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Motivation

Consider a system of smooth nonlinear ODE’s

f : Rn+m → Rn,
dx
dt

= f (x , α). (1)

I What are the equilibria? Are they stable?
I Are there any periodic orbits? Are they stable?

Not restricted to one value of α but a range of parameters: A
bifurcation diagram classifies regions in parameter space with
qualitatively similar dynamics.
A numerical toolbox might be very useful because f is
nonlinear.
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Capabilities of Auto, Content, Matcont

A C M
time-integration + +

continuation of equilibria + + +

detection of branch points and
codim 1 bifurcations of equilibria + + +

computation of normal forms
for codim 2 bifurcations of equilibria + +

continuation of codim 2 equilibrium bifurcations
in three parameters +

branch-switching from codim 2 equilibria
to codim 1 bifurcations of cycles +
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Capabilities of Auto, Content, Matcont

A C M
continuation of limit cycles + + +

computation of phase response curve& derivative +

detection of branch points and
codim 1 bifurcations of cycles + + +

continuation of codim 1 bifurcations of cycles + +

computation of normal forms for
codim 1 bifurcations of cycles +

detection of codim 2 bifurcations of cycles +

computation of connecting orbits + +

Not better or faster than AUTO, but Matcont has a GUI and
other features
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General Overview of Tutorial

AIM: KNOW that such software exists and FEEL CONFIDENT
that you can use it.

Skills come through experience: try, fail and learn.

Part 1 ODEs: Simulations, Numerical Continuation, Equilibria
and codimension 1 bifurcations

Part 2 ODEs: Periodic orbits (cycles) and their codim 1
bifurcations, Homoclinic orbits

Part 3 Maps: Fixed points and cycles, codim 1 bifurcations

Short presentations ( 30 min) + 1hr Exercise
Tuesday morning part 4 is meant for questions
Also if it is about your own model/research.
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Equilibria

An equilibrium x0 satisfies f (x0, α) = 0.
It is asymptotically stable if all the eigenvalues of
A := Dfx(x0, α) have negative real part.
Eigenvalues depend continuously on parameter α. Varying α,
an equilibrium loses stability in two ways generically:

(b)(a)
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λ1

saddle-node Hopf

Matcont Tutorial July 11, 2016 8 / 37



Saddle-Node bifurcation

Two equilibria, one stable and one unstable, collide and
disappear.

y = f (x, α)

y = f (x, α)

y = f (x, α)

α < 0 α = 0 α > 0
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Other names: Limit Point (LP), Fold, Tangent bifurcation
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Hopf bifurcation

A complex pair of eigenvalues passes through imaginary axis.
Normal form: z ′ = (α+ iω)z + (c + di)z|z|2, z ∈ C
c is the Lyapunov coefficient.

x
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x2 x2

x
1

x2

x
1

α = 0 α > 0α < 0

x2x2x2

x1x1

α < 0 α = 0 α > 0

x1

Case c < 0: Supercritical Hopf, soft bifurcation
Appearance of a stable periodic orbit
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Hopf bifurcation
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Case c > 0: Subcritical Hopf, hard bifurcation
Disappearance of an unstable periodic orbit
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Hopf bifurcation

A complex pair of eigenvalues passes through imaginary axis.
Normal form: z ′ = (α+ iω)z + (c + di)z|z|2, z ∈ C
c is the Lyapunov coefficient.
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Higher dimensions

Decompose phase space W near equilibrium into invariant
unstable, center and stable manifolds:

W = Wu ⊕Wc ⊕Ws

Bifurcations occur on the center manifold Wc .

α < 0 α = 0 α > 0

In general, only look at the least stable eigenvalues.
Bifurcations still occur if Wu is non-empty.
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Hierarchy of Bifurcations of Equilibria and
Cycles (Labels as in MatCont)
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Normal Forms

I For a Limit Point bifurcation the dynamics restricted to a
1D center manifold is given by

ξ′ = α+ aξ2 + ..., ξ ∈ R

I For a Hopf bifurcation the dynamics restricted to a 2D
center manifold is given by

z ′ = (α+ iω) + (c + di)z|z|2 + ..., z ∈ C

When LP or H is detected, Matcont reports a and c on the
Matlab command line.
Formulas for a, c are based on center-manifold reduction (not
discussed here).
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Numerical Continuation

Defining system F with n equations and n + 1 variables:

F : Rn+1 → Rn, F (x , α) = 0.

We assume rank(Dfx ,α) = n, i.e. a regular system.
By the Implicit Function Theorem this defines a curve.

Example: hyperbolic equilibria f (x ,p) = 0.
Locally, we find a curve x(α), since rank(Dfx) = n.

For numerical approximations of the curve:
I Fix a component, e.g. the parameter
I Use additional equation, pseudo-arclength condition
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Numerical Continuation Algorithms

Fixing the parameter at every step
Without or with tangent vector

p

(h0, h0v0)
y0

(b)
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(h2, h2v2)

uu

(h2, 0)
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(h0, 0)

y0

y1

y2

y3

y1

y2

y3

Initial point y0 → Predict new point ỹ1 → Newton corrections to obtain y1
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Numerical Continuation Algorithms

Search for new point in space orthogonal to tangent vector

〈φ0, ỹ1 − (y0 + hφ0)〉 = 0.

Pseudo-Arclength Moore-Penrose
u

(a) p p

u

(b)
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1
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2

φ0
2

y1

y2
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φ1
1

y12
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Matcont uses Moore-Penrose, but you could switch.

Initial point y0 → Predict new point ỹ1 → Newton corrections to obtain y1
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Continuation of equilibria in 1 parameter

We need
I a system x ′ = f (x , α).
I an initial point y0 = (x0, α0) such that f (x0, α0) ≈ 0.
I a continuation program.
I assign one parameter to be free, i.e. allow it to vary.
I monitor test functions h(x ,p) to detect bifurcations.

Test functions; not based on eigenvalues directly
I Limit Point: h(x , α) = φ(end). This uses the IFT!
I Hopf: h(x , α) = 2A� I.

If A = Dfx(x0) has eigenvalues λ1...n, then the bi-alternate
product 2A� I has eigenvalues λi + λj , 1 ≤ i < j ≤ n.
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Continuation of bifurcations in 2 parameters
Add more conditions and auxilary variables to the defining
system

F : Rn+ñ+2 → Rn+ñ+1, F =

(
f (x , α)
s(x , α)

)
= 0.

s(x ,p) is a function defining a Limit Point or Hopf bifurcation.

For a Limit Point A = Df has rank deficiency 1. Define s as the
solution of a bordered system(

A p
qT 0

)(
w(x , α)
s(x , α)

)
=

(
0
1

)
,

with bordering vectors that approximate the true nullspace
Aq0 = AT p0 = 0 and ‖q‖ = 〈p,q〉 = 1
At a fold bifurcation s(x0, α0) = 0.
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Continuation of bifurcations in 2 parameters
Add more conditions and auxilary variables to the defining
system

F : Rn+ñ+2 → Rn+ñ+1, F =

(
f (x , α)
s(x , α)

)
= 0.

s(x ,p) is a function defining a Limit Point or Hopf bifurcation.

For a Hopf bifurcation A2 + ω2I has rank deficiency 2. Define s
as two independent components of g obtained from A2 + κI p1 p2

qT
1 0 0

qT
2 0 0

( w(x , α)
g(x , α)

)
=

(
0n×2

I2

)
,

with auxilary variable κ = ω2 and bordering vectors not
orthogonal to Null(A2 + ω2I)T (∗).
At a Hopf bifurcation gij(x0, α0) = 0, i , j = 1,2.
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Codim 2 points are organizing centers

Codim 2 bifurcation if normal form coefficient vanishes or
additional critical eigenvalue.
Locus of new bifurcation curves.

I Cusp; normal form coefficient a = 0.
I Bogdanov-Takens (BT); double zero eigenvalue.
I Degenerate Hopf (GH); Lyapunov coefficient c = 0.
I Zero-Hopf; eigenvalue 0 and imaginary pair ±iω.
I Double Hopf; two imaginary pairs of eigenvalues
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Tutorial: Part 1

Some general remarks:
I Never forget to do simulations as well.
I The continuation adapts stepsize; smaller steps near folds.
I Setting stepsizes for the continuation or initializers

requires experience.

Tutorial §2: Defining a system and Simulations
Continuation of Equilibria and

codim 1 bifurcations of Equilibria
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Periodic Orbit ∼ Limit Cycle

A Periodic Orbit satisfies x(t + T ) = x(t)
for a minimal period T > 0. The stability
of the cycle is given by its Floquet multi-
pliers µ:
There is always a trivial multiplier µ1 = 1.
The cycle is stable if |µi | < 1, i =
2, ...,n. Typically determined as the
eigenvalues of the linearization of the
Poincaré map.

Σ

L0

x0

x
P (x)

The cycle may loose stability as upon changing a parameter a
multiplier crosses the unit circle:

µ
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µ
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Σ

L0

x0

x
P (x)

The cycle may loose stability as upon changing a parameter a
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Limit Point of Cycles (LPC)

α < 0 α = 0 α > 0

x̃x̃x̃

fα(x) fα(x) fα(x)

µ = 1

xx1

x2
x

0

x

ξ 7→ α+ ξ + aξ2

Two periodic orbits collide and disappear.
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Limit Point of Cycles (LPC)

L1 L2 L0

α > 0α = 0α < 0

ξ 7→ α+ ξ + aξ2

Two periodic orbits collide and disappear.
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Period-doubling (PD)

α < 0 α = 0 α > 0

x xx

x̃ x̃x̃

fα(x)

fα(x)

fα(x)
µ = −1

0

x1

x2

ξ 7→ (−1 + α)ξ + bξ3

The cycle becomes unstable and a cycle of double period is
born.
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Period-doubling (PD)

L0 L0 L0

L1

α < 0 α = 0 α > 0

ξ 7→ (−1 + α)ξ + bξ3

The cycle becomes unstable and a cycle of double period is
born.
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Neimark-Sacker (NS)

α < 0 α = 0

x1x1x1

x2x2 x2

α > 0

z 7→ eiθ(α)
(
(1 + α)z + (c + di)z|z|2

)
The cycle becomes unstable and a torus appears around the
cycle.
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Neimark-Sacker (NS)

L0 L0 L0

T2

α > 0 α = 0 α > 0

z 7→ eiθ(α)
(
(1 + α)z + (c + di)z|z|2

)
The cycle becomes unstable and a torus appears around the
cycle.
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Limit Cycles: Defining systems

Periodic orbits x(t) = x(t + T ) are computed with a Boundary
Value Problem:

I Time rescaling T = 1 and divide t ∈ [0,1] into N little
intervals: 0 < t1 < ... < tN = 1.

I On each interval approximate solution x by polynomial pi .
I Polynomial should satisfy the ODE at (Gaussian)

collocation points.
I Glue the little intervals pi(t = 1) = pi+1(t = −1).
I Periodicity requires x(0) = p1(−1) = pN(1) = x(1).
I Phase condition for a unique solution.
I Continuation variables xi , 1 parameter, period T .
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Limit Cycles: Collocation
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Limit Cycle Continuation

Initial data for continuation:
I From a Hopf bifurcation there is a one-parameter family of

periodic orbits. Use linear center-manifold approximation
to start Limit Cycle continuation from a Hopf bifurcation:
x = x0 + ε<(eiω0tq0), α = α0.

I Start LC continuation from simulated (periodic) orbit (if
there is no Hopf nearby)

When LC continuation fails, e.g.:
c is very small or large, close to a saddle-node, stiff system
Solutions:

I ”Play” with the amplitude ε.
I Use more mesh points.
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More on Limit Cycles

I Detection of LP, PD and NS points; test-functions use
linearization.
Switched off by default for speed, and spurious detections.

I Computation of the normal form coefficients aLP ,bPD, cPD;
reported on the Matlab command line.

I Continuation of LP, PD and NS in 2 parameters;
additional equations defined by bordered systems.

I Detection of codim 2 bifurcations of cycles;
Defined by additional critical multipliers or degenerate
normal form coefficients.
Normal form coefficients are computed.
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Checking output

Understand your model and check your results
I 2D/3D graphic:

Variables (all/max/min), parameters, period
(close during continuation for speed)

I Numeric window:
Variables, parameters, period, stepsize, testfunctions
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Loading output

All data is stored in a folder “diagram”. This allows inspection
afterwards. For each curve we store:

I x : the variables, phase space coordinates, system
parameters and auxilary variables.

I v : The tangent vector to the curve.
I s: structure with info about special points: First/last and

type of bifurcations.
I h: # Newton corrections, Stepsize, values of testfunctions.
I f : (for LC: the MESH), Eigenvalues/Multipliers.

Matcont Tutorial July 11, 2016 30 / 37



Definition of connecting orbits

Take two saddle steady states x0 and x1 and an orbit x(t).
x(t) is a connecting orbit if

lim
t→−∞

x(t) = x0 and lim
t→+∞

x(t) = x1

If x0 = x1 then homoclinic, if x0 6= x1 then heteroclinic.
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Eigenspaces

Another way to look at it:
limt→−∞ x(t) = x0 means x(−T ) ∈W u(x0)
limt→+∞ x(t) = x1 means x(+T ) ∈W s(x1)
or rather orthogonal to the complement!

x(−T−)

W u

x(T+)

T u

T s

W s

x0

We cannot compute infinite trajectories...
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Defining system for connecting orbits



ẋ(t)− f (x(t),p) = 0, orbit piece
f (x0) = 0, equilibrium
f (x1) = 0, equilibrium∫ T

−T (x(t)− x0(t))T ẋ0(t)dt = 0, phase condition
Ls(p)(x(−T )− x0) = 0, left boundary projection

Lu(p)(x(T )− x1) = 0, right boundary projection
‖x(T )− x0‖ − ε0 = 0, distance to x0
‖x(T )− x1‖ − ε1 = 0, distance to x1

Connecting orbits are a codimension 1 phenomenon:
Two free system parameters and 1(2) auxilary variable(s) from
T , ε0, ε1: choice depends on the system.

Matcont Tutorial July 11, 2016 33 / 37



How to start continuation?

It is nice that we have defining systems, but how do we give
good initial data for continuation:

I Equilibrium: from “any” point
I Limit cycle: from Hopf or a simulation
I Bifurcation: At points detected during continuation
I Connecting orbits...
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Methods to start homoclinic continuation

0. An analytic approximation if available: For
Bogdanov-Takens only.

1. Start from limit cycle with large period.
2. Homotopy in several steps:

1. Simulation starting in unstable manifold of a saddle x0.
2. Take orbit piece that came closest to target saddle x1.
3. Bring the endpoint of the orbit piece into the stable

eigenspace of target equilibrium x1
4. Bring the endpoint close enough to x1.
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Homoclinic bifurcations

We have not covered bifurcations of homoclinic orbits!
Matcont supports detection of these bifurcations.
Good texts for reference:

I Chapter 6 of book by Yuri Kuznetsov
I Handbook chapter by Sandstede and Homburg: google for

“Homoclinic and Heteroclinic Bifurcations in Vector Fields”
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Tutorial: Part 2

I Tutorial §3: Limit Cycles in Lorenz84 and plotting
I Tutorial §4: Homoclinic orbit continuation.
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