_{0}=\left(x_{0}, \alpha_{0}\right)$ such that $f\left(x_{0}, \alpha_{0}\right) \approx 0$.
- a continuation program.
- assign one parameter to be free, i.e. allow it to vary.
- monitor test functions $h(x, p)$ to detect bifurcations.

Continuation of equilibria in 1 parameter

We need

- a system $x^{\prime}=f(x, \alpha)$.
- an initial point $y_{0}=\left(x_{0}, \alpha_{0}\right)$ such that $f\left(x_{0}, \alpha_{0}\right) \approx 0$.
- a continuation program.
- assign one parameter to be free, i.e. allow it to vary.
- monitor test functions $h(x, p)$ to detect bifurcations.

Test functions; not based on eigenvalues directly

- Limit Point: $h(x, \alpha)=\phi(e n d)$. This uses the IFT!
- Hopf: $h(x, \alpha)=2 A \odot I$. If $A=D f_{x}\left(x_{0}\right)$ has eigenvalues $\lambda_{1 \ldots n}$, then the bi-alternate product $2 A \odot I$ has eigenvalues $\lambda_{i}+\lambda_{j}, \quad 1 \leq i<j \leq n$.

Continuation of bifurcations in 2 parameters

Add more conditions and auxilary variables to the defining system

$$
F: \mathbb{R}^{n+\tilde{n}+2} \rightarrow \mathbb{R}^{n+\tilde{n}+1}, \quad F=\binom{f(x, \alpha)}{s(x, \alpha)}=0 .
$$

$s(x, p)$ is a function defining a Limit Point or Hopf bifurcation.
For a Limit Point $A=D f$ has rank deficiency 1. Define s as the solution of a bordered system

$$
\left(\begin{array}{cc}
A & p \\
q^{\top} & 0
\end{array}\right)\binom{w(x, \alpha)}{s(x, \alpha)}=\binom{0}{1},
$$

with bordering vectors that approximate the true nullspace
$A q_{0}=A^{T} p_{0}=0$ and $\|q\|=\langle p, q\rangle=1$
At a fold bifurcation $s\left(x_{0}, \alpha_{0}\right)=0$.

Continuation of bifurcations in 2 parameters

Add more conditions and auxilary variables to the defining system

$$
F: \mathbb{R}^{n+\tilde{n}+2} \rightarrow \mathbb{R}^{n+\tilde{n}+1}, \quad F=\binom{f(x, \alpha)}{s(x, \alpha)}=0 .
$$

$s(x, p)$ is a function defining a Limit Point or Hopf bifurcation.
For a Hopf bifurcation $A^{2}+\omega^{2}$ / has rank deficiency 2 . Define s as two independent components of g obtained from

$$
\left(\begin{array}{ccc}
A^{2}+\kappa l & p_{1} & p_{2} \\
q_{1}^{T} & 0 & 0 \\
q_{2}^{T} & 0 & 0
\end{array}\right)\binom{w(x, \alpha)}{g(x, \alpha)}=\binom{0_{n \times 2}}{l_{2}},
$$

with auxilary variable $\kappa=\omega^{2}$ and bordering vectors not orthogonal to $\operatorname{Null}\left(A^{2}+\omega^{2} I\right)^{T(*)}$.
At a Hopf bifurcation $g_{j j}\left(x_{0}, \alpha_{0}\right)=0, \quad i, j=1,2$.

Codim 2 points are organizing centers

Codim 2 bifurcation if normal form coefficient vanishes or additional critical eigenvalue.
Locus of new bifurcation curves.

- Cusp; normal form coefficient $a=0$.
- Bogdanov-Takens (BT); double zero eigenvalue.
- Degenerate Hopf (GH); Lyapunov coefficient $c=0$.
- Zero-Hopf; eigenvalue 0 and imaginary pair $\pm i \omega$.
- Double Hopf; two imaginary pairs of eigenvalues

Tutorial: Part 1

Some general remarks:

- Never forget to do simulations as well.
- The continuation adapts stepsize; smaller steps near folds.
- Setting stepsizes for the continuation or initializers requires experience.

Tutorial §2: Defining a system and Simulations Continuation of Equilibria and codim 1 bifurcations of Equilibria

Overview

Software

Part 1: Equilibria
 Short review of bifurcations of equilibria Numerical Continuation

Part 2: Periodic and Connecting Orbits
Bifurcations of Periodic orbits
Visualization
Connecting Orbits

UNIVERSITY OF TWENTE.

Periodic Orbit ~ Limit Cycle

A Periodic Orbit satisfies $x(t+T)=x(t)$ for a minimal period $T>0$. The stability of the cycle is given by its Floquet multipliers μ :
There is always a trivial multiplier $\mu_{1}=1$. The cycle is stable if $\left|\mu_{i}\right|<1, \quad i=$ $2, \ldots, n$. Typically determined as the eigenvalues of the linearization of the
 Poincaré map.

Periodic Orbit ~ Limit Cycle

A Periodic Orbit satisfies $x(t+T)=x(t)$ for a minimal period $T>0$. The stability of the cycle is given by its Floquet multipliers μ :
There is always a trivial multiplier $\mu_{1}=1$. The cycle is stable if $\left|\mu_{i}\right|<1, \quad i=$ $2, \ldots, n$. Typically determined as the eigenvalues of the linearization of the
 Poincaré map.
The cycle may loose stability as upon changing a parameter a multiplier crosses the unit circle: Limit Point bifurcation

Periodic Orbit ~ Limit Cycle

A Periodic Orbit satisfies $x(t+T)=x(t)$ for a minimal period $T>0$. The stability of the cycle is given by its Floquet multipliers μ :
There is always a trivial multiplier $\mu_{1}=1$. The cycle is stable if $\left|\mu_{i}\right|<1, \quad i=$ $2, \ldots, n$. Typically determined as the eigenvalues of the linearization of the
 Poincaré map.
The cycle may loose stability as upon changing a parameter a multiplier crosses the unit circle: Period-Doubling bifurcation

Periodic Orbit ~ Limit Cycle

A Periodic Orbit satisfies $x(t+T)=x(t)$ for a minimal period $T>0$. The stability of the cycle is given by its Floquet multipliers μ :
There is always a trivial multiplier $\mu_{1}=1$. The cycle is stable if $\left|\mu_{i}\right|<1, \quad i=$ $2, \ldots, n$. Typically determined as the eigenvalues of the linearization of the
 Poincaré map.
The cycle may loose stability as upon changing a parameter a multiplier crosses the unit circle: Neimark-Sacker bifurcation

Limit Point of Cycles (LPC)

$$
\xi \mapsto \alpha+\xi+a \xi^{2}
$$

Two periodic orbits collide and disappear.

Limit Point of Cycles (LPC)

Two periodic orbits collide and disappear.

Period-doubling (PD)

$$
\xi \mapsto(-1+\alpha) \xi+b \xi^{3}
$$

The cycle becomes unstable and a cycle of double period is born.

Period-doubling (PD)

$$
\xi \mapsto(-1+\alpha) \xi+b \xi^{3}
$$

The cycle becomes unstable and a cycle of double period is born.

Neimark-Sacker (NS)

$$
z \mapsto e^{i \theta(\alpha)}\left((1+\alpha) z+(c+d i) z|z|^{2}\right)
$$

The cycle becomes unstable and a torus appears around the cycle.

Neimark-Sacker (NS)

$\alpha>0$

$\alpha=0$

$$
z \mapsto e^{i \theta(\alpha)}\left((1+\alpha) z+(c+d i) z|z|^{2}\right)
$$

The cycle becomes unstable and a torus appears around the cycle.

Limit Cycles: Defining systems

Periodic orbits $x(t)=x(t+T)$ are computed with a Boundary Value Problem:

- Time rescaling $T=1$ and divide $t \in[0,1]$ into N little intervals: $0<t_{1}<\ldots<t_{N}=1$.
- On each interval approximate solution x by polynomial p_{i}.
- Polynomial should satisfy the ODE at (Gaussian) collocation points.
- Glue the little intervals $p_{i}(t=1)=p_{i+1}(t=-1)$.
- Periodicity requires $x(0)=p_{1}(-1)=p_{N}(1)=x(1)$.
- Phase condition for a unique solution.
- Continuation variables $x_{i}, 1$ parameter, period T.

Limit Cycles: Collocation

Figure 23: The mesh $\left\{0=t_{0}<t_{1}<\cdots<t_{N}=1\right\}$. Collocation points and "extended-mesh points" are shown for the case $m=3$, in the j th mesh interval. Also shown are two of the four local Lagrange basis polynomials.

Limit Cycle Continuation

Initial data for continuation:

- From a Hopf bifurcation there is a one-parameter family of periodic orbits. Use linear center-manifold approximation to start Limit Cycle continuation from a Hopf bifurcation: $x=x_{0}+\varepsilon \Re\left(e^{i \omega_{0} t} q_{0}\right), \alpha=\alpha_{0}$.
- Start LC continuation from simulated (periodic) orbit (if there is no Hopf nearby)

When LC continuation fails, e.g.:
c is very small or large, close to a saddle-node, stiff system Solutions:

- "Play" with the amplitude ε.
- Use more mesh points.

More on Limit Cycles

- Detection of LP, PD and NS points; test-functions use linearization.
Switched off by default for speed, and spurious detections.
- Computation of the normal form coefficients $a_{L P}, b_{P D}, c_{P D}$; reported on the Matlab command line.
- Continuation of LP, PD and NS in 2 parameters; additional equations defined by bordered systems.
- Detection of codim 2 bifurcations of cycles; Defined by additional critical multipliers or degenerate normal form coefficients.
Normal form coefficients are computed.

Checking output

Understand your model and check your results

- 2D/3D graphic:

Variables (all/max/min), parameters, period (close during continuation for speed)

- Numeric window:

Variables, parameters, period, stepsize, testfunctions

Loading output

All data is stored in a folder "diagram". This allows inspection afterwards. For each curve we store:

- x : the variables, phase space coordinates, system parameters and auxilary variables.
- v : The tangent vector to the curve.
- s: structure with info about special points: First/last and type of bifurcations.
- h : \# Newton corrections, Stepsize, values of testfunctions.
- f : (for LC: the MESH), Eigenvalues/Multipliers.

Definition of connecting orbits

Take two saddle steady states x_{0} and x_{1} and an orbit $x(t)$. $x(t)$ is a connecting orbit if

$$
\lim _{t \rightarrow-\infty} x(t)=x_{0} \quad \text { and } \quad \lim _{t \rightarrow+\infty} x(t)=x_{1}
$$

If $x_{0}=x_{1}$ then homoclinic, if $x_{0} \neq x_{1}$ then heteroclinic.

Eigenspaces

Another way to look at it: $\lim _{t \rightarrow-\infty} x(t)=x_{0}$ means $x(-T) \in W^{u}\left(x_{0}\right)$ $\lim _{t \rightarrow+\infty} x(t)=x_{1}$ means $x(+T) \in W^{s}\left(x_{1}\right)$ or rather orthogonal to the complement!

We cannot compute infinite trajectories... UNIVERSITY OF TWENTE.

Defining system for connecting orbits

$$
\begin{aligned}
\dot{x}(t)-f(x(t), p) & =0, \\
f\left(x_{0}\right) & =0, \\
f\left(x_{1}\right) & =0, \\
\int_{-T}^{T}\left(x(t)-x_{0}(t)\right)^{T} \dot{x}_{0}(t) d t & =0,
\end{aligned}
$$

$$
L_{s}(p)\left(x(-T)-x_{0}\right)=0, \quad \text { left boundary projection }
$$

$$
L_{u}(p)\left(x(T)-x_{1}\right)=0, \quad \text { right boundary projection }
$$

$$
\left\|x(T)-x_{0}\right\|-\varepsilon_{0}=0, \quad \text { distance to } x_{0}
$$

$$
\left\|x(T)-x_{1}\right\|-\varepsilon_{1}=0, \quad \text { distance to } x_{1}
$$

Connecting orbits are a codimension 1 phenomenon:
Two free system parameters and 1(2) auxilary variable(s) from $T, \varepsilon_{0}, \varepsilon_{1}$: choice depends on the system.

How to start continuation?

It is nice that we have defining systems, but how do we give good initial data for continuation:

- Equilibrium: from "any" point
- Limit cycle: from Hopf or a simulation
- Bifurcation: At points detected during continuation
- Connecting orbits...

Methods to start homoclinic continuation

0. An analytic approximation if available: For Bogdanov-Takens only.
1. Start from limit cycle with large period.
2. Homotopy in several steps:
3. Simulation starting in unstable manifold of a saddle x_{0}.
4. Take orbit piece that came closest to target saddle x_{1}.
5. Bring the endpoint of the orbit piece into the stable eigenspace of target equilibrium x_{1}
6. Bring the endpoint close enough to x_{1}.

Homoclinic bifurcations

We have not covered bifurcations of homoclinic orbits!
Matcont supports detection of these bifurcations.
Good texts for reference:

- Chapter 6 of book by Yuri Kuznetsov
- Handbook chapter by Sandstede and Homburg: google for "Homoclinic and Heteroclinic Bifurcations in Vector Fields"

Tutorial: Part 2

- Tutorial §3: Limit Cycles in Lorenz84 and plotting
- Tutorial §4: Homoclinic orbit continuation.

